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Stochastic solutions

Stochastic solution = a stochastic process which, started from a
particular point in the domain, generates after time t a boundary
measure which, integrated over the initial condition at t = 0, provides
the solution at x and time t.
Example: the heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

the process is Brownian motion, dXt = dBt , and the solution

u(t, x) = Ex f (Xt ) (1)

The domain here is R� [0, t) and the expectation value in (1) is the
inner product hµt , f i of the initial condition f with the measure µt
generated by the Brownian motion at the t�boundary.
The process should be the same for any initial condition.
Classical results for linear pde�s. Recent work in nonlinear pde�s:
KPP, Navier-Stokes, Poisson-Vlasov, MHD, etc.
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Stochastic solutions: What are they good for?

New exact solutions
New numerical algorithms
Deterministic algorithms grow exponentially with the dimension d of
the space, roughly Nd ( LN the linear size of the grid). The stochastic
process only grows with the dimension d .
Provide localized solutions
Sample paths started from the same point are independent.
Likewise, paths starting from di¤erent points are independent from
each other.
The stochastic algorithms are a natural choice for parallel and
distributed computation.
Stochastic algorithms handle equally well regular and complex
boundary conditions.
Domain decomposition using interpolation of localized stochastic
solutions and then, in each small domain, a deterministic code.
Avoids the communication time problem. Fully parallel.
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Stochastic solutions and domain decomposition

(J. Acebrón, A. Rodríguez-Rozas, R. Spigler )
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Stochastic solutions: Two construction methods

McKean�s method: a probabilistic version of the Picard series.
First the di¤erential equation is written as an integral equation and
rearranged in a such a way that the coe¢ cients of the successive
terms in the Picard iteration obey a normalization condition
Then the Picard iteration is interpreted as an evolution and branching
process
The stochastic solution is equivalent to importance sampling of a
normalized Picard series.

The method of superprocesses: constructs the boundary measures
of a measure-valued stochastic process and obtain the solutions of the
di¤erential equation by a scaling procedure.

Comparison of the two methods and generalization of superprocesses
(to signed measures and distribution-valued processes).
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The KPP equation: McKean�s formulation

∂v
∂t
=
1
2

∂2v
∂x2

+ v2 � v

and initial data v (0, x) = g (x)
G (t, x) = Green�s operator for heat equation ∂tv(t, x) = 1

2
∂2

∂x 2 v(t, x)

G (t, x) = e
1
2 t

∂2

∂x2

KPP in integral form

v (t, x) = e�tG (t, x) g (x) +
Z t

0
e�(t�s)G (t � s, x) v2 (s, x) ds (2)

Denoting by (ξt ,Πx ) a Brownian motion starting from time zero and
coordinate x , Eq.(2) may be rewritten

v (t, x) = Πx

�
e�tg (ξt ) +

Z t

0
e�(t�s)v2 (s, ξt�s ) ds

�
= Πx

�
e�tg (ξt ) +

Z t

0
e�sv2 (t � s, ξs ) ds

�
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The KPP equation: McKean�s formulation

The stochastic solution process: a Brownian motion plus branching
process with exponential holding time T , P (T > t) = e�t . At each
branching point the particle splits into two, the new particles going
along independent Brownian paths. At time t > 0 one has n particles
located at x1 (t) , x2 (t) , � � � xn (t). The solution is obtained by

v (t, x) = E fg (x1(t)) g (x2(t)) � � � g (xn(t))g

An equivalent interpretation: a backwards-in-time process from time t
at x . When it reaches t = 0 samples the initial condition. Generates
a measure at the t = 0 boundary which is applied to g (x) = v (0, x).
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Superprocesses: Branching exit measures

(E ,B) a measurable space, M+ (E ) the space of �nite measures in E
and

�
Xt ,P0 ,µ

�
a branching stochastic process with values in M+ (E )

and transition probability P0,µ starting from time 0 and measure µ.
The process satis�es a branching property if given µ = µ1 + µ2

P0,µ = P0,µ1 � P0,µ2
that is, after the branching,

�
X 1t ,P0,µ1

�
and

�
X 2t ,P0 ,µ2

�
are

independent and X 1t + X
2
t has the same law as

�
Xt ,Pr0,µ

�
.

