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Quantum control in in�nite dimensions
The in�nite dimensional unitary group

Wu, Tarn and Li (2005) established controllability criteria on
in�nite-dimensional manifolds that are generated by non-compact Lie
algebras. Left open is the question of when these manifolds are dense
on the Hilbert sphere, which would the key requirement for complete
controllability in in�nite dimensions.

An alternative approach starts from the study of the in�nite
dimensional unitary group, U (∞), which is clearly transitive in the
Hilbert sphere, and to study ways of generating it from a �nite
number of generators.

The �rst step is the establishment of the proper mathematical setting
for U (∞)
The most adequate setting for U (∞) is to consider its action on a
Gelfand triplet

S� � L2
�

Rd
�
� S
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Quantum control in in�nite dimensions
The in�nite dimensional unitary group

S is a dense nuclear subspace of L2
�
Rd
�
, for example the Schwartz

space or, alternatively, S is obtained as the limit S = \
n
Sn of a

sequence of spaces with increasing Hilbertian norms

S� � � � � � S�n � � � � � L2
�

Rd
�
� � � � � Sn � � � � � S

the Hilbertian norms typically chosen to be

kξkn = kAnξk
A being a conveniently chosen unbounded operator of the control
algebra.
Now an element g of U (∞) is a transformation in S such that

kgξk = kξk
By duality hx , gξi = hg �x , ξi, x 2 S�, ξ 2 S , the in�nite-dimensional
unitary group is also de�ned on S�, the two groups being algebraically
isomorphic.
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Quantum control in in�nite dimensions
The in�nite dimensional unitary group

Quantum scattering states are in S� not in L2
�
Rd
�
.

For the harmonic analysis on U (∞) one needs functionals on S�.
U (∞) is a complexi�ca�on of O (∞), the in�nite-diemnsional
orthogonal group. A standard result states that if a measure µ is
invariant under O (∞) it must be of the form

µ = aδ0 +
Z

µσdm (σ)

a sum of a delta and Gaussian measures µσ with variance σ2

Hence we are led to consider the
�
L2
�
space of functionals on S� with

a O (∞)�invariant Gaussian measure�
L2
�
= L2(S�,B, µ)

B generated by cylinder sets in S� and µ the measure

C (f ) =
Z
S �
e i hx ,f idµ (x) = e�

1
2 kf k

2
, x 2 S�, f 2 S
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Quantum control in in�nite dimensions
The in�nite dimensional unitary group

For U (∞) one considers a complexi�ed version (complex white noise
space), (S�c ,Bc , µc )

Sc = S + iS , Sc 3 ξ = ξ + i
_
ξ

S�c = S
� + iS�, S�c 3 zc = z + i

_
z

The regular representation of U (∞)

Ug ϕ (z) = ϕ (g �z) , z 2 S�c , ϕ 2
�
L2c
� �= �L2�
 �L2�

Decomposes into irreducible representations corresponding to the
Fock space (chaos expansion) decomposition of

�
L2c
�

�
L2
�
= �∞

n=0 (�nk=0Hn�k ,k )

Hn�k ,k being a complex Fourier-Hermite polynomial of degree

(n� k) in hz , ξi and of degree k in
D_
z ,
_
ξ
E
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Quantum control in in�nite dimensions
Subgroups of the in�nite-dimensional unitary group

Of particular interest for our purposes is the consideration of
subgroups of U (∞)
Two classes of subgroups:
- Subgroups based on coordinate vectors
- Whiskers
Examples:
1 - G∞ - Consider a basis fξ ig, the sequence of subspaces

Vn = span fξ i , i = 1, � � � , ng
and the sequence of unitary groups

Gn =
n
g 2 U (∞) , g jVn 2 U (n) , g jV ?n = I

o
G∞ = proj. lim

n!∞
Gn

G∞ is an in�nite-dimensional subgroup but all its transformations may
be approximated by �nite-dimensional unitary transformations.
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Quantum control in in�nite dimensions
Subgroups of the in�nite-dimensional unitary group

