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The notion of stochastic solution

Linear elliptic and parabolic equations (both with Cauchy and
Dirichlet boundary conditions) have a probabilistic interpretation: A
classical result and a standard tool in potential theory.

For example, for the heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x) (1)

the solution may be written either as

u (t, x) =
1

2
p

π

Z 1p
t
exp

 
� (x � y)

2

4t

!
f (y) dy (2)

or as
u(t, x) = Ex f (Xt ) (3)

Ex being the expectation value, starting from x , of the Wiener
process dXt = dWt
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The notion of stochastic solution

Eq.(1) is a speci�cation of a problem

(2) and (3) are solutions in the sense that they both provide
algorithmic means to construct of a function satisfying the
speci�cation.

An important condition for (2) and (3) to be considered as solutions
is the fact that the algorithmic tools are independent of the
particular solution,

1 in the �rst case, an integration procedure
2 in the second, the simulation of a solution-independent process.

This should be contrasted with stochastic processes constructed from
a given particular solution, as has been done for example for the
Boltzman equation
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Stochastic solutions of linear equations: Examples

Let L be the operator

Lf (x) =
1
2

d

∑
i ,j=1

aij (x)∂ij f (x) +
d

∑
i=1
bi (x)∂i f (x) (4)

assumed to be strictly elliptic, that is
d

∑
i ,j=1

aij (x)yiyj � Λ(x)
d

∑
i=1
y2i (5)

and Xt the solution to the stochastic di¤erential equation

dXt = b(x)dt + σ(x)dWt (6)

σ being a matrix such that a = σσT and Wt the Wiener process

E (Wt ) = 0

E (WtWs ) = min (t, s)

E (dWtdWt ) = dt
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Stochastic solutions of linear equations: Examples

The Poisson equation

Lu1(x)� λu1(x) = �f1(x) (7)

where λ > 0 and f1 is a C 1 function with compact support. Then

u1 (x) = Ex
R ∞
0 e

�λt f1 (Xt ) dt (8)

Ex denotes the expectation value for the process that starts from x at
time zero.
In a bounded domain D with u1 = 0 in ∂D and f1 2 C 2

u1(x) = Ex
R τD
0 e�λt f1(Xt )dt (9)

τD = infft : Xt /2 Dg being the �rst exit time from D.
The Dirichlet problem

Lu2(x) = 0 with u2 = f2 on ∂D (10)

u2(x) = Ex f2(XτD ) (11)
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Stochastic solutions of linear equations: Examples

The Cauchy problem of the parabolic equation

∂tu3(x , t) = Lu3(x , t) with u3(x , 0) = f3(x) (12)

u3(x , t) = Ex f3(Xt ) (13)

The same problem in a bounded domain D with u3(x , 0) = f3(x) and
u3(x , 0) = 0 in ∂D

u3(x , t) = Ex [f3(Xt ); t < τD ]

For the Schrödinger operator L+ v(x)

(L+ v(x)) u4(x) = 0 with u4 = f4 on ∂D (14)

u4(x) = Ex
h
f4(XτD )e

R τD
0 v (Xs )ds

i
(15)
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Stochastic solutions of linear equations: Examples

and

(L+ v(x)) u5(x) = �g(x) with u5 = 0 on ∂D (16)

u5(x) = Ex
hR τD
0 g(Xs )e

R s
0 v (Xr )drds

i
(17)

The Cauchy problem for the Schrödinger operator

∂tu6(x , t) = (L+ v(x)) u6(x , t) with u6(x , 0) = f6(x) (18)

u6(x , t) = Ex
h
f6(Xt )e

R t
0 v (Xs )ds

i
(19)
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Stochastic solutions and numerical codes

New exact solutions and also new numerical algorithms

When is a stochastic-based algorithm competitive with other
algorithms? No general answer. However:

Deterministic algorithms grow exponentially with the dimension d of
the space, roughly Nd ( LN the linear size of the grid). A stochastic
simulation only grows with the dimension of the process, typically of
order d .

Deterministic algorithms aim at obtaining the solution in the whole
domain. Then, even if an e¢ cient deterministic algorithm exists, the
stochastic algorithm is competitive if only localized values of the
solution are desired. For example by studying only a few high Fourier
modes one may obtain information on the small scale �uctuations
that only a very �ne grid might provide in a deterministic algorithm.
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Stochastic solutions and numerical codes

Each sample path is independent. Likewise, paths starting from
di¤erent points are independent from each other. The stochastic
algorithms are a natural choice for parallel and distributed
computation.

