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1. Ergodic tools. Exponents and entropies
Invariant measures and ergodic parameters

Lyapunov and conditional exponents

From the k x k and (m-k)x(m-k) 
blocks of the Jacobian , obtain
the conditional exponents as 
the eigenvalues of the limits

or
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corresponding to eigenvalues ≤ exp(ξ(k)i )
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Existence of the conditional exponents
First proposed by Pecora and Carroll to study the phenomenology of 
synchronization of chaotic systems
PRL 64 (1990) 821 ; PRA 44 (1991) 2374

Theor. 1  The existence of the conditional exponents is guaranteed 
under the same conditions as for the Lyapunov exponents

Existence of a measurable map 
from the dynamical space V to
m x m matrices

and

The proof follows the same steps as for the Oseledec’s theorem
PLA 248 (1998) 167
Regular functionals of the exponents will also be well-defined 
ergodic parameters

mMVT →:

( ) ∞<∫ + )(log xTdxµ



2 - Structures and self-organization
Structure index

diverges whenever a Lyapunov exponent approaches zero from above 
(points where long time correlations develop)

Self-organization       (partitions                              )
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Self-organization concerns the dynamical relation of the 
whole to its parts. Therefore, IΣ(µ) is a measure of 
dynamical self-organization

It is a measure of apparent dynamical freedom (or apparent 
rate of information production), that each agent may infer 
from the local dynamics

Self-organization occurs when local information is very 
different from global behavior

These global parameters, besides providing information on 
structure formation and self-organization may also be used 
to characterize the topology of the interactions (network 
connectivity)



3 - Examples :
Fully coupled system

x i(t+1) = (1-c) f(x i(t)) + (c/(N-1)) Σk≠i f(x k(t))         
f(x)=2x (mod 1)

c = 0.495 c = 0.51



Fully coupled system. Structure and self-organization index



Nearest-neighbor coupling

x i(t+1) = (1-c) f(x i(t)) + (c/2) ( f(x i+1(t) + f(x i-1(t) )



4 - Synchronization and beyond
Synchronous flashing of fireflies, cells, fads, ......



4 - Synchronization and beyond
Synchronization
(Classical mathematical example: the Kuramoto model)
A similar, discrete-time oscillators model :

Order parameter

xi (t + 1) = xi (t) + ωi +
k

N − 1
N[
j=1

fα (xj − xi)

p (ω) =
γ

π
k
γ2 + (ω − ω0)

2
l

fα (xj − xi) = α (xj − xi) (mod1)

r (t) =

������ 1N
N[
j=1

ei2πxj(t)

������







The Lyapunov spectrum controls the dynamical self-
organization of the system.

In this case 
λ1=0  and
λ i=log(1-αλk(N/N-1))       (N-1) times 

N-1 contracting directions for k≠0

“One-dimensional” system !

⇒ strong dynamical correlations even before 
synchronization





5.Network structure and dynamics.The small world phase



Define a dynamical system on the network nodes

x i(t+1) =  Σk=1
N W ik  f(xk(t))                           if i = k

f(x)=αx  (mod 1) if i ≠ k and k∈ nv(i)

0  otherwise 
Dβ = - Σλi<0 λ i

Dβ = c N (β - βc1) η βc1 <10-5 η = 1.01±0.06
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Define a dynamical system on the network nodes

x i(t+1) =  Σk=1
N W ik  f(xk(t))                           if i = k

f(x)=αx  (mod 1) if i ≠ k and k∈ nv(i)
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6 - Self-organized criticality (SOC)
A qualitative definition :
SOC = mechanism of slow energy accumulation and fast 
energy redistribution (avalanches) driving the system 
towards a critical state, where the distribution of avalanche 
sizes is a power law obtained without fine tuning, that is, 
there is no tunable parameter in the model.
Power law → no natural scale, excitations at all scales
No tunable parameter ≠ usual critical points in phase 
transitions
A critical point as an attractor ?
Ubiquity of SOC (geophysics, cosmology
evolutionary biology, ecology, economics
sociology, solar physics, …)

Objective: Characterize SOC by 
ergodic parameters



Real world manifestations
The Gutenberg-Richter law
Data from 1977-1995



Real world manifestations
Electron temperature fluctuations in a magnetically confined 
plasma (ECE diagnostic)
(Politzer, PRL 84 (2000) 1192)



Real world manifestations
Avalanches in living neurons
Magnetoencephalography data compared with models
(de Arcangelis  et al. PRL 96 (2006) 028107)



Real world manifestations
Distribution of lengths of open spaces in urban 
environments
(Carvalho and Penn, Physica A 332 (2004) 539)
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Real world manifestations
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Toy models
Sand piles on the computer and on the lab

However, the emergence of scaling laws on lab sand piles 
depend on grain size and shape