2 - The Lévy group
Let π be an automorphism of Z+ = f1, 2, 3, � � � g. Then

gπ : ξ =
∞

∑
1
anξn �! gπξ =

∞

∑
1
anξπ(n)

Density of the automorphism

d (π) = lim sup
N!∞

1
N
] fn � N : π (n) > Ng

The Lévy group

GL = fgπ : d (π) = 0, gπ 2 U (∞)g

is a discrete in�nite subgroup of U (∞)
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Quantum control in in�nite dimensions
Subgroups of the in�nite-dimensional unitary group

Average power of a transformation of U (∞)

a.p (g) (x) = lim sup
N!∞

1
N

∞

∑
1
hx , gξn � ξni

2

If a.p (g) is positive µ�almost surely then g is said to be essentially
in�nite dimensional.
Many elements of the Lévy group are essentially in�nite dimensional.
Example: π (2n� 1) = 2n,π (2n) = 2n� 1.
It means that in�nitely many coordinates hx , ξni change
signi�cantly.
Conclusion: To generate U (∞) some essentially in�nite dimensional
elements are needed.

The next result shows that one such transformation is enough.
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A control result in the in�nite-dimensional Hilbert sphere
(Karwowski, R V M - 2003)

Consider the space of double-in�nite square-integrable sequences

a = f� � � , a�2, a�1, a0, a1, a2, � � � g 2 `2 (Z)

jaj =
 

∞

∑
�∞
jak j2

! 1
2

< ∞

with basis ek = f� � � , 0, 0, 1k , 0, 0, � � � g

a =
∞

∑
�∞
akek

De�ne:
(i) A linear operator T+ and its inverse

T+ek = ek+1, k 2 Z

T�1+ ek = ek�1, k 2 Z
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A control result in the in�nite-dimensional Hilbert sphere

(ii) Another linear operator Π

Πe0 = e1
Πe1 = e0
Πek = ek , k 2 Z n f0, 1g

Then Πn = Un+ΠU�n+ exchanges an with an+1 in a = ∑∞
�∞ akek

Πnen = en+1
Πen+1 = en
Πek = ek , k 6= n, n+ 1

Lemma (1)

Given a 2 `2 (Z) , k 2 Z, l 2 Z, the operator

Πk ,k+la = ΠkΠk+1 � � �Πk+l�2Πk+l�1 � � �Πk+1Πka

exchanges the coe¢ cients of ek and ek+l .
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A control result in the in�nite-dimensional Hilbert sphere

Theorem (1)

Let G (T+,Π) stand for the group generated by T+,T�1+ and Π. Then
for any 0 6= a 2 `2 (Z) the linear span of G (T+,Π) a is dense in `2 (Z).

Proof : It is su¢ cient to show that b ? G (T+,Π) a implies b = 0.
(a) Suppose b = ek for some k. a 6= 0 ) 9 l 2 N[ f0g such that at
least one of the numbers ak+l or ak�l is 6= 0.
Then (b,Πk ,k+la) = ak+l or (b,Πk ,k�la) = ak�l , a contradiction.
Similarly if both a and b are terminating.

(b) Suppose b terminating but a not. Then 9N such that
(b, a) = ∑N

�N b
�
kak = 0 , b

�
NaN 6= 0

and l with aN+l 6= aN or a�N�l 6= aN .
Hence (b,ΠN ,N+la) = ∑N�1

�N b�kak + b
�
NaN+l 6= 0 or

(b,ΠN ,�N�la) = ∑N�1
�N b�kak + b

�
Na�N�l 6= 0, a contradiction.

