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The notion of stochastic solution

e Linear elliptic and parabolic equations (both with Cauchy and
Dirichlet boundary conditions) have a probabilistic interpretation: a
classical result and a standard tool in potential theory.

@ An example: the heat equation

2

deu(t, x) = L u(t, x) with u(0,x) = f(x) (1)

20x2

@ The solution may be written either as

N2
u(t,x) = %}E/\}Eexp (—(thy)> f(y)dy (2)

u(t, x) = Exf(X;) (3)

[E, being the expectation value, starting from x, of the Wiener
process dX; = dW;
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@ Or as



The notion of stochastic solution

e Eq.(1) is a specification of a problem

@ (2) and (3) are solutions in the sense that they both provide
algorithmic means to construct of a function satisfying the
specification.

@ An important condition for (2) and (3) to be considered as solutions
is the fact that the algorithm is independent of the particular
solution,

@ in the first case, an integration procedure

@ in the second, a solution-independent process.

@ This should be contrasted with stochastic processes constructed from
a given particular solution, as has been done for example for the
Boltzman equation

@ New exact solutions and also new numerical algorithms
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Stochastic solutions of nonlinear partial differential

equations

@ The basic idea: In the linear partial differential equation case, once
the relevant stochastic process is identified, the process is started
from the point x where the solution is to be computed, and the
solution is a functional of the exit values of the process (from a space
D or a space-time D x [0, t] domain)

@ Conjecture: For the nonlinear equations the relevant process has a
diffusion, propagation or jump component associated to the linear
part of the equation plus a branching mechanism associated to the
nonlinear part. The solution will be a functional of the exit measures
generated by the process.

@ The construction: Rewrite the equation as an integral equation.
Give a probabilistic interpretation to the integral equation. In the end
the stochastic solution is equivalent to the construction of a
tree-indexed measure and a sampling evaluation of the Picard series.
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Stochastic solutions of nonlinear partial differential

equations

Existing results

@ The KPP equation (McKean)
@ Diffusion equation with u* (« € [0, 2]) nonlinearities (Dynkin)

© The Navier-Stokes equation (LeJan, Schnitzman, Waymire,
Ossiander, Batacharia, Orum)

© The Poisson-Vlasov equation (Cipriano, Floriani, Lima, R. V. M.)
@ The Euler equation (R. V. M.)
(6]

A fractional version of the KPP equation (Cipriano, Ouerdiane, R. V.
M.)

@ Poisson-Vlasov in an external magnetic field (R. V. M.)
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Poisson-Vlasov in an external magnetic field

@ Poisson-Vlasov

0 = af+<7-vx+e"v><§(x)-vv>f,-
Jt m; ¢

s

/d3 Zej/d3uf X ut |X_X -V fi (x, v, t)

x|’

e Fourier transformed version, F (¢, t) = (27r)3 [ d5f (n,t) €, with

n=(xv)and = (5152) = (2.8)

F(Et) _ (51 Ve, + 2-Ve, x B(—iVy,) ~€2) Fi (¢ t)

Jat c

e [ PGR (- Edae) B e (6.0.0)
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Poisson-Vlasov in an external magnetic field

Linear evolutions

gx(t) = —v(t)
Du(t) = = (v()x B(x(1)
T aE() = -2 (Ve (t) X VB (—iVe, (1) & (1)
L8 (1) = &)+ S=B(—iVe, () x & (t)
) 4V (1) = —Ve (1)
Ve, () = =2 (Ve (1) x B(=iVg (1))

@ Write a stochastic solution for

— o~ tlés F,(é‘ G ,t)
Xi (61,8 t) =€ |§|ﬁ
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field. Definitions

@ Survival probability, up to time t, of an exponential process,

e (s)|e(tD )|t

NG 6o with

and decaying probability | IT (¢, &5, s)

normalizing function

1 ' —s s)|—
N(Cl,ézyt):m/o ds|&, ()] et=9)IE()= ¢l

@ Branching probability
al h(a-a)n ()

