Rui Vilela Mendes GFM

12/16/2004

Games

- Nash equilibria. Some examples
- Nash equilibria and experimental games
- Homo Oeconomicus versus Homo Reciprocans. Strong reciprocity
- Emergence of strong reciprocity. The Bowles-Gintis model
- Network dependence of strong reciprocity
- Conclusions

Games

- Game theory: Study of multi-person decision problems influencing one another's welfare
- Economics, Biology, Social Sciences, Communication

Games

Mechanism:

Cooperation or competition to reach a best goal state (from the cooperative or individual point of view)

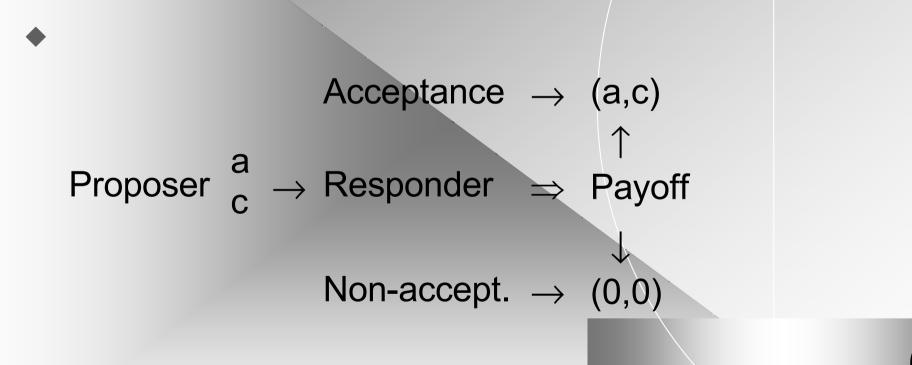
Games

- Static Games and Dynamic Games
- Pure versus Mixed strategies
- Complete versus Incomplete information
- Strategy s_K dominated by s_P if P(s₁,s₂,...,s_p,...,s_n)>P(s₁,s₂,...,s_k,...,s_n) for all s₁,s₂,...,s_n
- Iterated elimination of dominated strategies

3

Games - Nash equilibrium

- (s₁,s₂,...,s_k,...,s_n) is Nash equilibrium if P(s₁,s₂,...,s_k,...,s_n)>P(s₁,s₂,...,s_k',...,s_n) for all s_k'
- No player can improve his payoff by changing his strategy, when the strategies of the other players are fixed
- Every N-player game, with finite strategies, has at least one Nash equilibrium, in pure or mixed strategies
- In economy, Nash equilibrium ⇔ Self-interested rational decisions (Homo Oeconomicus)



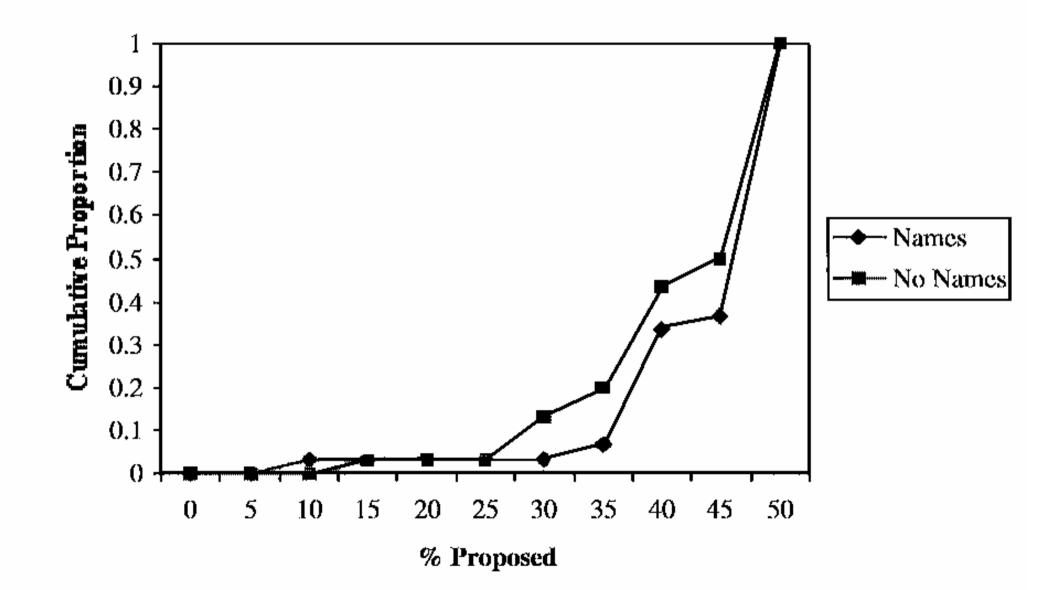
Nash equilibria. Some examples Town or village ? Friend or foe? T 1,1 (2,5) V (5,2) -1,-1