For the transition operator Vt operating on functions on E this is

Vt f (µ1 + µ2) = Vt f (µ1) + Vt f (µ2)

where e�hVt f ,µi $ P0,µe�hf ,Xt i or
Vt f (µ) = � logP0,µe�hf ,Xt i

Vt is called the log-Laplace semigroup associated to Xt . If the initial
measure µ is δx one writes

Vt f (x) = � logP0,x e�hf ,Xt i
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Superprocesses: Branching exit measures

In S = [0,∞)� E consider a set Q � S and the associated branching
exit process

�
XQ ,Pµ

�
composed of a propagating Markov process in

E , ξ = (ξt ,Π0,x ), a set of probabilities pn(t, x) describing the
branching and a parameter k de�ning the lifetime.

u (x) = VQ f (x) = � logP0,x e�hf ,XQ i (3)

hf ,XQ i is the integral of the function f on the (space-time) boundary
with the boundary exit measure generated by the process.
This branching exit process is a (ξ,ψ)�superprocess if u (x) satis�es
the equation

u + GQψ (u) = KQ f (4)

where GQ is the Green operator,

GQ f (r , x) = Π0,x

Z τ

0
f (s, ξs ) ds

KQ the Poisson operator

KQ f (x) = Π0,x1τ<∞f (ξτ)

ψ (u) means ψ (0, x ; u (0, x)) and τ is the exit time from Q.
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Superprocesses: The construction

Let ϕ (s, x ; z) be the o¤spring generating function at time s and point x

ϕ (s, x ; z) = c
∞

∑
0
pn(s, x)zn

where ∑n pn = 1 and c denotes the branching intensity.

P0,x e�hf ,XQ i $ (5)

e�w (0,x ) = Π0,x

�
e�kτe�f (τ,ξτ) +

Z τ

0
dske�ks ϕ

�
s, ξs ; e

�w (τ�s ,ξs )
��

The measure-valued process starts from δx at time 0, τ is the �rst exit
time from Q and f (τ, ξτ) the value of a function in the boundary ∂Q.
Using

R τ
0 ke

�ksds = 1� e�kτ and the Markov property
Π0,x1s<τΠs ,ξs = Π0,x1s<τ, Eq.(5) for e�w (0,x ) is converted into

e�w (0,x ) = Π0,x

�
e�f (τ,ξτ) + k

Z τ

0
ds
h

ϕ
�
s, ξs ; e

�w (τ�s ,ξs )
�
� e�w (τ�s ,ξs )

i�
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Superprocesses: The limiting procedure

Replace w (0, x) by βwβ (0, x) and f by βf . β may be interpreted as the
mass of the particles and when the measure-valued process XQ ! βXQ
then Pµ ! P µ

β
.

e�βw (0,x ) = Π0,x

h
e�βf (τ,ξτ)

+kβ

Z τ

0
ds
h

ϕβ

�
s, ξs ; e

�βw (τ�s ,ξs )
�
� e�βw (τ�s ,ξs )

i�
De�ning

uβ =
�
1� e�βwβ

�
/β ; fβ =

�
1� e�βf

�
/β

ψβ

�
r , x ; uβ

�
=
kβ

β

�
ϕ
�
r , x ; 1� βuβ

�
� 1+ βuβ

�
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Superprocesses: The limiting procedure

One obtains

uβ (0, x) +Π0,x

Z τ

0
dsψβ

�
s, ξs ; uβ

�
= Π0,x fβ (τ, ξτ)

that is
uβ + GQψβ

�
uβ

�
= KQ fβ (6)

When β ! 0, f ! fβ and if ψβ goes to a well de�ned limit ψ then uβ

tends to a limit u, solution of (4) associated to a superprocess. Also in the
β ! 0 limit

uβ ! wβ = � logP0,x e�hf ,XQ i

If to reproduce with (6) the equation we want it must be β ! 0 and
kβ ! ∞, the superprocess would correspond to a cloud of particles for
which both the mass and the lifetime tend to zero.
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The KPP equation as a superprocess