P(épgl): (é/l _lh*h)
(&] " ren) @ = [ecife| n(e-a)n (@)
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

Xi (81,620 )

) r -1 hsh
= Tl <@'1.§2<t>,o>—8”‘*’”55_1'52"?) (I h(51>) (61)

x | ds Nl(@;l(sz\t)e(rfsncz(snfrw / ¢*2|p (21.2))

XXi (C — 8.8 (s), t—5> gl Z (‘:1 0,t— )
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

time
€ &,)

4

&:0) & EE 08 ))

&5 1.0(53-51))

(688 E,(8,))

o J_) & Fourier
mode
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

@ Coupling constants
/ 8reiei N ot (51 . /
(@) - o (P06 g0
Fi(&1.8,.0
goi(G1.5) = sl
@ Multiplicative functional = product of all the couplings for each

realization. The solution yx; (§;, 5, t) is the expectation value

@ Existence conditions
(A) ‘Fi(glvffzvo)’ <1

h(§1)1
@ (|| " hen) @) <

) -1
8rreie;N(Zy.8,.t) (Cl h*h)
(©) min;{m;} h(¢y) =1
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

Theorem: The stochastic process X (&1, ¢5, t), above described, provides
through the multiplicative functional a stochastic solution of the
Fourier-transformed Poisson-Vlasov equation in a uniform magnetic field
for arbitrary finite values of the arguments, provided the initial conditions
at time zero satisfy the boundedness conditions (A).
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Fourier-transformed Poisson-Vlasov. Non-uniform

magnetic field

B(&) = (27)*2 Bod® (&) + b (&) and x; (81,8 1) = el ElLat)

Xi (61,85, 1)
7 1—1
yernl N (.G (8] heh) @)
: (61,85 (t).0) m hE) /Ods
~ )
182(5)] t—s)|&5(s)|—t|Es ! ! 1167¢, (s) - ¢
X mEpe e /d351 p(61) {262(5)1
b

| o (s &
JZ;erj (61,0, t— S) + % (27.[2)3/2 ’é‘i ES;| ‘ (h <<C'1>> V§2(S)) }

A GENACREE)
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Fourier-transformed Poisson-Vlasov. Non-uniform

magnetic field

Two types of vertices

time
(3’;1 &2)

(C_vlljo) » (§1_§1-§2(51)}

(€,-£.0(s8)) .0 ) &

(&.1—8_.1—&1,&2(52)]

& & Fourier
mode
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Poisson-Vlasov in an external magnetic field. Configuration
space

xf(x’,u,t—s)L‘ﬁ-vvﬁ(x(s),v(s),t—s)
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Poisson-Vlasov in an external magnetic field. Configuration
space

X /d3x’d3u p)(f:?,’t (x/, Us) G; (x', U t— s) (; (s) — ;’>

x(s),?(s),t—s)
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Poisson-Vlasov in an external magnetic field. Configuration

a probability in the space [0, t] x R3 x R3

o)
AY _/ ds//d3x’d3
‘ y
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Poisson-Vlasov in an external magnetic field. Configuration

space

time

)

o ' space
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Poisson-Vlasov in an external magnetic field. Configuration

space

—

G (?,7, t) = G (?(t) v (D) '0) B %Ag’)v’téj <X/'U' t_s)
v

¥ K (s) G: (X(5). V(). t=5)
Let
G (x.v.0)| <m (4)
K (s1) K (52) K (s0) Gi (%, v, 0) | < m (5)
for all n. Then the iteration has a stable fixed point if
AY)
8max [ =L | M <1 (6)
mj
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Poisson-Vlasov in an external magnetic field. Configuration

space

6 (%.v.¢) :]E{E;; (?,v,t)}

Theorem. There is a tree-labelled stochastic process which, if conditions
(4-6) are satisfied, provides a stochastic solution to the configuration
space Poisson-Vlasov equation in an external magnetic field.
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Stochastic solutions of nonlinear partial differential

equations. Applications.