Toy models
Springer – slider block mode
(friction of the blocks on the fixed plate)



A mathematical model: Bak-Sneppen (BS)
Toy model for the evolution of species

After a short transitory period the system self-organizes with 
most species having fitness above 0.667
Avalanches show power-law behavior



8-Two features of most models and a mathematical result

Most SOC models display :
- Instable behavior of the local dynamics
- Extremal dynamics

Theor. 2 If, in a N-agent model : 
- The single-agent dynamics has positive Lyapunov  exponents and 
- The global dynamics is extremal with finite range
then, in the N →∞ , the Lyapunov spectrum converges 
to 0+

In the T → ∞ limit, used to compute the Lyapunov spectrum, the tangent 
maps have only a nontrivial finite size block during an average time of 
order (2r+1)T/N
With the Lyapunov spectrum converging to 0+  there are no dynamical 
scales. Thus, in the N →∞ , the system is “tuned” to SOC



9 - Head’s critique of parameter-independence in SOC
“… SOC models do in fact require parameter tuning, but they had 
been defined in such a way that the tuning had been carried out 
implicitly.”
(Eur. Phys. J. B 17 (2000) 289)
To make his point, he modified the Bak-Sneppen model defining the 
probability of activation of an element by

Then he finds that it is only in the T→0 limit that power laws are 
obtained, that is, BS is a zero temperature limit of his model
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9 - Head’s critique of parameter-independence in SOC



A deterministic version of B-S-Head’s model

x i (t + 1) = Γ i

�
x
∼

�
x i (t) +
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a s im ila r b eh av io r fo r T → 0+



A deterministic version of B-S-Head’s model
The absence of power laws for non-zero T is indeed related to the 
Lyapunov spectrum
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A deterministic version of B-S-Head’s model

Notice that at T=0 the Lyapunov spectrum does not reach zero 
because N=100.

All this is expected from the proposition. However the deterministic 
model also allows to study a few other features :

- What is the measure of the SOC state ?
- Is the SOC state an attractor ?
- Avalanches are return times to the SOC state. What is the 
prefactor in the return times (avalanches) distribution in the T=0 
limit ?



A deterministic version of B-S-Head’s model
K a c ’s l e m m a ( f o r a n e r g o d i c i n v a r i a n t m e a s u r e µ )
A v e r a g e r e t u r n t im e t o a s e t A o f m e a s u r e µ (A ) i s

1 / µ (A ) .
F o r a s c a l i n g l a w ρ ( τ ) ∼ 1 / τ α , α ≤ 2 im p l i e s µ (A ) =

0 .
T h e d i s t a n c e p r o c e s s d

d =
[
i

m a x ( b − x i , 0 ) ( 4 )
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A deterministic version of B-S-Head’s model

The SOC state has zero measure, but its finite-
dimensional projections have full measure.
It is not an attractor, nor a repeller (not invariant)
“Ghost weak repeller”
The invariant measure is like a cloud around the SOC 
state.



A deterministic version of B-S-Head’s model
The zero measure of this ‘‘repeller’’ makes the di-

rect measurement of the distribution law of avalanches
a delicate matter.

A more robust method
C (x) =



eikx
�

(5)

ρ (k) =
1

2π

] π

−π
C (x) e−ikxdx (6)

Alternatively
p (k, µ) = ck−α(µ)e−ν(µ,α) (7)

with c and ν (µ,α)obtained fromnormalization andKac’s
lemma, kkl = 1

µ .
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A deterministic version of B-S-Head’s model
T h e d iscu ss ion ab ove re fers to th e p rob lem o f d irec t

d e term in a tion o f th e sca lin g exp on en ts .
W ith th e add ition a l a ssum p tion o f a sca lin g fo rm

fo r p (k ) n ea r th e cr itica l b a rr ier, fu r th er re su lts m ay b e
ob ta in ed . A ssum in g th a t c lo se to µ = 0

p (k , µ ) = k − τ f (k sµ ) (8 )
kk l ∼ µ

τ − 2
s


k 2
� ∼ µ

τ − 3
s

(9 )

F rom K ac’s lem m a
s = 2 − τ

and from th e num er ica l d a ta (F ig . 4 a ), τ − 3
s * 2 .07 , lead -

in g to τ * 1 .067 , s * 0 .93 .
A n o th er exp on en t

µ ∼ (b c − b ) η

w ith (F ig . 4b ) η * 2 .55 .
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10 - Beyond the classical ergodic parameters
Lyapunov and conditional exponents and derived quantities depend on 
the actual (or expected) average rates of expansion
Fluctuations of the expansion rates along the trajectories
Generalized Lyapunov exponents

Dynamical Rényi entropies

Cumulants of the Lyapunov spectrum

Traces of Hessian powers
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The  end