Stochastic algorithms are appropriate for domain decomposition and
handle equally well regular and complex boundary conditions.
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Stochastic solutions of nonlinear partial di¤erential
equations

The basic idea: One notices that in the linear partial di¤erential
equation case, once the relevant stochastic process is identi�ed, the
process is started from the point x where the solution is to be
computed, and the solution is a functional of the exit values of the
process (from a space D or a space-time D � [0, t] domain)

Conjecture: For the nonlinear equations the relevant process has a
di¤usion, propagation or jump component associated to the linear
part of the equation plus a branching mechanism associated to the
nonlinear part. The solution will be a functional of the exit measures
generated by the process.

The construction: Rewrite the equation as an integral equation.
Give a probabilistic interpretation to the integral equation. In the end
the stochastic solution is equivalent to a sampling evaluation of the
Picard series.
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Stochastic solutions of nonlinear partial di¤erential
equations

Existing results

1 The KPP equation (McKean)

2 Di¤usion equation with uα (α 2 [0, 2]) nonlinearities (Dynkin)
3 The Navier-Stokes equation (LeJan, Schnitzman, Waymire,
Ossiander, Batacharia, Orum)

4 The Poisson-Vlasov equation (Cipriano, Floriani, Lima, R. V. M.)
5 The Euler equation (Cipriano, R. V. M.)
6 A fractional version of the KPP equation (Cipriano, Ouerdiane, R. V.
M.)
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The Poisson-Vlasov equation

∂fi
∂t +

!
v � rx fi � ei

mi
rxΦ � rv fi = 0 (20)

∆xΦ = �4π

(
∑
i
ei
Z
fi
�!
x ,
!
v , t
�
d3v

)
(21)

Fourier transforming Eq.(20) and (21), with

Fi (ξ, t) =
1

(2π)3

Z
d6ηfi (η, t) e iξ�η (22)

η =
�!
x ,
!
v
�
and ξ =

�!
ξ1,

!
ξ2

�
$ (ξ1, ξ2), one obtains

0 =
∂Fi (ξ, t)

∂t
�
!
ξ1 � rξ2Fi (ξ, t) (23)

+
4πei
mi

Z
d3ξ

0
1Fi
�

ξ1 � ξ
0
1, ξ2, t

� !
ξ2 �

!
ξ
0
1���ξ 01���2 ∑

j
ejFj

�
ξ
0
1, 0, t

�
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The Poisson-Vlasov equation
The Fourier transformed equation

Changing variables to
τ = γ (jξ2j) t (24)

γ (jξ2j) is a positive continuous function satisfying

γ (jξ2j) = 1 i f jξ2j < 1
γ (jξ2j) � jξ2j i f jξ2j � 1

∂Fi (ξ, τ)
∂τ

=

!
ξ1

γ (jξ2j)
� rξ2Fi (ξ, τ)�

4πei
mi

Z
d3ξ

0
1Fi
�

ξ1 � ξ
0
1, ξ2, τ

�

�
!
ξ2 �

^

ξ
0
1

γ (jξ2j)
���ξ 01��� ∑j ejFj

�
ξ
0
1, 0, τ

�
(25)

with
^

ξ1 =
!
ξ1
jξ1 j
.
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The Poisson-Vlasov equation
The Fourier transformed equation

Stochastic representation written for the following functions

χi (ξ1, ξ2, τ) = e
�λτ Fi (ξ1, ξ2, τ)

h (ξ1)
(26)

with λ a constant and h (ξ1) a positive function to be speci�ed later.
De�ne ����ξ 01����1 h � h� = Z

d3ξ
0
1

���ξ 01����1 h �ξ1 � ξ
0
1

�
h
�

ξ
0
1

�
(27)

p
�

ξ1, ξ
0
1

�
=

���ξ 01����1 h �ξ1 � ξ
0
1

�
h
�

ξ
0
1

�
����ξ 01����1 h � h� (28)
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The Poisson-Vlasov equation
The Fourier transformed equation

χi (ξ1, ξ2, τ)