@ What are they good for ?
@ New exact solutions

@ New numerical algorithms? Is a stochastic-based algorithm
competitive with other (deterministic) algorithms?

@ Deterministic algorithms grow exponentially with the dimension d of
the space, roughly N? (ﬁ the linear size of the grid). The stochastic
process only grows with the dimension d.

@ Deterministic algorithms aim at obtaining the solution in the whole
domain. Then, even if an efficient deterministic algorithm exists, the
stochastic algorithm is competitive if only localized values of the
solution are desired. For example by studying only a few high Fourier
modes one may obtain information on the small scale fluctuations
that only a very fine grid might provide in a deterministic algorithm.
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Stochastic solutions of nonlinear partial differential

equations. Applications.

@ Each sample path is independent. Likewise, paths starting from
different points are independent from each other. The stochastic
algorithms are a natural choice for parallel and distributed
computation.

@ Stochastic algorithms handle equally well regular and complex
boundary conditions.

@ A very clever idea (J. Acebron, A. Rodriguez-Rozas, R. Spigler)
Domain decomposition using interpolation of localized stochastic
solutions and then, in each small domain, use a deterministic code.
Fully parallel.

o And now "something completely different", but also related to fusion
plasmas
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Tomographic data analysis. General setting

Integral transforms

Linear transforms: Fourier, Wavelets, Hilbert, ...

Bilinear transforms: Wigner-Ville, Bertrand, Tomograms

General setting

Consider signals f(t) as vectors | f) € dense nuclear subspace N of a

Hilbert space H with dual space N'*

e {U(a) :a € 1} a family of operators defined on N'* . (In many cases
U («) generates a unitary group U (a) = eB(*))

@ Three types of transforms
Let h € N* be a reference vector such that the linear span of
{U(a)h € N*: o € I} is dense in N* . In the set {U(a)h}, a
complete set of vectors can be chosen to serve as a basis

o 1 - Wavelet-type transform

W (@) = (U (a) h| ),
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Tomographic data analysis. General setting

@ 2 - Quasi-distribution
Qr(a) = (U (&) f [ £).
o If U(a) is a unitary operator there is a self-adjoint operator B ()
h i
Wi (@) = (h | &®@ | £)

Q¥ (a) = (F | €W | F)

@ 3 - Tomographic transform or tomogram

M (X) = (F | 5(B(a) = X) | )
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Examples for wavelet-type and quasi-distributions

e Fourier transform: is Wf(h)(oc) if U () is unitary generated by
Br (?) =t + iOCQ% and h is a (generalized) eigenvector of the
time-translation operator

o Ambiguity function: Qr(«) for the same Br (')

o Wigner—Ville transform: Qr(«) for the same Br (') plus the
parity operator

(Wv) d n<t2_5722_1>

B , = —i20;— — 2ot .

(@1, 2) 201 — 200t + 5

e Wavelet transform: Wf(h)(zx) for By (@) = a1D + iay &, D being
the dilation operator D = —1 (it& +idt)

e Bertrand transform: Qf(«) for By
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The tomographic transform (tomogram)

M (X) = (F | 5(B(a) — X) | )

° M;B)((x) is positive and may be interpreted as a probability

distribution. Benefits from the properties of the bilinear transforms,

without interpretation ambiguities

e For normalized | f),
(f1f)=1

the tomogram is normalized
/M,SB) (X) dX =1

It is a probability distribution for the random variable X
corresponding to the observable defined by the operator B («)
@ The tomogram is a homogeneous function

MEP (X) = p| M) (pX)