Similarly for a terminating and b nonterminating.
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A control result in the in�nite-dimensional Hilbert sphere

(c) If neither a nor b terminates, there are pairs ak 6= al and
bm 6= bn. With appropriate g , g

0 2 G (T+,Π)

(b, ga) = b�mak + b
�
nal + b

�
kam + b

�
l an + ∑

r 6=k ,l ,m,n
b�r ar = 0

(b, ga) = b�nak + b
�
mal + b

�
kam + b

�
l an + ∑

r 6=k ,l ,m,n
b�r ar = 0

Hence b�mak + b
�
nal = b

�
mak + b

�
nal , possible only if either bm = bn or

ak = al , a contradiction.

Instead of the Π operator consider now a U (2) group operating in
fe0, e1g and as the identity on `2 (Z)	 fe0, e1g. In particular
Π 2 U (2).

Theorem (2)

For any 0 6= a 2 `2 (Z) the set G (T+,U (2)) a is dense in `2 (Z).
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A control result in the in�nite-dimensional Hilbert sphere

Lemma (2)

Suppose 0 6= a 2 `2 (Z) is a terminating normalized sequence. Then,
there is g 2 G (T+,U (2)) such that ge0 = a.

Proof : Let

a = a�N e�N + � � �+ aoe0 + � � �+ aN eN
With U (2) in the fe0, e1g subspace and use of the Πk ,k+l operators
construct the sequence: (gi 2 G (T+,U (2)))

g1e0 = x1e0 + a�N e�N = α1
g2α1 = x2e0 + a�N+1e�N+1 + a�N e�N = α2
� � � � � � � � �

g2Nα2N�1 = x2N e0 +∑N
�N akek = α2N

g2N+1α2N = a

Finally
g2N+1g2N � � � g2g1e0 = a
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A control result in the in�nite-dimensional Hilbert sphere

Proof of theorem 2 : Consider a, b 2 `2 (Z) with jaj = jbj = 1.
Choose ε and N such that

α =

����� N∑�N akek
����� > 1� ε; β =

����� N∑�N bkek
����� > 1� ε

By lemma 2 there are g , g
0 2 G (T+,U (2)) such that

g
N

∑
�N
akek = αe0; g

0
(αe0) =

α

β

N

∑
�N
bkek

Hence ���b� g 0ga��� � 2ε+

����1� α

β

���� � 3ε

In conclusion: given any initial state 0 6= a 2 `2 (Z) it is possible
by the unitary action of an element in G (T+,U (2)) to approach
as close as desired any other state b in `2 (Z).

RVM (CMAF) q-control 15 / 37



Open systems in in�nite-dimensions. A universal family for
Kraus operators

Given a topological space X and a family of continuous mappings
Tα : X ! X with α belonging to some index set I , an element x 2 X
is called universal if the set

fTαx : α 2 Ig
is dense in X . The family fTα : α 2 Ig will be called universal if there
is at least one universal element x 2 X .
For open systems consider evolutions by completely positive
trace-preserving maps Φ,

Φ (ρ) = ∑KiρK †
i

The problem of quantum control = search for a universal family of
operators acting in the operator algebra of bounded operators B (H)
No countable subset of B (H) can be dense in the operator norm
topology. The problem has no practical sense in this topology.
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Open systems in in�nite-dimensions. A universal family for
Kraus operators

Instead one should discuss density in the strong operator topology,
that is, the one with neighborhood basis

N (xi , εi ; i = 1 � � � n) = fO : kOxik < εig

The B (H) operator algebra is separable in this topology, meaning
that any element may be approximated arbitrarily close by some n� n
matrix.

Consider a separable Hilbert space isomorphic to `2 (Z), the shift
operator T+ and its inverse T�1+ , as well as a U (2) group acting on
the subspace fe0, e1g and leaving the complementary space
unchanged.

This set of operators, generates all random-unitary transformations
(Kraus operators proportional to unitaries) but not all trace-preserving
completely positive operations.
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Open systems in in�nite-dimensions. A universal family for
Kraus operators

A new operator must be added, which may be choosen to be the
projection on a basis state, for example P0 = je0i he0j.

