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1 - Networks are everywhere
Extended dynamical systems
(Celular automata, coupled maps, neural networks)
Metabolic processes of living beings
Protein-protein networks
Gene expression and regulation
Social, economic and political networks
The internet

Most studies deal with networks as statistical objects, 
less attention has been paid to the dynamical 
phenomena taking place in the networks or to the 
behavior of the evolving networks as dynamical systems 



2 - Structure parameters. Network types
Path length (L)
Clustering coefficient (C)
Degree and degree distribution (k), (P(k))

Network types
Ordered          (high L, high C)
Random          (low L, low C)
Small-world     (low L, high C)
Scale-free        (P(k)~kγ )

Network growth
Preferential attachment (Barabási, Cameo, etc)
Node duplication



3 - Dynamics: an example. Synchronization 
and beyond

Synchronous flashing of fireflies, cells, fads, ......



3 - Dynamics: an example. Synchronization 
and beyond

Synchronization
(Classical mathematical example: the Kuramoto model)
A similar, discrete-time oscillators model :

Order parameter

xi (t + 1) = xi (t) + ωi +
k

N − 1
N

j=1

fα (xj − xi)

p (ω) =
γ

π γ2 + (ω − ω0)
2

fα (xj − xi) = α (xj − xi) (mod1)

r (t) =
1

N

N

j=1

ei2πxj(t)









4 - Dynamical tools
Differential dynamics tools
* Describing dynamics by global functions

- Construction of multistable systems 
- Construction of invariant measures
- Necessary conditions for cycles
- Evolving networks as dynamical systems

* Conditions for multistability

(“Tools for network dynamics”, cond-mat/0304640, to 
appear in IJBC )

Ergodic tools



Differential dynamics. A theorem and examples



Differential dynamics. A theorem and an example



An evolving network. Preferential attachment



Invariant measure by small random perturbations

Let            dxi=Xi(x)dt+εσ(X)dW(t) 

ρε(x) is the density of the invariant measure

X (x) = −∇(g)V (x)
∇(g) = gradient in the metric
ds2 = aij (x) dxidxj

aij (x) = (σ (x)σ
∗ (x))−1ij = gij (x)

ρε (x) = Cε exp −2ε−2V (x)



Other examples :

Node duplication

The corruption network
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Ergodic tools. Exponents and entropies
Invariant measures and ergodic parameters

Lyapunov and conditional exponents
From the k x k and (n-k)x(n-k) blocks of the Jacobian
Eigenvalues of the limits

Or

IF (µ) = lim
T→∞

1

T

T

n=1

(fnx0)

lim
n→∞ (Dkf

n∗(x)Dkfn(x))
1
2n

lim
n→∞ (Dm−kf

n∗(x)Dkfn(x))
1
2n

lim
n→∞

1

n
log Dkf

n(x)u = ξ
(k)
i

0 = u ∈ Eix/Ei+1x

Eix is the subspace spanned by the eigenstates
corresponding to eigenvalues ≤ exp(ξ(k)i )



5 - Structures and structure-generating
mechanisms

Structure index

diverges whenever a Lyapunov exponent approaches zero from above 
(points where long time correlations develop)

Self-organization       (partitions                              )

S =
1

N

N+

i=1

λ0
λi
− 1

IΣ(µ) =
N

k=1

{hk(µ) + hm−k(µ)− h(µ)}

hk(µ) =

ξ
(k)
i >0

ξ
(k)
i ;hm−k(µ) =

ξ
(m−k)
i >0

ξ
(m−k)
i ;h(µ) =

λi>0

λi

Σk = R
k ×Rm−k



Self-organization concerns the dynamical relation of the 
whole to its parts. Therefore, IΣ(µ) is a measure of 
dynamical self-organization

Also, it is a measure of apparent dynamical freedom (or 
apparent rate of information production).

These parameters characterize the dynamics of multiagent
networks.

Also, provide insight on the relation between dynamics and 
the topology of the network (the small world phase, for 
example)



Examples :
Fully coupled system

x i(t+1) = (1-c) f(x i(t)) + (c/(N-1)) Σk≠i f(x k(t))         
f(x)=2x (mod 1)

c = 0.495 c = 0.51



Fully coupled system. Structure and self-organization indexes



Nearest-neighbor coupling

x i(t+1) = (1-c) f(x i(t)) + (c/2) ( f(x i+1(t) + f(x i-1(t) )



6 - Back to synchronization
Synchronization and dynamical correlations
Discrete-time oscillators model :

Order parameter

xi (t + 1) = xi (t) + ωi +
k

N − 1
N

j=1

fα (xj − xi)

p (ω) =
γ

π γ2 + (ω − ω0)
2

fα (xj − xi) = α (xj − xi) (mod1)

r (t) =
1

N

N

j=1

ei2πxj(t)







The Lyapunov spectrum controls the dynamical self-
organization of the system.

In this case 
λ1=0  and
λ i=log(1-αλk(N/N-1))       (N-1) times 

N-1 contracting directions for k≠0

“One-dimensional” system !