Nash equilibria. Some examples The prisioners' dilemma С C 1,1 -3,3 D 3,-3 (-1,-1)

Nash equilibria. Some examples The battle of sexes John Mary Mary (5,2) 1,1 John 1,1 (2,5)

The ultimatum game

The ultimatum game


a+c=2b, a>>c, (Example: a=99, c=1, b=50)

R0R1P0 (a,c)0,0P1b,b0,0

Nash equilibrium and experimental games

University students

Figure 2 - Cumulative Ultimatum Proposals

Nash equilibrium and experimental games

Small scale societies

Group	Language Family	Environment	Economic Base	Residence	Complexity	Researcher	PC	M
Machiguenga	Arawakan	Tropical Forest	Horticulture	Bilocal semi nomadic Family		Henrich, Smith	1	4
Quichua	Quichua	Tropical Forest	Horticulture	Sedentary/ Semi-nomadic Family		Patton	1	2
Achuar	Jivaroan	Tropical Forest	Horticulture	Sedentary/Family plusSemi-nomadicextended ties		Patton	5	2
Hadza	Khoisan/Isolate	Savanna-Woodlands	Foraging	Nomadic Band		Marlowe	4	1
Ach	Tupi-Guarani	Semi-tropical Woodlands	Horticulture/ Foraging	Sedentary- Nomadic Band		Hill, Gurven	6	4
Tsimane	Macro-Panoan Isolate	Tropical Forest	Horticulture	Semi-nomadic Family		Gurven	1	3
Au	Torricelli/ Wapei	Mountainous Tropical Forest	Foraging/ Horticulture	Sedentary	Village	Tracer	3	5
Gnau	Torricelli/ Wapei	Mountainous Tropical Forest	Foraging/ Horticulture	Sedentary Village		Tracer	3	5
Mapuche	Isolate	Temperate Plains	Small scale farming	Sedentary	Family plus extended ties	Henrich	2	6
Torguuds	Mongolian	High latitude desert Seasonally- flooded grassland	Pastoralism	Transhumance Clan		Gil-White	2	8
Kazakhs	Turkic	High-latitude Desert Seasonally-flooded grassland	Pastoralism	Transhumance	Clan	Gil-White	2	8
Sangu	Bantu	Savanna-Woodlands Seasonally-flooded grassland	Agro-Pastoralists	Sedentary or Nomadic	Clan- Chiefdom	McElreath	5	8
Orma	Cushitic	Savanna-Woodlands	Pastoralism	Sedentary or Nomadic	Multi-Clan Chiefdom	Ensminger	2	9
Lamalera	Malayo-Polynesian	Island Tropical coast	Foraging-Trade	Sedentary	Village	Alvard	7	7
Shona	Niger-Congo	Savanna-Woodlands	farming	Sedentary	Village	Barr	5	8