Theorem (3)

P0,T+,T�1+ and U (2) generate a (strong operator topology-) universal
family in the set of all density operators in in�nite dimensions, with a
dense set of universal elements.

Proof:
Let ρ be an arbitrary density operator in n�dimensional subspace Vn.
Using T+, T�1+ translate the Vn subspace to contain the basis vectors
e0 and e1. By the construction in Lemma 2, any normalized vector in
Vn may be transformed by T+,T�1+ and U (2) to an arbitrary basis
state (say e0) =) T+,T�1+ and U (2) generate all U (n). With these
transformations ρ may be brought to diagonal form ρD .
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Open systems in in�nite-dimensions. A universal family for
Kraus operators

To ρD apply the Kraus transformation

n

∑
i=1
KiρDK

†
i

with Ki = P0Π0,i (i = 0, � � � , n� 1) (Π0,0 is the identity, an element
of the U (2) group). This transforms ρD into the single projector
P0 = je0i he0j.
Conversely by applying the Kraus operators Ki =

p
ρD ,iΠ0,i to P0

and reversing the operations of the unitary group and the shift, P0
may be transformed into any density operator of any other
m�dimensional subspace.
The fact that the density operators in �nite-dimensional subspaces are
dense (in the strong operator topology) on the set of all the density
operators in in�nite dimensions, completes the proof.
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Smaller sets ?

Hypercyclic operators - Universal family generated by a single
operator and its powers.
If it is

fλT nxg
with λ a scalar, that is dense in X , the operator is called supercyclic.
These notions being related to the density of a set, they depend on
the topology of X .
Hypercyclicity is a purely in�nite-dimensional phenomenon.
T+,U (2) (and P0 for open systems) are already relatively small sets
of generators, but an interesting question is whether a smaller set
may be found, namely whether there are unitary hypercyclic or
supercyclic operators.
The answer depends both on the space topology and on the nature of
the measure µ used in the L2 (µ) space. With norm topology in X ,
the answer is negative because no hyponormal operator
(kTxk � kT �xk ; x 2 X ) can be hypercyclic or supercyclic.
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Smaller sets ?

The situation is di¤erent if density in the space X is relative to the
weak topology, with neighborhood basis

N (ψ1 � � �ψn, ε1 � � � εn) = fφ : jhψi jφij < εig
Then there are weakly supercyclic normal operators which are
necessarily multiples of unitary operators. An example of unitary
hypercyclic operator was constructed in a L2 (µ) space (Bayart and
Matheron 2006). The construction is somewhat particular in that µ is
a singular continuous measure in a thin Kronecker set.
For measures that are absolutely continuous with respect to the
Lebesgue measure one has no weakly supercyclic operator.
Nevertheless a set is usually considered as �large� if it carries a

probability measure µ for which the Fourier coe¢ cients
^
µ (n) vanish

at in�nity. It has recently been proved that there is such a probability
measure for which the corresponding L2 (µ) space has a weakly
supercyclic operator (Shkarin 2007).
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Smaller sets ?

These results raise the interesting possibility that in some quantum
spaces associated to singular continuous measures (hierarchical
systems, for example), complete in�nite-dimensional quantum
controllability might be implemented with a single operator and its
powers.
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Non-unitary control
Classical control and di¤erential forms

A classical control system is a dynamical system dx
dt = X

Theorem (4)

(J. Math. Phys. 22, 1420, 1981); Let X be a vector �eld on a Riemannian
manifold Mg . Then for each x 2 Mg , there is a neighborhood Ω of x and
a sympletic form ω on Ω such that the X is the sum of a gradient and an
Hamiltonian vector �eld

dx
dt
= ω�1 (dH) + g (dS)

Classical techniques of control (bang-bang, sliding mode, etc.) use
both types of dynamics

To compare with the situation in quantum control, the Strocchi map
formulation is useful
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Non-unitary control
The Strocchi map