= e�λτχi

�
ξ1, ξ2 + τ

ξ1
γ (jξ2j)

, 0
�
� 8πei
miλ

�
jξ1j

�1 h � h
�
(ξ1)

h (ξ1)

�
Z τ

0
dsλe�λs

Z
d3ξ

0
1
p
�

ξ1, ξ
00
1

�
χi

�
ξ1 � ξ

00
1 , ξ2 + s

ξ1
γ (jξ2j)

, τ � s
�

�

�
ξ2 + s

ξ1
γ(jξ2 j)

�
�
^

ξ
0
1

γ
����ξ2 + s ξ1

γ(jξ2 j)

���� ∑
j

1
2ejeλ(τ�s)χj

�
ξ
00
1 , 0, τ � s

�
(29)
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The Poisson-Vlasov equation
The Fourier transformed equation

Eq.(29) has a stochastic interpretation (an exponential process plus
branching and Bernoulli processes).
e�λτ = survival probability during time τ of the exponential process
λe�λsds = the decay probability
p
�

ξ1, ξ
00
1

�
d3ξ1 = branching probability of ξ1 mode into

�
ξ1 � ξ

00
1 , ξ

00
1

�
χ (ξ1, ξ2, τ) computed from the expectation value of a multiplicative
functional
Convergence of the multiplicative functional:
(A)

���Fi (ξ1,ξ2,0)h(ξ1)

��� � 1
(B)

����ξ 01����1 h � h� (ξ1) � h (ξ1) , satis�ed, for example,
for h (ξ1) =

c

(1+jξ1 j
2)
2 and c � 1

3π
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The Poisson-Vlasov equation
The Fourier transformed equation

The process X (ξ1, ξ2, τ) is the limit of the following iteration

X (k+1)i (ξ1, ξ2, τ)

= χi

�
ξ1, ξ2 + τ

ξ1
γ (jξ2j)

, 0
�
1[s>τ] + gii

�
ξ1, ξ

0
1, s
�

�X (k )i

�
ξ1 � ξ

0
1, ξ2 +

sξ1
γ (jξ2j)

, τ � s
�
X (k )i

�
ξ
0
1, 0, τ � s

�
1[s<τ]1[ls=0]

+gij
�

ξ1, ξ
0
1

�
X (k )i

�
ξ1 � ξ

0
1, ξ2 + s

ξ1
γ (jξ2j)

, τ � s
�
X (k )j

�
ξ
0
1, 0, τ � s

�
�1[s<τ]1[ls=1]
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The Poisson-Vlasov equation
The Fourier transformed equation

The multiplicative functional of the process X (ξ1, ξ2, τ) is the product of:
- At each branching point where 2 particles are born

gij
�

ξ1, ξ
0
1, s
�
= �eλ(τ�s) 8πeiej

miλ

����ξ 01����1 h � h� (ξ1)
h (ξ1)

�
ξ2 + s

ξ1
γ(jξ2 j)

�
�
^

ξ
0
1

γ
����ξ2 + s ξ1

γ(jξ2 j)

����
- When one particle reaches time zero and samples the initial
condition

g0i (ξ1, ξ2) =
Fi (ξ1, ξ2, 0)
h (ξ1)

χi (ξ1, ξ2, τ)=E
n

Π
�
g0g

0
0 � � �

� �
giig

0
ii � � �

� �
gijg

0
ij � � �

�o
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The Poisson-Vlasov equation
The Fourier transformed equation

Choose λ �
��� 8πei ej
mini fmi g

��� and c � e�λτ 1
3π =) the absolute value of all

coupling constants is bounded by one.

The branching process, identical to a Galton-Watson process,
terminates with probability one =) number of inputs to the
functional is �nite (with probability one).

With the bounds on the coupling constants, the multiplicative
functional is bounded by one in absolute value almost surely.
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The Poisson-Vlasov equation
The Fourier transformed equation

Instead of renormalizing the time (Eq.(24)) one may write

Θi (ξ1, ξ2, t) = e
�t jξ2 jFi (ξ1, ξ2, t)

h (ξ1)

p
�

ξ1, ξ
0
1

�
and the conditions on h (ξ1) are the same as before.