⇒ strong dynamical correlations even before 
synchronization





7.Structure versus dynamics.The small world phase



Define a dynamical system on the network nodes

x i(t+1) =  Σk=1
N W ik f(xk(t))                           if i = k

f(x)=αx  (mod 1) if i ≠ k and k∈ nv(i)

0  otherwise 
Dβ = - Σλi<0 λ i

Dβ = c N (β - βc1) η βc1 <10-5 η = 1.01±0.06

Cβ = ;                                   ;

βc2 = 0.04          Cβ ~ | β - βc2 |-δ δ1 = 1.14    δ2 = 0.93

W

n i
v
c

c
vik

v

=

−













1
2

2

0

( )

h h
h h
0 0
*

*

−
−β β

h
d

j
ii

N

β β
λ

λ
β

* *

*

( )=












>=
∑∑ 1

01

h jβ β
λ

λ
β

=
>
∑ ( )

0









8 - Ergodic theory. Beyond the classical 
parameters

Lyapunov and conditional exponents and derived quantities depend on 
the actual (or expected) average rates of expansion
Fluctuations of the expansion rates along the trajectories
Generalized Lyapunov exponents

Dynamical Rényi entropies

Cumulants of the Lyapunov spectrum

Traces of Hessian powers
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9 - A biological network. A toy model for the
p53 action

p53 is a tumour suppressor gene. Its protein acts as an 
inhibitor of uncontrolled or defective cell growth
In most tumours it is found to be mutated or inactivated by 
viral proteins
In a number of cases normal p53 cannot achieve control
Is “off” in normal circumstances. Produced at some rate but 
degraded by ubiquitin labelling (MDM2, ...)
Activates its own control
Is activated by detection of cell anomalies, DNA damage, 
abnormal growth signals, through inhibition of degradation

A very complex network of interactions (K. W. Kohn, Mol. 
Bio. Cell 10, 2703-2734, 1999)







A positive and a negative cycle in interaction



A positive and a negative cycle in interaction

p(t+1) = ap p(t) + Wpm H(Tm - m(t))
m(t+1) = am m(t) + Wpm H(p(t) -Tp) + Wmg H(Tg - g)
c(t+1) = ac c(t) +Wcb H(b(t) -Tb) +Wcp H(Tp - p(t))+Wcg H(g-Tg) 
b(t+1) = ab b(t) + Wbc H(c(t) -Tc) + Wbp H(Tp - p(t))

Piecewise linear dissipative dynamics with thresholds

Important quantities :

fmg = Wmg /(1- am)   ;  fmp =1 - fmg

fcp = Wcp /(1- ac)  ; fcb = Wcb /(1- ac) ; fcg = 1 - fcp - fcb

fbc = Wbc /(1- ab)  ; fbp = 1 - fbc









Complete characterization of asymptotic states and coding 
of trajectories.
Biological realism imposes some conditions on the threshold 
values :  Tm < fmg ; Tc > fcp + fcb ; Tb < fbp
Most interesting case : Expressed p53 (p>Tp) with 
oncogenes (g>Tg )
- Tc > fcg+fcb ⇒ effective control of cell growth
- Tc < fcg and Tb < fbc ⇒ no control
- Tc < fcg+fcb ⇒ depends on initial conditions







10 - Networks in evolutionary sociology.
Strong reciprocity

Nash equilibrium and experimental games
Homo Oeconomicus rejected in all cases
The player's behavior is strongly correlated 
with existing social norms in their societies 
and market structure
Human decision problems involve a mixture 
of self-interest and a background of 
(internalized) social norms
Exits Homo Oeconomicus
Enters Homo Reciprocans (Samuel Bowles, 
Herbert Gintis) Strong reciprocity



Homo reciprocans

Homo reciprocans comes to new social situations with a 
propensity to cooperate and share, responds to 
cooperative behavior by maintaining or increasing the 
level of cooperation and responds to selfish free-riding 
behavior on the part of others by retaliating, even at a 
cost to himself and even when he could not expect future 
personal gains
Strong reciprocity is a form of altruism in that it benefits 
others at the expense of the individual that exhibits this 
trait.



Homo reciprocans

Monitoring and punishing selfish agents or norm 
violators is a costly (and dangerous) activity without 
immediate direct benefit to the agent that performs it
It seems that the strong reciprocity trait could not invade 
a population of self-interested agents, nor be maintained 
in a stable population equilibrium
Not evolutionary stable ?