Group	Sample Size	Stake	Mean	Mode (% sample) ¹	Rejections	Low rejections ²	
Lamalera ³	19	10	0.57	0.50 (63%)	$4/20 (sham)^4$	3/8 (sham)	
Ach	51	1	0.48	0.40 (22%)	0/51	0 /2	
Shona (Resettled)	86	1	0.45	0.50 (69%)	6/86	4/7	
Shona (all)	117	1	0.44	0.50 (65%)	9/118	6/13	
Orma	56	1	0.44	0.50 (54%)	2/56	0/0	
Au	30	1.4	0.43	0.3 (33%)	8/30	1/1	
Achuar	14	1	0.43	0.50 (36%)	2/15 ⁵	1/3	
Sangu (herders)	20	1	0.42	0.50 (40%)	1/20	1/1	
Sangu (farmers)	20	1	0.41	0.50 (35%)	5/20	1/1	
Sangu	40	1	.4 1	0.50 (38%)	6/40	2/2	
Shona (Unresettled)	31	1	0 .4 1	0.50 (55%)	3/31	2/6	
Hadza (big camp)	26	3	0.40	0.50 (35%)	5/26	4/5	
Gnau	25	1.4	0.38	0.4 (32%)	10/25	3/6	
Tsimane	70	1.2	0.37	0.5/0.3 (44%)	0/70	0/5	
Kazakh	10	8	0.36	0.38 (50%)	0/10	0/1	
Torguud	10	8	0.35	0.25 (30%)	1/10	0/0	
Mapuche	31	1	0.34	0.50/0.33 (42%)	2/31	2/12	
Hadza (all camps)	55	3	0.33	0.20/0.50 (47%)	13/55	9 /2 1	
Hadza (small camp)	29	3	0.27	0.20 (38%)	8/29	5/16	
Quichua	15	1	0.25	0.25 (47%)	0/1 4 ⁶	0/3	
Machiguenga	21	2.3	0.26	0.15/0.25 (72%)	1	1/10	

Table 2 : Ultimatum Game Experiments

Nash equilibrium and experimental games

- Homo Oeconomicus rejected in all cases
 - The player's behavior is strongly correlated with existing social norms in their societies and market structure
- Human decision problems involve a mixture of self-interest and a background of (internalized) social norms
- Exits Homo Oeconomicus
- Enters Homo Reciprocans (Samuel Bowles, Herbert Gintis)
- Strong reciprocity

Homo reciprocans

- Homo reciprocans comes to new social situations with a propensity to cooperate and share, responds to cooperative behavior by maintaining or increasing the level of cooperation and responds to selfish free-riding behavior on the part of others by retaliating, even at a cost to himself and even when he could not expect future personal gains
 - Strong reciprocity is a form of altruism in that it benefits others at the expense of the individual that exhibits this trait.

Homo reciprocans

- Monitoring and punishing selfish agents or norm violators is a costly (and dangerous) activity without immediate direct benefit to the agent that performs it
- It seems that the strong reciprocity trait could not invade a population of self-interested agents, nor be maintained in a stable population equilibrium

Not evolutionary stable ?

Homo reciprocans. The Bowles-Gintis model

- Small hunter-gatherer bands of the late Pleistocene
- Population of size N with two species of agents:
- Reciprocators (R-agents)
- Self-interested (S-agents)
- Public goods activity: each agent can produce a maximum amount of goods q at cost b
- The benefit that an S-agent takes from shirking is the cost of effort b(σ), σ being the fraction of shirking time
- b(0)=b b(1)=0 $b'(\sigma)<0$ $b''(\sigma)>0$ $q(1-\sigma)>b(\sigma)$
- At every level of effort, working helps the group more than it hurts the worker

Homo reciprocans. The Bowles-Gintis model

- R-agents never shirk and punish free-riders at cost cσ, the cost being shared by all R-agents
- f = fraction of R-agents
- For an S-agent the estimated cost of being punished is sσ. He chooses σ* to minimize the function
 B(σ) = b(σ) + s f σ + q(1- σ)/N

Fitness of each species :

 $\pi_{\rm S} = \max(q(1-(1-f)\sigma^*)-b(\sigma^*)-\gamma f \sigma^*, 0)$ $\pi_{\rm R} = \max(q(1-(1-f)\sigma^*)-b-c(1-f)N\sigma/(Nf), 0)$