The main di¤erence is the survival probability, namely e�t jξ2 j and
dsΠ (ξ1, ξ2, s) the dying probability in time ds

Π (ξ1, ξ2, s) =
jξ2 + sξ1j e(t�s)jξ2+sξ1 j�t jξ2 j

N (ξ1, ξ2, t)

N (ξ1, ξ2, t) =
1

1� e�t jξ2 j
Z t

0
ds jξ2 + sξ1j e(t�s)jξ2+sξ1 j�t jξ2 j
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The Poisson-Vlasov equation
The con�guration space equation

∂fi
∂t +

!
v � rx fi � ei

mi
rxΦ � rv fi = 0

Gi
�!
x ,
!
v , t
�
= e�λt

fi
�!
x ,
!
v , t
�

ϕi

�!
x � t!v ,!v

�
Gi
�!
x ,
!
v , t
�

= e�λtGi
�!
x � t!v ,!v , 0

�
� 2∑

j

1
2
eiej
miλ

Z t

0
dsλe�λsA(j)x ,v ,t ,se

λ(t�s)

�
Z
d3x 0d3u

p(j)x ,v ,t ,s

�!
x 0,

!
u
�
Gj

�!
x 0,

!
u , t � s

� \�
!
x � s!v �

!
x 0
�

� 1

ϕi

�!
x � t!v ,!v

� (rv + srx ) ϕi

�!
x � t!v ,!v

�
Gi
�!
x � s!v ,!v , t � s

�
(http://label2.ist.utl.pt/vilela/) February 3, 2008 22 / 33



The Poisson-Vlasov equation
The con�guration space equation

p(j)x ,v ,t ,s

�!
x 0,

!
u
�
=

1

A(j)x ,v ,t ,s

ϕj

�!
x 0 � u (t � s) ,!u

�
����!x � s!v � !

x 0
����2

A(j)x ,v ,t ,s =
Z
d3x 0d3u

ϕj

�!
x 0 � u (t � s) ,!u

�
����!x � s!v � !

x 0
����2

The simplest choice for ϕi

�!
x ,
!
v
�
is ϕi

�!
x ,
!
v
�
= fi

�!
x ,
!
v , 0

�
The probabilistic interpretation requires �niteness

of A(j)x ,v ,t ,s =
R
d3x 0d3u

fj

�!
x 0�u(t�s),!u ,0

�
����!x�s!v �!x 0����2
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The Poisson-Vlasov equation
The con�guration space equation
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The Poisson-Vlasov equation
The con�guration space equation

Contributions to the multiplicative functional:
- The coupling constants at the creation of each new particle is

gij (x , v , t, s) =
2eiej
miλ

A(j)x ,v ,t ,se
λ(t�s)

- The terminal contribution of a particle that in the course of its evolution
has received the labels s1, s2, � � � sn is

1

fi
�!
x � t!v ,!v , 0

� (rv + s1rx ) � � � (rv + snrx ) fi
�!
x � t!v ,!v , 0

�
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The Poisson-Vlasov equation
The con�guration space equation

Convergence of the multiplicative functional in the stochastic solution
requires

���� 2eiej
min (mi ) λ

max
s

�
A(j)x ,v ,t ,s

�
eλ(t�s)

���� � 1 (30)������ 1

fi
�!
x � t!v ,!v , 0

� (rv + s1rx ) � � � (rv + snrx ) fi
�!
x � t!v ,!v , 0

������� � 1
(31)

Theorem 2. The stochastic process Y
�!
x ,
!
u , t
�
, above described,

provides a stochastic solution for the con�guration space
Poisson-Vlasov equation provided the initial conditions satisfy the
constraints (30) and (31).
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A fractional nonlinear equation

A fractional version of the KPP equation, studied by McKean

tDα
�u (t, x) =

1
2 xD

β
θ u (t, x) + u

2 (t, x)� u (t, x) (32)

tDα
� is a Caputo derivative of order α

tDα
� f (t) =

(
1

Γ(m�β)

R t
0

f (m)(τ)dτ

(t�τ)α+1�m
m� 1 < α < m

dm
dtm f (t) α = m

(33)

xD
β
θ is a Riesz-Feller derivative de�ned through its Fourier symbol

F
n
xD

β
θ f (x)

o
(k) = �ψθ

β (k)F ff (x)g (k) (34)

with ψθ
β (k) = jk j

β e i (signk )θπ/2.
Physically it describes a nonlinear di¤usion with growing mass and in our
fractional generalization it would represent the same phenomenon taking
into account memory e¤ects in time and long range correlations in space.
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A fractional nonlinear equation

