Rui Vilela Mendes

CMAF and CFN, Lisbon

5/22/2006




Contents

¢ -1 - Ergodic tools. Exponents and entropies
¢ 2 — Structures and self-organization

¢ 3 - Examples

¢ 4 - Synchronization and beyond

¢ 5 — Network structure and dynamics. The small-world
phase

¢ 6 — Self-organized criticality
Real world manifestations and toy models

¢ 7 — Two features of most SOC models and a
mathematical result

¢ 8 — Head'’s critique of parameter independence in SOC
¢ 9 — The deterministic Bak-Sneppen model
¢ 10 - Beyond the classical ergodic parameters




1. Ergodic tools. Exponents and entropies

¢ Invariant measures and ergodic parameters

I = lim
P (W WTZF
¢ Lyapunov and conditional exponents

From the k x k and (m-k)x(m-k)
blocks of the Jacobian , obtain i (Dkfn* (x) Dy " (x)) 2n

the conditional exponents as n— 00
the eigenvalues of the limits ; 1
Hm (Dpx f" () D1 f" (x)) 2"

n—aoo

¢t

1 .
limlog || Dy f*()ul] =

. 0£uc E. /BT
L} i1s the subspace spanned by the eigenstates

corresponding to eigenvalues < exp(£§k>)




Existence of the conditional exponents

+ First proposed by Pecora and Carroll to study the phenomenology of
synchronization of chaotic systems
PRL 64 (1990) 821 ; PRA 44 (1991) 2374

Theor. 1 The existence of the conditional exponents is guaranteed
under the same conditions as for the Lyapunov exponents

Existence of a measurable map
from the dynamical space V to

m X m matrices

Xl | 1/(dx)log" |T(x)] < oo

The proof follows the same steps as for the Oseledec’s theorem
PLA 248 (1998) 167

Regular functionals of the exponents will also be well-defined
ergodic parameters




2 - Structures and self-organization

¢ Structure index

diverges whenever a Lyapunov exponent approaches zero from above
(points where long time correlations develop)

¢ Self-organization  (partitions ¥, = R¥ x R™ %)
N

Is(p) = ) {Pi(p) + Pmi(e) — h(1)}

k=1

h(p) = Y & k() = Y & () = >N
&M>0 £~ 0

A >0




¢ Self-organization concerns the dynamical relation of the
whole to its parts. Therefore, I-(1) is @ measure of
dynamical self-organization

¢ It is a measure of apparent dynamical freedom (or apparent
rate of information production), that each agent may infer
from the local dynamics

¢ Self-organization occurs when local information is very
different from global behavior

¢ These global parameters, besides providing information on
structure formation and self-organization may also be used
to characterize the topology of the interactions (network
connectivity)




3 - Examples :

¢ Fully coupled system

X i(t+1) = (1-c) f(x (1)) + (c/(N-1)) Z; T(x (1))
f(x)=2x (mod 1)

c =0.495
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Fully coupled system. Structure and self-organization index




Nearest-neighbor coupling

¢ Xi(t+1) = (1-c) f(x i(t)) + (c/2) ( f(x .4(t) + (X 4(t) )
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¢ Synchronous flashing of fireflies, cells, fads, ......

4 - Synchron




4 - Synchronization and beyond

¢ Synchronization
(Classical mathematical example: the Kuramoto model)
A similar, discrete-time oscillators model

CL’Z(t—Fl) ( + Wj 1 _1Zfa

p(w) = L

folz; — x;) = a(z; — x;) (Modl)

¢ Order parameter \

]i] Z 2 (1)
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(k=0.1)
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¢ The Lyapunov spectrum controls the dynamical self-
organization of the system.

¢ In this case
A=0 and
A=log(1-aAk(N/N-1)) (N-1) times

N-1 contracting directions for kz0

“One-dimensional” system !