Replicator dynamics

$$f_{new} = f \frac{\pi_R(f)}{(1-f)\pi_S + f\pi_R(f)}$$

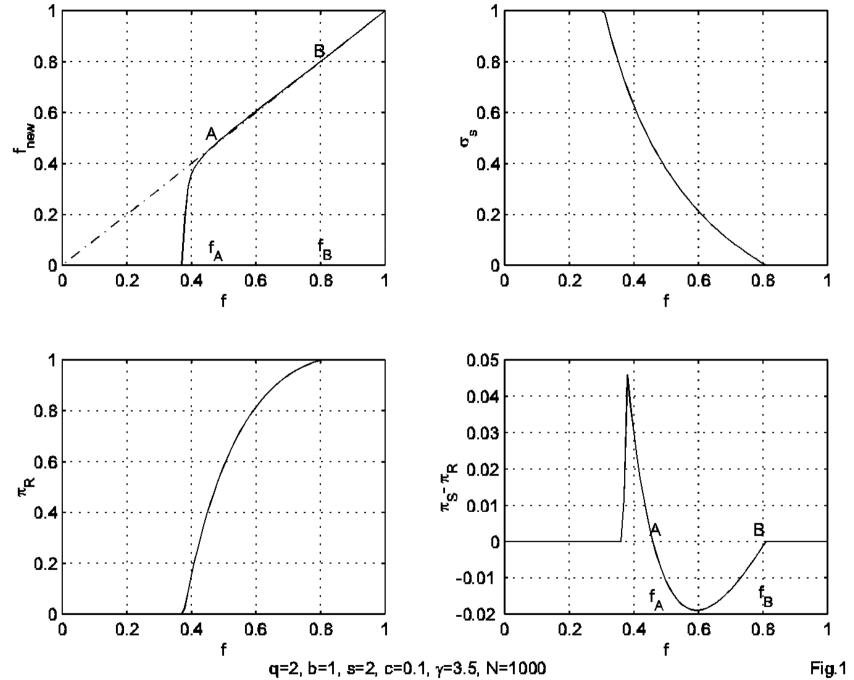
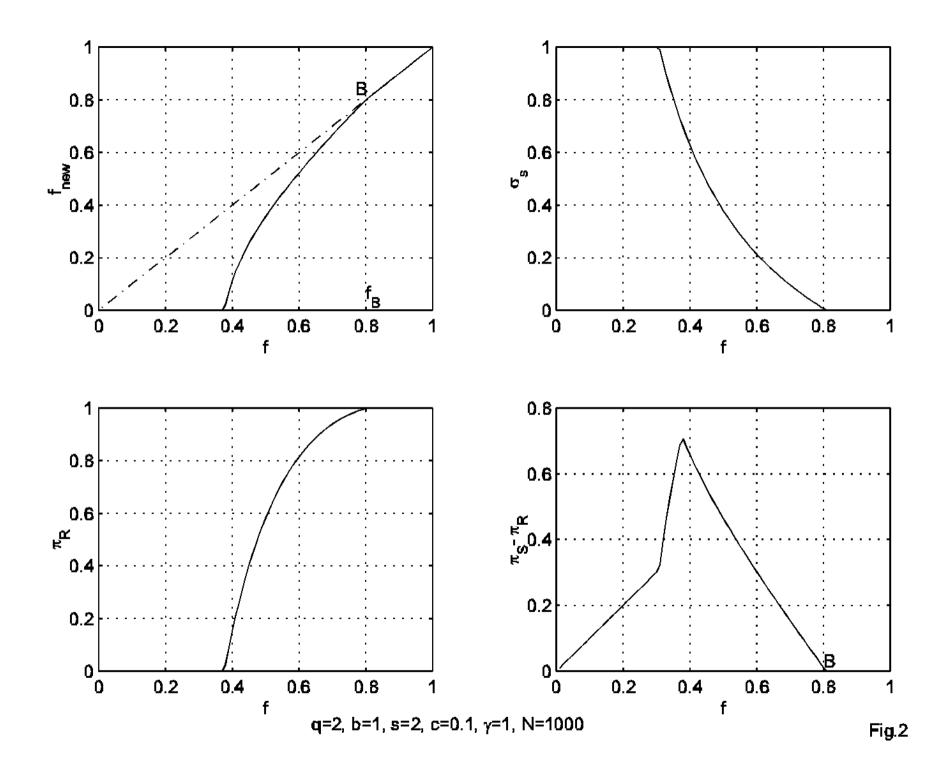