The �rst step towards a probabilistic formulation is the rewriting of
Eq.(32) as an integral equation.Take the Fourier transform (F ) in space
and the Laplace transform (L) in time

sα
s
^
u (s, k) = sα�1 ^u

�
0+, k

�
� 1
2

ψθ
β (k)

s
^
u (s, k)�

s
^
u (s, k)+

Z ∞

0
dte�stF

�
u2
�

where
^
u (t, k) = F (u (t, x)) =

Z ∞

�∞
e ikxu (t, x)

s
u (s, x) = L (u (t, x)) =

Z ∞

0
e�stu (t, x)

This equation holds for 0 < α � 1 or for 0 < α � 2 with ∂
dt u (0

+, x) = 0.

Solving for
s
^
u (s, k) one obtains an integral equation

s
^
u (s, k) =

sα�1

sα + 1
2ψθ

β (k)
^
u
�
0+, k

�
+
Z ∞

0
dt

e�st

sα + 1
2ψθ

β (k)
F
�
u2 (t, x)

�
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A fractional nonlinear equation

Taking the inverse Fourier and Laplace transforms

u (t, x)

= Eα,1 (�tα)
Z ∞

�∞
dyF�1

0@Eα,1

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,1 (�tα)

1A (x � y) u (0, y)
+
Z t

0
dτ(t � τ)α�1 Eα,α

�
� (t � τ)α�

Z ∞

�∞
dyF�1

0@Eα,α

�
�
�
1+ 1

2ψθ
β (k)

�
(t � τ)α

�
Eα,α

�
� (t � τ)α�

1A (x � y) u2 (τ, y)
Eα,ρ is the generalized Mittag-Le er function Eα,ρ (z) = ∑∞

j=0
z j

Γ(αj+ρ)

Eα,1 (�tα) +
Z t

0
dτ (t � τ)α�1 Eα,α

�
� (t � τ)α� = 1
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A fractional nonlinear equation

We de�ne the following propagation kernel

G β
α,ρ (t, x) = F�1

0@Eα,ρ

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,ρ (�tα)

1A (x)
u (t, x)

= Eα,1 (�tα)
Z ∞

�∞
dyG

β
α,1 (t, x � y)u

�
0+, y

�
+
Z t

0
dτ(t � τ)α�1 Eα,α

�
� (t � τ)α�

Z ∞

�∞
dyG

β
α,α (t � τ, x � y)u2 (τ, y)

Eα,1 (�tα) and (t � τ)α�1 Eα,α

�
� (t � τ)α� = survival probability up to

time t and the probability density for the branching at time τ (branching
process Bα)
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A fractional nonlinear equation
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A fractional nonlinear equation

u(t, x) = Ex (ϕ1ϕ2 � � � ϕn) (35)

with

ϕi =
Z
dy (i )1 dy

(i )
2 � � � dy (i )k�1dy

(i )
k G

β
α,α (τ1, x � y1)G β

α,α (τ2, y1 � y2) � � �

� � �G β
α,α (τk�1, yk�2 � yk�1)G β

α,1 (τk , yk�1 � yk ) u
�
0+, yk

�
(36)

with ∑k
i=1 τj = t, k � 1 being the number of branchings leading to

particle i
The propagation kernels satisfy the conditions to be the Green�s functions
of stochastic processes in R:

u(t, x) = Ex
�
u(0+, x + ξ1)u(0

+, x + ξ2) � � � u(0+, x + ξn)
�

(37)
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A fractional nonlinear equation

Denote the processes associated to G β
α,1 (t, x) and G

β
α,α (t, x), respectively

by Πβ
α,1 and Πβ

α,α

Theorem 3: The nonlinear fractional partial di¤erential equation (4), with
0 < α � 1, has a stochastic solution, the coordinates x + ξ i in the
arguments of the initial condition obtained from the exit values of a
propagation and branching process, the branching being ruled by the
process Bα and the propagation by Πβ

α,1 for the �rst particle and by Πβ
α,α

for all the remaining ones.
A su¢ cient condition for the existence of the solution is��u(0+, x)�� � 1 (38)
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