F. Strocchi; Rev. Mod. Phys. 38 (1966) 36

Kibble, Heslot, Anadan, Aharonov, Cirelli, Manià, Pizzocchero, Ashtekar,
Schilling

Identifying real and imaginary parts of the wave function with
coordinates and momenta, quantum evolution may be mapped onto a
classical Hamiltonian system
With a basis fjkig (of �nite or in�nite cardinality n) in a separable
complex Hilbert space H�, a general quantum state jψi is

jψi = ∑
k

ψk jki

De�ne
ψk =

1p
2
(qk + ipk )

fqk , pkg is a countable set of real phase-space coordinates.
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Non-unitary control
The Strocchi map

The scalar product in the complex Hilbert space H�D
ψ
0 jψ
E
=
1
2 ∑

k

�
q
0
kqk + p

0
kpk
�
+ i
�
q
0
kpk � p

0
kqk
�

decomposes into a positive real inner product

G
�

ψ
0
,ψ
�
=
1
2 ∑

k

�
q
0
kqk + p

0
kpk
�

and a symplectic form

Ω
�

ψ
0
,ψ
�
=
1
2 ∑

k

�
q
0
kpk � p

0
kqk
�

Considering H� = (H, J) as a real Hilbert space H with a complex
structure J, the triple (J,G ,Ω) equips H with the structure of a
Kähler space because

G
�

ψ
0
,ψ
�
= Ω

�
ψ
0
, Jψ

�
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Non-unitary control
The Strocchi map

The Schrödinger equation i ∂
∂t jψi = H jψi becomes the set of

Hamilton�s equations

d
dt qk = ∂

∂pk
H

d
dt pk = � ∂

∂qk
H

associated to the symplectic form Ω
�

ψ
0
,ψ
�
and the �classical�

Hamiltonian

H =
1
2 ∑
k ,j
f(qkqj + pkpj ) ReHkj + (pkqj � qkpj ) ImHkjg

with Hkj = hk jH jji.
The time evolution of quantum mechanics is equivalent to the
classical dynamics of a countable set of coupled oscillators (the role
of the symplectic form Ω)
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Non-unitary control
The Strocchi map

What is the role of the metric G?
Let S be the Hilbert sphere (kψk = 1). G

�
ψ
0
,ψ
�
is a metric in S .

Measurement of an observable A. Let a be an eigenvalue of A and Pa
the projector on the subspace Va of S associated to this eigenvalue.
When the result of the measurement is a , the quantum state changes
from ψ 2 S to ψa =

Paψ
kPaψk 2 S with probability kPaψk

2. Given
ψ 2 S and φ 2 Va � S

(ψ� φ,ψ� φ)

is minimal when φ = ψa.
Because (ψ� φ,ψ� φ) = G (ψ� φ,ψ� φ) one concludes that the
measurement projects ψ on the element of Va that is closest to
ψ in the G�metric. The probability for this projection is

pa = kPaψk2 =
�
1� 1

2
G
�

ψ� Paψ
kPaψk

,ψ� Paψ
kPaψk

��2
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Non-unitary control
The Strocchi map

Therefore, whereas the symplectic form Ω determines time-evolution,
the G�metric controls the measurement process. It is the special role
played by the metric that, in this framework, sets apart quantum from
classical mechanics.
Pure states are represented by points (�!q ,�!p ) in a �phase-space�of
dimension 2χ.
Mixed states by densities: For a density matrix
ρ (t) = ∑n ρn jψn (t)i hψn (t)j (∑n ρn = 1)

ρ (t) =
Z
d�!q d�!p ρ (�!q ,�!p ) ∑

k ,k 0
(qk + ipk )

�
qk 0 � ipk 0

�
jki
D
k
0
���

with equation of motion

d
dt

ρ (�!q ,�!p ) = � ∂ρ

∂�!q �
∂H

∂�!p +
∂ρ

∂�!p �
∂H

∂�!q = �fρ,Hg
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Non-unitary control
Classical versus quantum control. The Strocchi map