The KPP equation

v (t, x) = e�tG (t, x) g (x) +
Z t

0
e�sG (t � s, x) v2 (s, x) ds

is identical to
P0,x e�hf ,XQ i $ e�w (0,x ) =

= Π0,x

�
e�kτe�f (τ,ξτ) +

Z τ

0
dske�ks ϕ

�
s, ξs ; e

�w (τ�s ,ξs )
��

with k = 1, e�w (0,x ) = v (τ, x), e�f (τ,ξτ) = g (ξτ),

ϕ
�
s, ξs ; e

�w (τ�s ,ξs )
�
= v2 (τ � s, ξs ).

The McKean probabilistic construction corresponds to an
intermediate step in the superprocess construction. Summing over the
exit measure, the solution is

v (t, x) = e�hf ,XQ i = e�∑i f (ξτi ) = e∑i log g(ξτi ) = Πig
�
ξτi

�
essentially the same as before.
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The KPP equation as a superprocess

Let u (t, x) = 1� v (t, x), which satis�es the equations
∂u
∂t
=
1
2

∂2u
∂x2

� u2 + u

u (t, x) +Πx

Z t

0

�
u2 (t � s, ξs )� u (t � s, ξs )

�
ds = Πx (1� g (ξt ))

that is, for KPP, ψ (0, x ; u) = u2 � u

ψβ

�
0, x ; uβ

�
=

kβ

β

�
ϕ
�
0, x ; 1� βuβ

�
� 1+ βuβ

�
=

kβ

β

�
c∑ pn

�
1� βuβ

�n � 1+ βuβ

�
=

kβc

β

�
β2u2β � βuβ

�
= u2 � u

with pn = δn,2. Therefore c = β = 1 and kβ = 1. That is, for KPP the
superprocess is not a scaling limit. It coincides with the McKean process.
In this case, because β = 1 instead of β ! 0, the solution is (1� e�w ).
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Superprocesses and nonlinear heat equation

With other limiting choices for β, stochastic solutions are constructed for
other equations, in particular for equations without the natural Poisson
clock which is present in the KPP equation. For example for

∂u
∂t
=
1
2

∂2u
∂x2

� u2

ψ (0, x ; u) = u2

ψβ

�
0, x ; uβ

�
=

kβ

β

 
βuβ � 1+

2

∑
n=0

p0 + p1
�
1� βuβ

�
+ p2

�
1� βuβ

�2!
= u2β

leads to p1 = 0; p0 = p2 = 1
2 ; kβ =

2
β

In this case, with β ! 0, the solution is given by (3) and the superprocess
is a scaling limit (n! ∞ in the �gure) where both mass and lifetime of
the particles tend to zero and at each bifurcation one has equal probability
of either dying without o¤spring or having two children
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Superprocesses and nonlinear heat equation
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Superprocesses for more general interactions

The construction may be generalized for interactions uα with 1 < α � 2.
With z = 1� βuβ one has

ϕ (0, x ; z) = ∑
n
pnzn = z + uα

β = z +
β

kβ

(1� z)α

βα = z +
1

kββα�1

�
�
1� αz +

α (α� 1)
2

z2 � α (α� 1) (α� 2)
3!

z3 + � � �
�

Choosing kβ =
α

βα�1 the terms in z cancel and for 1 < α � 2 the
coe¢ cients of all the remaining z powers are positive and may be
interpreted as branching probabilities. It would not be so for α > 2.

p0 =
1
α
; p1 = 0; � � � pn =

(�1)n

α

�
α
n

�
n � 2

with ∑n pn = 1. With this choice of branching probabilities, kβ =
α

βα�1 and

β ! 0 one obtains a superprocess which provides a solution to the
equation ∂u

∂t =
1
2

∂2u
∂x 2 � u

α for 1 < α � 2.
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