¢ = strong dynamical correlations even before
synchronization
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! T

1000

NI \
A0
p i WM yM u” )J\ NW WW i M ZW’ I

1000



5.Network structure and dynamics.The small world phase

B=0 . > B=1
Increasing randomness
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Define a dynamical system on the network nodes

* Xi(t+1) = Z N Wy f(x (1)) rl—nv(i)c ifi =k
2v
fx)=ax (mod 1) 7,21 5 ifi#kand kOn,i)
0 0 otherwise

Dy=c N (B-Bg)" B, <105 1 =1.0120.06
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Define a dynamical system on the network nodes

* Xi(t+1) = Z N Wy f(x (1)) rl—nv(i)c ifi =k
2v
fx)=ax (mod 1) 7,21 5 ifi#kand kOn,i)
0 0 otherwise

Dy=c N (B-Bg)" B, <105 1 =1.0120.06

he — N ) ,
¢ Co= | h}=Z[§Zﬁ*ﬁ<ﬂ]: hy = 2 A 50))
,8 i=1

ﬂ I /ffg>0 AIB>O

B, = 0.04 Co~[B-Be® 0,=1.14 9,=0.93
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6 - Self-organized criticality (SOC)

¢ A qualitative definition :

\ 4
4

SOC = mechanism of slow energy accumulation and fast
enerqgy redistribution (avalanches) driving the system
towards a critical state, where the distribution of avalanche
sizes is a power law obtained without fine tuning, that is,
there is no tunable parameter in the model.

Power law — no natural scale, excitations at all scales

No tunable parameter # usual critical points in phase
transitions

¢ A critical point as an attractor ? PHASE DIAGRAM

4

Ubiquity of SOC (geophysics, cosmology
evolutionary biology, ecology, economics
sociology, solar physics, ...)

3 (CRITICAL POINT)

REGION 1 (GAS)

REGION 2 (LIQUID)

N

TEMPERATURE —»

Obijective: Characterize SOC by
ergodic parameters

PRESSURE —»

FIGURE 4



Real world manifestations

¢ The Gutenberg-Richter law
Data from 1977-1995
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Real world manifestations

¢ Electron temperature fluctuations in a magnetically confined

plasma (ECE diagnostic)
(Politzer, PRL 84 (2000) 1192)

Low frequency part of 0T./T. spectrum shows
power-law (1/f) behavior at all radii

Ja=087 ~  ra=050 1r/a=0.05
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Real world manifestations

¢ Avalanches in living nheurons
Magnetoencephalography data compared with models
(de Arcangelis et al. PRL 96 (2006) 028107)

Ix101
Amplitude

11013 — Expernimental data -
— Square lattice L=1000
— Small world p=0.,01
1x101%~ . pamma=0.01
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Real world manifestations

+ Distribution of lengths of open spaces in urban

environments
(Carvalho and Penn, Physica A 332 (2004) 539)
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Real world manifestations
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Toy models

¢ Sand piles on the computer and on the lab

-| caraciTor .
‘ <I CAPACITOR

TO ANALYZER

+ However, the emergence of scaling laws on lab sand piles
depend on grain size and shape




Toy models

¢ Springer — slider block mode
(friction of the blocks on the fixed plate)

FIXED PLATE




A mathematical model: Bak-Sneppen (BS)

¢ Toy model for the evolution of species

J:!:c!"- N fitnesses in[0,1] v, '_,' th, St 1
LI o ) - .p. (] :'v:*ili.
s’ &F m___ " _a¥% 4 _. -
Rules: .

., 1) update the minimal AND
| 2) update the neigbours

‘ At initial moment
TR fitnesses are i.i.d. ~U([0,1])

¢ After a short transitory period the system self-organizes with
most species having fithess above 0.667

¢ Avalanches show power-law behavior




8-Two features of most models and a mathematical result

¢ Most SOC models display :
- Instable behavior of the local dynamics
- Extremal dynamics

Theor. 2 If, in a N-agent model :
- The single-agent dynamics has positive Lyapunov exponents and
- The global dynamics is extremal with finite range

then, in the N — *° | the Lyapunov spectrum converges
to 0*

In the T — <« limit, used to compute the Lyapunov spectrum, the tangent
maps have only a nontrivial finite size block during an average time of
order (2r+1)T/N