Fig.1

Homo reciprocans. The Bowles-Gintis model

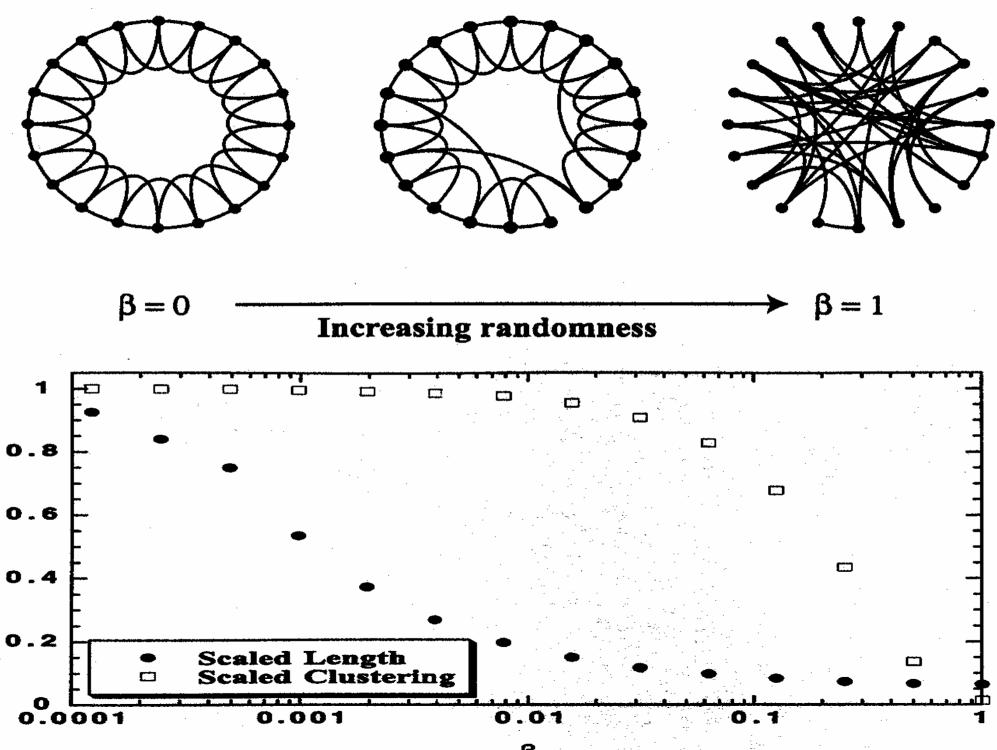
- If γ is large enough, the map has an unstable fixed point
 (A) and a left-stable one (B)
 - Between B and f = 1 there is a continuum of marginally stable fixed points
- For smaller γ the region between A and B disappears and only the marginally stable fixed points remain
- The asymptotic behavior corresponds either to f = 0 (σ*=1) or to f between 0 and 1 but σ*=0
- When f≠0, reciprocators and shirkers remain in the population but shirkers choose not to shirk
- For initial f smaller than f_A the fraction of reciprocators falls very rapidly to zero

Homo reciprocans. The Bowles-Gintis model

Intragroup dynamics :

either reciprocators are eliminated from the population or they remain in equilibrium with a large number of shirkers (which do not shirk for fear of being punished)

- Intragroup dynamics cannot explain how strong reciprocity might have become a dominant trait.
- Intergroup dynamics :


Only groups that contain at the start $f>f_A$ will have in the end a nonzero fitness. All others suffer a "tragedy of the commons" with final zero fitness.

Groups with reciprocators tend to dominate and impose an above average predominance of the reciprocator trait.