26 / 56

RVM (IPFN) April 2009



Relations between the three types of transforms

MB) (x) = % / Q") (a) e X dik
/M B/P ePX dx.
Q) (a) = Wi (@)
) W(h)(oc) _ 1/eix Mrng)(X) - (X) dX
f Z —Mg’3><x)+,/w< ‘x|
with
| Ay =Im+1f) [ B)=|h—|f)
| Ry =Im+ilf),  [f)=|h)—ilf)
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Husimi—Kano type quasi-distribution

@ Other type of operator
U(ﬂ() — efB(lX) Phe—iB(Dc)’

P, = projector on a reference vector | h)

@ Quasidistribution of the Husimi—-Kano type

H®) () = (F | U(a) | F).
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The conformal group

@ The generators of the conformal group

@ Ford=1

RVM (IPFN)

in RY

in R

wk:i%

D=i(teV+9)
— (0 2

I-\)jvk =1 (tj Jdty tk 8tj>

: J
K=i(85+1)
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Tomograms associated to the conformal group

o Time-frequency tomogram

t—i—lvd
—H dt

Time-scale

d 1
—yt+/v< dt+>

Frequency-scale

d d 1
lptd +iv dt+7

Time-conformal

d
By=ut+iv|t?—+t
4 ]4+IV( dt+>
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Tomograms associated to the conformal group

@ General construction of the tomograms: Let

/dY|Y>(Y|:1

be a decomposition of the unit, with generalized eigenvectors of the
operator B. Then

M. X) = [ dY(F[8(B () =X) V) (Y]] ) = [(X | )]

@ Therefore the construction of the tomograms reduces to the
calculation of the generalized eigenvectors of each B operator

o Buy (v, £, X) = X¢ (v, £,X)
2 X
%mmnm:me;—:)

/dtgb{ (v, t, X); (mov, t, X)) =2mvd (X — X)
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Tomograms associated to the conformal group

© By, (v, 1, X) = Xp, (v, £, X)
1 X
b (11000 = o0 (B~ Zioge)

/dtgb; (v, 6, X) ¢, (v, t, X") = 4mvd (X — X')
® By (nv,w, X) = Xpy (v, w, X)

X
s v, X) = o0 (=) (oo = 2 tog o)

/dwt/f{ (v, w, X) ¢, (mv,w, X') =2mv8 (X — X')
o Bupy (v, £.X) = Xipy (1.1, £, X)

1 X
Py (v, £, X) = meXP’ <w+5|08|t|>

dty, (mv,t,s) g, (pv t,s") =2mvd (s — )
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Tomograms associated to the conformal group

Really ,)

I
M
| VAN
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Tomograms associated to the conformal group

o Time-frequency tomogram

My (v, ‘/ [’W - ’tx} f(t) dt

2

v

@ Time-scale tomogram

My (u,v, X

Joi

27T\v|

tfflog\t|)] '2

@ Frequency-scale tomogram
2

f(w) e[—i(%a}—% log || )]

Tl

Ms(p, v, X) =

27t|v|

f(w) = Fourier transform of f(t)
@ Time-conformal tomogram

Ma(j v, X) = HV |t| %+ Lo le)] |
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Applications

@ 1 - Detection of small signals in noise

o Letin My (u,v; X)
cos 0 sin 0

T Q
(Radon transform)

@ A signal generated as a superposition of a normally distributed
random amplitude - random phase noise with a sinusoidal signal of
same average amplitude, operating only during the time 0.45 — 0.55.
The signal to noise power ratio is 1/10.

