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The notion of stochastic solution

o Linear elliptic and parabolic equations (both with Cauchy and
Dirichlet boundary conditions) have a probabilistic interpretation: a
classical result and a standard tool in potential theory.

@ An example: the heat equation

2

deu(t, x) = 19 u(t, x) with u(0,x) = f(x) (1)

20x2

@ The solution may be written either as

N2
u(t,x) = %}E/\}Eexp (—(thy)> f(y)dy (2)

u(t, x) = Exf(X;) (3)

[E, being the expectation value, starting from x, of the Wiener
process dX; = dW;
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@ Or as



The notion of stochastic solution

e Eq.(1) is a specification of a problem

@ (2) and (3) are solutions in the sense that they both provide
algorithmic means to construct of a function satisfying the
specification.

@ An important condition for (2) and (3) to be considered as solutions
is the fact that the algorithm is independent of the particular
solution,

@ in the first case, an integration procedure

@ in the second, a solution-independent process.

@ This should be contrasted with stochastic processes constructed from
a given particular solution, as has been done for example for the
Boltzman equation

@ New exact solutions and also new numerical algorithms
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Stochastic solutions of nonlinear partial differential

equations

@ The basic idea: In the linear partial differential equation case, once
the relevant stochastic process is identified, the process is started
from the point x where the solution is to be computed, and the
solution is a functional of the exit values of the process (from a space
D or a space-time D x [0, t] domain)

@ Conjecture: For the nonlinear equations the relevant process has a
diffusion, propagation or jump component associated to the linear
part of the equation plus a branching mechanism associated to the
nonlinear part. The solution will be a functional of the exit measures
generated by the process.

@ The construction: Rewrite the equation as an integral equation.
Give a probabilistic interpretation to the integral equation. In the end
the stochastic solution is equivalent to the construction of a
tree-indexed measure and a sampling evaluation of the Picard series.
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Stochastic solutions of nonlinear partial differential

equations

Existing results

o
2]
o

© 00

The KPP equation (McKean)
Diffusion equation with u* (« € [0, 2]) nonlinearities (Dynkin)

The Navier-Stokes equation (LeJan, Schnitzman, Waymire,
Ossiander, Batacharia, Orum)

The Poisson-Vlasov equation (Cipriano, Floriani, Lima, R. V. M.)
The Euler equation (R. V. M.)

A fractional version of the KPP equation (Cipriano, Ouerdiane, R. V.

M.)
Poisson-Vlasov in an external magnetic field (R. V. M.)
Magnetohydrodynamics (E. Floriani, RVM)
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Stochastic solutions of nonlinear partial differential

equations

What are they good for 7
New exact solutions

New numerical algorithms? |s a stochastic-based algorithm
competitive with other (deterministic) algorithms?

Deterministic algorithms grow exponentially with the dimension d of
the space, roughly N? (ﬁ the linear size of the grid). The stochastic
process only grows with the dimension d.

Deterministic algorithms aim at obtaining the solution in the whole
domain. Then, even if an efficient deterministic algorithm exists, the
stochastic algorithm is competitive if only localized values of the
solution are desired. For example by studying only a few high Fourier
modes one may obtain information on the small scale fluctuations
that only a very fine grid might provide in a deterministic algorithm.
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Stochastic solutions of nonlinear partial differential

equations. Applications.

@ Each sample path is independent. Likewise, paths starting from
different points are independent from each other. The stochastic
algorithms are a natural choice for parallel and distributed
computation.

@ Stochastic algorithms handle equally well regular and complex
boundary conditions.

@ A clever idea (J. Acebron, A. Rodriguez-Rozas, R. Spigler)
Domain decomposition using interpolation of localized stochastic
solutions and then, in each small domain, use a deterministic code.
Fully parallel.
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Poisson-Vlasov in an external magnetic field

@ Poisson-Vlasov

0 = af"+<7-vx+e"v><§(x)-vv>f,-

Jt mj ¢

i 3/ ) 3 3 / X—X/ -
+m,~/d % JZeJ/d uf; (x,u,t) 7|x V., fi(x, v, t)

_X/|3 ’

e Fourier transformed version, F (, t) = (2711)3 [ d®nf (17,t) €€, with

1= (5 V) mae=(66) = (@6

B (& Ve SV X B (i) 6 ) FE

e [ PGF (- Eda) BT o (6.0.0)
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Poisson-Vlasov in an external magnetic field

Linear evolutions

) Sa(t) = —v(p
() = —2 (v(t) x B(x(1)
T An(t) =~ (Vi (1) X IVB(-iVe, (1) 6 (1))
Ee (1) = & (0)+ =B (=iVe, (1) x & (1)
) 4Ve () = —Vg, (1)
IV (e) = —= (Ve, () x B(—=iVe, (1))