- What happens when, later on, the Pleistocene reciprocators and their fellow shirkers become imbedded into a larger society?
- Monitoring and punishment of shirkers by reciprocators necessarily looses its global collective nature.
- It becomes the business of the neighbors of the shirker
- Monitoring and (or) punishing free-riders requires force to insure the effectiveness of the punishment and to make the punisher safe from direct retaliation from the violator.
- Central authorities play a role in the control of serious offenses, but not so much on the day to day monitoring of public goods work

- Control by the neighbors plays a role on the evolution of the reciprocator trait.
 - Genetically encoded trait \rightarrow long time scale
 - Culturally inherited trait \rightarrow a much shorter time scale

- Punishing a norm-violator requires a minimal social power and consensus. Punishment only if at least two neighbors agree to do so.
- R-agents and (1-f) S-agents placed at random in a network where, on average, each agent is connected to k other agents, rewired with probability β
- Each reciprocator, on detecting an S-agent, looks for another reciprocator in his own neighborhood also connected to S-agent. If he finds one, he punishes by an amount proportional to the fraction of shirking.
- The amount of work an S-agent does is inversely proportional to the number of reciprocators in his neighborhood.

β

 However lack of communication between neighboring reciprocators may make the probability of punishment much smaller.

- Wk() = work vector
- Pu() = punishment vector
- Cpu() = cost of punishment vector
- f = fraction of reciprocators
- q = maximum amount of goods produced by each agent
- b = cost of work
- c = cost to punish
- γ = cost to be punished

Average fitness of R-agents and S-agents

$$\pi_{R} = \frac{q}{N} \sum_{all} Wk(i) - \frac{b}{fN} \sum_{R} Wk(i) - \frac{c}{fN} \sum_{R} Cpu(i)$$
$$\pi_{S} = \frac{q}{N} \sum_{all} Wk(i) - \frac{1}{(1-f)N} \left(b \sum_{S} Wk(i) + \gamma \sum_{S} Pu(i) \right)$$

 Replicator dynamics: Results of numerical simulation Region 1 : f → 0 and π= fπ_R+(1-f) π_S → 0 Region 2 : f and π ≠ 0