Homo reciprocans. The Bowles-Gintis model

Small hunter-gatherer bands of the late Pleistocene
Population of size N with two species of agents:
Reciprocators (R-agents)
Self-interested (S-agents)
Public goods activity: each agent can produce a 
maximum amount of goods q at cost b
The benefit that an S-agent takes from shirking is the 
cost of effort b(σ), σ being the fraction of shirking time
b(0)=b     b(1)=0     b’(σ)<0     b’’(σ)>0     q(1-σ)>b(σ) 
At every level of effort, working helps the group more 
than it hurts the worker



Homo reciprocans. The Bowles-Gintis model
R-agents never shirk and punish free-riders at cost cσ,
the cost being shared by all R-agents
f = fraction of R-agents
For an S-agent the estimated cost of being punished is 
sσ. He chooses σ*  to minimize the function

B(σ) =b(σ) + s f σ + q(1- σ)/N
Fitness of each species :

πS = max( q(1-(1-f) σ*)-b(σ*)-γ f σ* , 0) 
πR = max( q(1-(1-f) σ*)-b-c(1-f)Nσ/(Nf) , 0)

Replicator dynamics

f f f
f f fnew

R

S R

=
− +

π
π π
( )

( ) ( )1







Homo reciprocans. The Bowles-Gintis model

If  γ is large enough, the map has an unstable fixed point 
(A) and a left-stable one (B)
Between B and f = 1 there is a continuum of marginally 
stable fixed points
For smaller γ the region between A and B disappears 
and only the marginally stable fixed points remain
The asymptotic behavior corresponds either to f = 0 
(σ*=1) or to f between 0 and 1 but σ*=0 
When f≠0, reciprocators and shirkers remain in the 
population but shirkers choose not to shirk
For initial f smaller than fA the fraction of reciprocators 
falls very rapidly to zero



Homo reciprocans. The Bowles-Gintis model
Intragroup dynamics : 
either reciprocators are eliminated from the population or 
they remain in equilibrium with a large number of 
shirkers (which do not shirk for fear of being punished)
Intragroup dynamics cannot explain how strong 
reciprocity might have become a dominant trait.
Intergroup dynamics :
Only groups that contain at the start  f>fA will have in the 
end a nonzero fitness. All others suffer a ''tragedy of the 
commons'' with final zero fitness.
Groups with reciprocators tend to dominate and impose 
an above average predominance of the reciprocator trait.
For initial f smaller than fA the fraction of reciprocators 
falls very rapidly to zero



Network dependence of strong reciprocity
What happens when, later on, the Pleistocene 
reciprocators and their fellow shirkers become imbedded 
into a larger society?
Monitoring and punishment of shirkers by reciprocators 
necessarily looses its global collective nature. 
It becomes the business of the neighbors of the shirker
Monitoring and (or) punishing free-riders requires force 
to insure the effectiveness of the punishment and to 
make the punisher safe from direct retaliation from the 
violator.
Central authorities play a role in the control of serious 
offenses, but not so much on the day to day monitoring 
of public goods work



Network dependence of strong reciprocity

Punishing a norm-violator requires a minimal social 
power and consensus. Punishment only if at least two 
neighbors agree to do so.
R-agents and (1-f) S-agents placed at random in a 
network where, on average, each agent is connected to 
k other agents, rewired with probability β
Each reciprocator, on detecting an S-agent, looks for 
another reciprocator in his own neighborhood also 
connected to S-agent. If he finds one, he punishes by an 
amount proportional to the fraction of shirking.
The amount of work an S-agent does is inversely 
proportional to the number of reciprocators in his 
neighborhood.



Network dependence of strong reciprocity

Wk( ) = work vector
Pu( ) = punishment vector
Cpu( ) = cost of punishment vector
f = fraction of reciprocators
q = maximum amount of goods produced by each agent 
b = cost of work
c = cost to punish
γ = cost to be punished



Network dependence of strong reciprocity
Average fitness of R-agents and S-agents

πR
q
N

b
fN

R

c
fN

Rall

Wk i Wk i Cpu i= − −∑ ∑∑ ( ) ( ) ( )

π γS
q
N f N

S Sall

Wk i b Wk i Pu i= − +






− ∑ ∑∑ ( ) ( ) ( )(1 )

1



Network dependence of strong reciprocity



Network dependence of strong reciprocity



Network dependence of strong reciprocity
Mean-field model

with σ* chosen to minimize

Similar conclusion
f = fraction of reciprocators
q = maximum amount of goods produced by each agent 
b = cost of work
c = cost to punish
γ = cost to be punished

π σ σ γ σβS q f f b f f C fk f= − − − −( ( ) *( )) ( *( )) ( , ) *( )1 1 Φ

π σ σβR
fkq f f b c f C fk f= − − − − −( ( ) *( )) ( ) ( , ) * ( )1 1 1 2 Φ

B b sfC fk q
N( ) ( ) ( , ) ( )σ σ σ σβ= + − −Φ 1



Conclusions
1 - In small groups with collective monitoring, the 
interplay of intra- an intergroup dynamics makes the 
emergence of the strong reciprocity trait a likely event.
2 - Self-interested (S-agents) are not completely 
invaded. If the social structure changes, they may be a 
source of instability and invade the population.
3 - In a large population, monitoring of the public goods 
behavior cannot be a fully collective activity and 
punishment of free-riders requires a certain amount of 
local consensus among reciprocators.
4 - The clustering nature of the society plays an 
important role in the maintenance and evolution of the 
reciprocator trait.



Conclusions
Modern societies are ''small worlds'' in the sense of short 
path lengths but not necessarily in the sense of also 
maintaining a high degree of clustering.
Therefore if the reciprocator trait has a high cultural 
component, it may very well happen that, eventually, we 
will see homo oeconomicus leaving the benches of 
economy classes for a life on the streets.
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