@ The. following figures show the signal, its Fourier transform and the
tomogram Mﬁs) (s,u,v) (T =1 and 2 = 1000)
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Detection of signals in noise

3

4 | | | | | | | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
1t
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Detection of signals in noise

3

251 7

F(omega)
[
[6;]
T
L

0 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

omega
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Detection of signals in noise

100

sin(teta)
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Detection of signals in noise

1 ¥ T 77
0.9 & o) °@° il
P oq?® 4°
0.8 J
¢ & 1 9

K3 ’f‘i C e " E
0.7 = »‘)\f '% 55 o@_@%@ ® . 1
osl (F R by

0.5

C KN e A Aoé@ ,

1N q ©

/ ') 4 4 \1 7 @*“d?}e\ ' .Q
PO o T Sy
78S |

0.3
b ey
0.2 ISSTIER §
- \ .
0.1 g 4 Y i
D 0
0.5 0.6 0.7 0.8 0.9 1
sin(teta)
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Detection of signals in noise

@ One clearly sees a sequence of small peaks connecting a time around
0.5 to a frequency around 200.

@ The signature that the signal leaves on the tomogram is a
manifestation of the fact that, despite its low SNR, there is a certain
number of directions in the (t,w) plane along which detection
happens to be more favorable. For different trials the coherent peaks
appear at different locations, but the overall geometry of the ridge is
the same.

@ A ridge of small peaks is reliable because the rigorous probability
interpretation of M(6, X) renders the method immune to spurious
effects.
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Component decomposition

Most natural and man-made signals are nonstationary and have a
multicomponent structure.

Examples: Bat echolocation, whale sounds, radar, sonar, etc.

The concept of signal component is not uniquely defined. The notion
of component depends as much on the observer as on the observed
object. When we speak about a component of a signal we are in fact
referring to a particular feature of the signal that we want to
emphasize.

One possibility: Separation of components using its behavior in the
time-frequency plane. Consider the finite-time tomogram

2
M(O.X) = | [ #(e)px 0) o] = |< 7. >F

with

(t)—iex —ic059t2+ iX ,
Yo.x - VT P\ 2sind sin 6

U =cosf,v=sinb.
RVM (IPFN) April 2009 41 / 56



Component decomposition

@ 0 is a parameter that interpolates between the time and the frequency
operators, running from 0 to 71/2 whereas X is allowed to be any real
number.

e For all different 0's the U(6) are unitarily equivalent operators, hence
all the tomograms share the same information. The component
separation technique is based on the search for an intermediate value
of 6 where a good compromise might be found between time
localization and frequency information.

o First select a subset X, in such a way that the corresponding family

{%,Xn (t)} is orthogonal and normalized,

< YPo.x,Po,x, >= Omn
This is possible by taking the sequence

2
X,,:Xﬁ”%rsine

where Xj is freely chosen (in general we take Xy = 0)
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Component decomposition

@ We then consider the projections of the signal f(t)

qu(f) =<1, Ppx >

which are used for the signal processing.
@ Denoising consists in eliminating the c)e(n(f) such that

2
2

&, (F)
for some threshold e

@ Multi-component analysis is done by selecting subsets Fj of the X,
and reconstructing partial signals (k-components) by restricting the

sum to
fi(t) = Y &, (g x,(t)

neFy

for each k.
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Component decomposition. Examples

y(t) = y1(t) + y2(t) + y3(t) + b(t)
y1(t) = exp(i25t),t € [0,20]
v (t) = exp(i75t),t € [0,5]
ys (t) = exp(i75t),t € [10,20]
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Component decomposition. Examples

@ Separation at 6 = Z

ol
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Component decomposition. Examples

@ Reconstrution of the y, (t)

*»

e and y3 (t) components

real(y3)
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Component decomposition. Examples

@ Sum y(t) = yo(t) + yr(t) + b(t) of an “incident” y;(t) and a
“deformed reflected” chirp yg(t) delayed by 3s with white noise
added.

iPo(t) iPg(t)

y()(t) =e yR(t) =e
q>0<t) = aot2 + byt and

Dr(t) = ar(t — tr)> + br(t — tr) + 10(t — tg)3.
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Component decomposition. Examples

o Comparison of the phase derivatives S (t) and ZPg(t). Except
for the three first seconds, the spectrum of the signals y,(t) and
yr(t) is almost the same
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Component decomposition. Examples