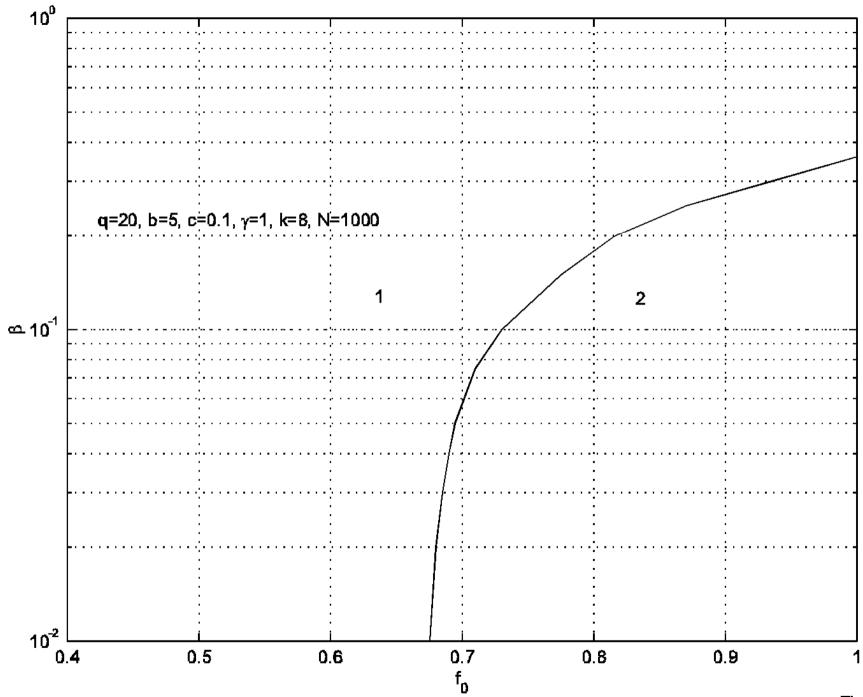


Fig.3

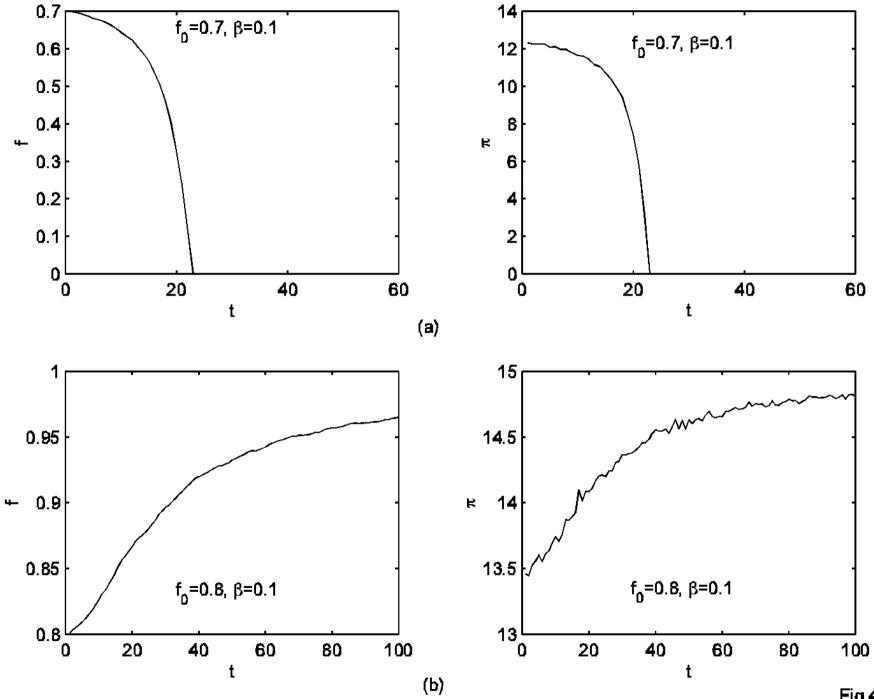


Fig.4

Mean-field model

$$\pi_{s} = q(1 - (1 - f)\sigma^{*}(f)) - b(\sigma^{*}(f)) - f\gamma C_{\beta}(\Phi, fk)\sigma^{*}(f)$$

$$\pi_{R} = q(1 - (1 - f)\sigma^{*}(f)) - b - c(1 - f)\frac{fk}{2}C_{\beta}(\Phi, fk)\sigma^{*}(f)$$

• with σ^* chosen to minimize

$$B(\sigma) = b(\sigma) + sfC_{\beta}(\Phi, fk)\sigma - \frac{q}{N}(1 - \sigma)$$

Similar conclusions

Conclusions

 In small groups with collective monitoring, the interplay of intra- an intergroup dynamics makes the emergence of the strong reciprocity trait a likely event.

- 2 Self-interested (S-agents) are not completely invaded. If the social structure changes, they may be a source of instability and invade the population.
- 3 In a large population, monitoring of the public goods behavior cannot be a fully collective activity and punishment of free-riders requires a certain amount of local consensus among reciprocators.
- 4 The clustering nature of the society plays an important role in the maintenance and evolution of the reciprocator trait.

Conclusions

- Modern societies are "small worlds" in the sense of short path lengths but not necessarily in the sense of also maintaining a high degree of clustering.
- Therefore if the reciprocator trait has a high cultural component, it may very well happen that, eventually, we will see homo oeconomicus leaving the benches of economy classes for a life on the streets.

References

 J. Heinrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis and R. McElreath; *Cooperation, reciprocity and punishment in fifteen small-scale societies*, American Economics Review 91 (2001) 73-78

- S. Bowles and H. Gintis; *The evolution of strong reciprocity*, SFI Working paper 98-08-073; Theor. Pop. Bio. 65 (2004) 17-28.
- H. Gintis; Beyond Homo economicus: evidence from experimental economics, Ecological Economics 35 (2000) 311-322.
- Network dependence of strong reciprocity, nlin.AO/0307003, Adv. Complex Syst. (2004)

References

Neural basis of strong reciprocity

A. G. Sanfey et al.; *The neural basis of economic decision-making in the ultimatum game*, Science 300 (2003) 1755.
J.-F. Quervain et al.; *The neural basis of altruistic punishment*, Science 305 (2004) 1254.

The end