+ With the Lyapunov spectrum converging to 0* there are no dynamical
scales. Thus, in the N — *© | the system is “tuned” to SOC




9 - Head's critique of parameter-independence in SOC

¢ “... SOC models do in fact require parameter tuning, but they had
been defined in such a way that the tuning had been carried out
implicitly.”
(Eur. Phys. J. B 17 (2000) 289)
To make his point, he modified the Bak-Sneppen model defining the
probability of activation of an element by

Then he finds that it is only in the T—0 limit that power laws are
obtained, that is, BS is a zero temperature limit of his model




9 - Head's critique of parameter-independence in SOC
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A deterministic version of B-S-Head’'s model

zi(t+1)=Ti(z)z:(t)+ (1= Ti(z)) f(2:(2))

r= {x;} is the vector of agent coordinates
f(x;) = kx mod .1

k=2,3,---.
I'; (x) 1s nearly zero i1f ¢ corresponds to the minimum

Y

x value or to one of its 2n, neighbors and is nearly one

otherwise.
j:i+7’bv

I (-0 (see==)") @

j=i—ny k#j
for large a, satisfies the above conditions.

1=14+ny e_xi/T
1 —
H ZN 1e_xj/T

Jj=it—ny )=
a similar behavior for T — 07T




A deterministic version of B-S-Head’'s model

¢ The absence of power laws for non-zero T is indeed related to the
Lyapunov spectrum




A deterministic version of B-S-Head’'s model

¢ Notice that at T=0 the Lyapunov spectrum does not reach zero
because N=100.

¢ All this is expected from the proposition. However the deterministic
model also allows to study a few other features :

- What is the measure of the SOC state ?

- Is the SOC state an attractor ?

- Avalanches are return times to the SOC state. What is the
prefactor in the return times (avalanches) distribution in the T=0
limit ?




A deterministic version of B-S-Head’s model

Kac’s lem ma (for an ergodic invariant measure p)

Average return time to a set A of measure pu (A ) is
1/p (A).

For ascalinglaw p (7) ~ 1/7%, a < 2impliespy (A) =
0.

The distance process d




A deterministic version of B-S-Head’s model

¢ The SOC state has zero measure, but its finite-
dimensional projections have full measure.

¢ It is not an attractor, nor a repeller (not invariant)
¢ “Ghost weak repeller”

¢ The invariant measure is like a cloud around the SOC
state.




A deterministic version of B-S-Head’s model

The zero measure of this “repeller” makes the di-
rect measurement of the distribution law of avalanches
a delicate matter.

A more robust method

C (z) = (™) (5)

o(k) = ! / C(2)e (6)

" on .

Alternatively

p (k, p) = ck™*We= e (7)
with c and v (4, «)obtained from normalization and Kac’s
lemma, (k) = i :
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A deterministic version of B-S-Head’s model

The discussion above refers to the problem of direct
determination of the scaling exponents.

With the additional assumption of a scaling form
for p (k) near the critical barrier, further results may be
obtained. Assuming that close to u = 0

p(k,p)=k="f (k°n) (8)

T—2
2’2% N Z (9)
From Kac’s lemma
s =2 -7
and from the numerical data (Fig. 4a), T;3 ~ 2.07,lead-
ing to ™ ~ 1.067, s >~ 0.93.
Another exponent
g~ (bc o b)n
with (Fig. 4b) n ~ 2.55.
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10 - Beyond the classical ergodic parameters

Lyapunov and conditional exponents and derived quantities depend on
the actual (or expected) average rates of expansion

Fluctuations of the expansion rates along the trajectories
Generalized Lyapunov exponents
Dynamical Rényi entropies

N(P) = hm —logjdﬂ(xo)exp{
K(@)=lim = —ctog 3 (p(ip-,-)" A(B) = K(1= )

Cumulants of the Lyapunov spectrum
(1-a)’

=1 \) S '
Traces of Hessian powers

¥ ) 97) ")
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