@ Tomogram of the chirps signal
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Component decomposition. Examples

@ Separable spectrum at 6 = Z

ol
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SD # 2 : Component decomposition and phase derivative

@ Phase derivative 0 = atan(%)

phase derivative

time
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Reflectometry data : choc 42824

Choc : 42824 (prof 1003/2086) tps = 9.9996s

0.8

Real(y)

55
Time

Figure: Time representation

April 18, 2 18 / 30
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Reflectometry data : choc 42824

=

choc 42824  (prof 1003/2086) tps:9.9996 s

First wall

0] 0.2 0.4 0.6 0.8 1
sinus teta

Figure: Tomogram of the reflectometry signal.
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Reflectometry data : choc 42824

@ Spectrum cﬁn of the reflectometry signal y(t) for 6 = pi — ¢

choc 42824  (prof 1003/2086) tps:9.9996 s

0.8 q

0.7r B
Plasma
0.6 B

First wall
0.5r B

abs(cn).2

0.4r
Porthole

0.3

0.2

0.1
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Reflectometry data : choc 42824

. o o
@ Components of the reflectometry signal : 0 = pi — ¢
choc 42824  (prof 1003/2086) tps:9.9996 s
25 T T T T T T T
First wall
ZWMWH»—-M S—
< 151
[
= Plasma
g
3 1
%_
£
<< 0.5r
Porthole
o ]
ol R

56 58 60 62 64 66 68 70 72 74 76
Frequency (GHz)
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Reflectometry data : choc 42824

@ Separation of the components in the reflectometry signal

choc 42824  (prof 1003/2086) tps:9.9996 s
T T T

First wall

Full signal
Plasma

Amplitude (dB)

60 L L L L
55 60 65 70 75
Frequency (GHz)

Figure: Full signal and reflexions on the wall and on the plasma (dB)
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Reflectometry data : choc 42824

H . —_ H s
@ Components of the reflectometry signal : 0 = pi — ¢

e
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Reflectometry data : choc 42824

H . —_ H s
@ Components of the reflectometry signal : 0 = pi — ¢

choc 42624 _(prof 1003/2086) s :9.9996 5

Ampiude (el par)

S5 S8 60 62 o1 o6 o 70 72 74 76
Froquency (GHz)

. o
@ Components of the reflectometry signal : 0 = 5

choc 42824 _(prof 1003/2086) s :0.0996 5

Ampltude (e par)

S5 8 60 62 61 66 e 10 72 74 16
Frequency (GHz)
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Reflectometry data : choc 42824

. . .
@ Components in the reflectometry signal : 6 = pi — ¢
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Reflectometry data : choc 42824

@ Components in the reflectometry signal : 6 =

@ Components in the reflectometry signal : 6

F. Briolle CPT ()

Ampltuge (63)

choc 42624 _(prof 1003/2086) s :9.9996 s

Firstwal

5
Frequency (GHz)

R

choc 42824 _(prof 1003/2086) s :0.0996 5

Ampituce (68)

Fueswal  Fl sgnal

S5 8 60 62 61 66 e 10 72 74 16
Frequency (GHz)

tomog-data
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Reflectometry data

choc 42824

@ Phase derivative of the three components (6 = 7 —

Phase derivative

F. Briolle CPT ()

choc 42824 (prof 1003/2086)

s

5

)

tps : 9.9996 s

25
>0 M i
First wall
15 b
10} Plasma i
st
ol 4
W Porthole
-5
55 60 65 70 75

Frequency (GHz)

tomog-data
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Random sampling. Going beyond the limitations of

Shannon'’s theorem

Theorem 4. Let x, = nA + X, with X,, being a sequence of i.i.d. random
variables uniformly distributed in [0,A]. Then, almost every configuration
{xn} of the point process has the property that if f is a function in the
linear chirp space LC satisfying f (x,) =0 Vne&Z, thenf =0.
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