Measurements
The basis fjkig being arbitrary, suppose it to be a basis of eigenstates
of measured set A of observables. Before the measurement

ρ
��!µ ,�!ν � = δn

��!µ ��!q
�

δn
��!ν ��!p �

After the measurement is performed and the result registered is k, the
state becomes

ρ
��!µ ,�!ν � = δ

 
�!µ � qkp

q2 + p2
�!ek

!
δ

 
�!ν � pkp

q2 + p2

�!
e
0
k

!

(�!ek and
�!
e
0
k are unit vectors along the k�coordinate and the

k�momentum)
For non-selective measurements one obtains a mixed state

ρ
��!µ ,�!ν � = ∑

k

�
q2k + p

2
k

�
δ

 
�!µ � qk

�!ekp
q2 + p2

!
δ

0@�!ν � pk
�!
e
0
kp

q2 + p2

1A
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Non-unitary control
The Strocchi map
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Non-unitary control
The Strocchi map. Using the metric structure for control.

Summarizing:
In the SM formulation:
1) The (unobserved) dynamics of quantum states is a continuous
symplectic evolution in a phase space.
2) Quantum measurements are (minimal distance) jumps in a phase
space
3) Decoherence corresponds to splittings of the densities

Measurements are the natural extension for quantum control
techniques.
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Control by measurement plus unitary evolution

Unitary controllability for Hamiltonians

H (t) = H0 +
r

∑
j=1
uj (t)Hj

General result by Huang, Tarn and Clark. For systems with a �nite
number N of allowed states a necessary and su¢ cient condition for
pure-state controllability is that the Lie algebra generated by
fH0,H1, � � � ,Hrg contains su (N) or sp (N/2) (if N is even) because
these subgroups act transitively on the sphere S2N�1.

Suppose that A = fH0,H1, � � � ,HrgLA is a proper subalgebra of
u (N).
Each orbit of the subgroup G (A) � U (N) may not cover SN�1C

.
SN�1

C
would be a �ber space with the orbits of G (A) as �bers and

base U (N) /G (A). A goal state ψf can only be reached from ψ0 if
ψ0 and ψf belong to the same �ber.

RVM (CMAF) q-control 32 / 37



Control by measurement plus unitary evolution
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Control by measurement plus unitary evolution

Control by the joint action of measurement plus evolution:

Theorem (5)

Given any goal state ψf , there is a family of observables M (ψf ) such that
measurement of one of these observables on any ψ0 plus unitary evolution
leads to ψf if G (A) is either O (N) or Sp

� 1
2N
�
.

Proof: If G (A) = O (N) or Sp
� 1
2N
�
we may choose an orthonormal

basis fφig for SN�1 in the orbit G (A)ψf . Construct an observable
M = ∑i aiPφi

, Pφi
being the projector on φi . Measuring this

observable on any state ψ0 and recording the measured value ak the
state becomes φk and then, by unitary evolution, ψf may be reached.

Remarks:
(i) A large family of observables for this type of control.
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Control by measurement plus unitary evolution

(ii) If both ψ0 and ψf are �xed a simpler set of controls Hj may be
su¢ cient.
Construct the M observable by N � 1 vectors in the
N � 1-dimensional subspace orthogonal to ψ0 plus a single vector in
the orbit G (A)ψf , non-orthogonal to ψ0.
(iii) In case G (A) = Sp (N/2), the system is already pure-state
controllable but, even in this case, it might be more e¢ cient to use
the measurement-plus-evolution scheme.
General case
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Control by measurement plus unitary evolution

Further developments in non-unitary control by
Mandilara and Clark;
Pechen, Il�in, Shuang and Rabitz;
Shuang, Zhou, Pechen, Wu, Shir and Rabitz
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