@ Write a stochastic solution for

_—ey(leh Fi (€1, 6o t)
Xi (81,8 t) =e 7(1&| #

v (|¢2]) = Lif [¢5] < 1 and 7 (|G5]) = |G| otherwise
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field. Definitions

@ Survival probability, up to time t, of an exponential process,
e~ t1(%0) | and decaying

probability| I (&, &, ) = (%2  I2E 0 it normalizing

function

1 t
— (t=5)7(I82(s)) =t (I82])
N(‘zl.gz:t) T 1 _ et /0 ds’Y(ng (5)|)e 2 2
@ Branching probability

;1—1 , ’
p(enc) = | ”@j ki),
( h*h)
Then) @)= [ 6] n (e -g) n (@)

(|
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

Xi (81,820 t)
) 71 hsh
= ol <€1,cz<t>,o>—S”G'fo;l'?z'f) (I3 h(§1)><¢1>
x | s TR ele=sr(IEa(s)D—er(lal /d3§'1 p<§1'€l1)
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

time
€ &y)

4

&:0) & EE ()

(5.1—5. 1.0(53-51})

(B8 E,(8,))

o 4} o Fourier
mode
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

@ Coupling constants

-1
) , e ,t)(al h*h)(al) = o)
8j (51'51'5) = TR AR (O]

Fi(&1.8,,0
goi (61.5) = il
@ Multiplicative functional = product of all the couplings for each

realization. The solution yx; (§;, {5, t) is the expectation value

@ Existence conditions
(A) ‘Fi(glvffzvo)’ <1

h(§1)1
@ (|| " hen) @) <

) -1
8rreie;N(Zy.8,.t) (gl h*h)
(©) min;{m;} h(¢y) =1
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Fourier-transformed Poisson-Vlasov. Uniform magnetic

field

Theorem 1: The stochastic process X ({1,¢5, t), above described,
provides through the multiplicative functional a stochastic solution of the
Fourier-transformed Poisson-Vlasov equation in a uniform magnetic field
for arbitrary finite values of the arguments, provided the initial conditions
at time zero satisfy the boundedness conditions (A).
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Fourier-transformed Poisson-Vlasov. Non-uniform

magnetic field

—

B (¢)) = (27m)*2 Bod® (1) + b (&) and
Xi (61.Gp 1) = e (1) F(éé) .t)

Xi (61,85, t)
7 1—1
[ s )0 MG (B ,,Z’Sf) e,
i 1 0

oo B
s —s s — / / 1167t S)-
PO (=22 (o)) e 12 /d3é’1p(§1.é‘1) {(CQ()))@

, = (s b (¢
;}wdﬁﬂi9+;@;”Mf§@n'<héng®)}
Xi(6 -6 () t—s
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Fourier-transformed Poisson-Vlasov

. Non-uniform

magnetic field

Two types of vertices

time
(El 52)

(El',Ul - (5_.1—5_.1,&

(€;5.0(s8)) &0 ) &

2(8,))

(ﬁl—ﬁl—tl,tz(sz))
i
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Fourier-transformed Poisson-Vlasov. Non-uniform

magnetic field

@ Operator label

| “« [5(a
K(EL&) = sy e (h (<é)> ) WS))

@ Bounds
167teie]N (&1, Cp, t) (‘éll\lh*h) < 1
min; {m; } h(¢y) B
‘K(g;,@ () -k (&6 (o) P ELE0) <
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Fourier-transformed Poisson-Vlasov. Non-uniform

magnetic field

Theorem 2: The stochastic process Y (§q,(,, t), above described,
provides a stochastic solution to the Fourier-transformed Poisson-Vlasov
equation in a static non-uniform magnetic field, provided the initial

conditions at time zero and the non-uniform part of the field satisfy the
boundedness conditions
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Poisson-Vlasov in an external magnetic field. Configuration
space
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Poisson-Vlasov in an external magnetic field. Configuration
space

RVM (IPFN) October 2009 20 / 33



Poisson-Vlasov in an external magnetic field. Configuration

a probability in the space [0, t] x R3 x R3

o)
AY _/ ds//d3x’d3
‘ y
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Poisson-Vlasov in an external magnetic field. Configuration

space

bemu)

time

o

space
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Poisson-Vlasov in an external magnetic field. Configuration

space

Let

)G, (?,7,0)‘ <M 4)
‘K(sl)K(sz)---K(s,,) G: (?,7,0)‘ <M (5)
for all n. Then the iteration has a stable fixed point if
AY)
8max [ =L | M <1 (6)
mj
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Poisson-Vlasov in an external magnetic field. Configuration

space

6 (%.v.¢) :]E{E;; (?,v,t)}

Theorem 3: There is a tree-labelled stochastic process which, if
conditions (4-6) are satisfied, provides a stochastic solution to the
configuration space Poisson-Vlasov equation in an external magnetic field.
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Magnetohydrodynamics

Non-relativistic approximation, 3 dimensions, non-zero fluid viscosity and
electric resistivity. Incompressible fluid with density p(x, t) = p, constant
and uniform. The equations for the velocity V/(x, t) of the fluid and the
magnetic field B(x, t):

4 1 1 1

Vo v+ (B.V)B- VB2~ S VP 4+ V2V
Jt PoMo 200H Lo
%f — —(V-V)B+(B-V)V+-Lv?B

Fo
v is the kinematic viscosity and 7 the electric resistivity.
Passing to the Fourier transform

v(kt) = (2m)%? / Px V(x, t) ek

blkit) = (2m)/2 [ P*xB(x,1) e+

RVM (IPFN) October 2009 25 / 33



Magnetohydrodynamics

W = —ukPv(k,t) + 1 pk )+
+(2m)32 [d3q {i[k-v(q,t)] vk —q. t)—
s U b(q, )] bk = 0.1) + 552 [Ba, 1) - B(k — q. )] k |
and
PGt = — L Kbk, t)+

+(2n)*2 [ diq{ilk-v(q. )] b(k - q.t)
—ilk-b(q,t)]v(k—gq,t)}

p(k, t) is the Fourier transform of the pressure P(x, t) and we have used
the fact that the divergences of V/(x, t), B(x, t) vanish.
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Magnetohydrodynamics

Project on the plane orthogonal to the vector k. Since
k-v(k,t) = k- b(k,t) =0 no information is lost on the velocity and
magnetic fields.

The projection operator 77(4)(§) =¢ — (§ - ex) ek , e = \ﬁl leads to
ov(k,t
V(Bt ) _ —vk?v(k, t) + (271)%/2|k| /d3q {v(q, t) X v(k—aq,t)
1
———b(q,t) Xy blk—q,t }
T (q.t) X (k) b( )
ob(k, t
Ge = = Lentn) + oIkl [ {vla.0) xe blk— .0
0

—b(q. t) Xy v(k—q, t)}

with the product X, between two vectors &, w defined by

& Xy w =i(exG) mMpw
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Magnetohydrodynamics

Now write the equations in integral form:
v(k,t) = v(k,0) e VKt 4 (271)3/2 k| /ds e*”kZS/d3q

1
{v(q,t—s) Xy v(k—qt—s)— ——b(q,t—s) xy b(k—q,t—s)}
PoHo

bk, t) = b(k,0) e 7 Kt 1 (271)3/2|K] /dse_%kzs/(ﬁq
{V(q’t_s) X blk—q.t=5) = b(q.t =) X(y) V(k—q,t—s)}

To give the equations a probabilistic interpretation, rescale the fields by a
positive function h(k):

v(k,t) = h(k)x,(k.t) . b(k t) = \/popg h(k) xs(k, t)
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Magnetohydrodynamics

One obtains

h(q)h(k—q)

X (kt) = Xv(k,0)+/d§vk2 e*VkES/d3q (hh)(R)

1
(38wl tat=9) xpnlk-at -5+

1
3 (k) X 0, £ 5) X0 Xy~ 0.0 )

and
; N2 o "ag ks h(q)h(k—q)
Xo(k t) = Xb(k,0)~|—/ds e /d3q (hh)(K)

1
{3 om0t = 5) < Xyl = art = 5)+

1
EgbﬂbV(k) Xb(qv t— S) X (k) )(v(k —q,t— s)}
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Magnetohydrodynamics

* denotes convolution and the functions ge_.ee are:

_ _ 2(2m)*2(h = h)(k)
growl(k) = —gm(k) == nr o
2(271)3/2py (h* h) (k)
gbﬂvb(k) = _gbﬂbv(k): 7]|k|0h(k)

Stochastic interpretation: a combination of exponential with branching
processes.

e vkt = (1/10)K*t gyrvival probabilities up to time t,

- vk e RS ds, (1/uy)k? e~ (1/1)k*s ds decay probabilities in the
interval (s, s+ ds)

- h(q)h(k — q)/(h* h)(k) d®q the probability that, given a k mode, one
obtains a branching to modes q, kK — q.

- The functions ge—ee play the role of coupling constants.
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Magnetohydrodynamics

X, (k,t), xp(k, t) are then the expectation values of multiplicative
functionals associated to the processes, whose convergence is assured by
the following conditions:

# on coupling constants (conditions on the function h(k)):
gVva(k) < 1;gb—>vb(k) <1

— 2(27)32(h* h)(k) < min (V;ZO) k| h(k)

# on initial conditions:

X, (K, 0)] <15 [x, (k. 0)] <1 & [v(k,0)| < h(k); [b(k,0)] < \/ogpq h(k)
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Magneto dynamics

time
(k.1)
b
(0.1-5) #— (k-q.t-5)
v b
@gtssm @ (k-q-q'.t-5-59
L) ¥
o 4 4} o Fourier
mode
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