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1D tomograms

Tomograms that use the conformal group operators and eigenvectors
of their linear combinations:

Time-frequency tomogram

B1 = µt + iν
d
dt

Time-scale

B2 = µt + iν
�
t
d
dt
+
1
2

�
Frequency-scale

B3 = iµ
d
dt
+ iν

�
t
d
dt
+
1
2

�
Time-conformal

B4 = µt + iν
�
t2
d
dt
+ t
�
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1D tomograms

In general:

B4 = µt + iν
�
g (t)

d
dt
+
1
2
dg (t)
dt

�
the generalized eigenvectors being

ψg (µ, ν, t,X ) = jg (t)j
�1/2 exp i

�
�X

ν

Z t ds
g (s)

+
µ

ν

Z t sds
g (s)

�
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Another �nite-dimensional Lie algebra

Another �nite-dimensional Lie algebra which may be used to construct
tomograms, exploring other features of the signals, is generated by 1, t and

ω = i ddt
D = i

�
t ddt +

1
2

�
F = � 1

2

�
d 2
dt2 � t

2 + 1
�

σ = 1
2

�
d 2
dt2 + t

2 + 1
�

Of special interest are the tomograms related to the operators

BF = µt + νF

and
Bσ = µt + νσ

As before, the construction of the tomograms relies on �nding a complete
set of generalized eigenvectors for the operators BF and Bσ. With
y = t + µ

ν one de�nes creation and annihilation operators
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Another �nite-dimensional Lie algebra

a =
1p
2

�
y +

d
dy

�
; a† =

1p
2

�
y � d

dy

�
obtaining

BF = ν

�
a†a� µ2

2ν2

�
Bσ = ν

�
aa� µ2

2ν2

�
Therefore for BF one has an orthonormalized complete set of eigenvectors

ψ(F )n (t) = un
�
t +

µ

ν

�
with a discrete set of eigenvalues Xn = ν

�
n+ 1

2

�
� µ2

2ν

BFψ(F )n (t) = Xnψ(F )n (t)
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Another �nite-dimensional Lie algebra

the function un is

un (y) =
�

π1/22nn!
��1/2

�
y � d

dy

�n
e�

y2
2

and the tomogram M (F )
f (µ, ν,Xn)

M (F )
f (µ, ν,Xn) =

����Z ψ(F )�n (t) f (t) dt

����2
For Bσ one uses a basis of coherent states

φλ (y) = eλa†�λ�au0 (y)

= e
jλj2
2 ∑
n=0

λnp
n!
un (y)

with decomposition of identity

1
π

Z
φλ (y) φ�λ (y) d

2λ = 1
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Another �nite-dimensional Lie algebra

Then, a set of generalized eigenstates of Bσ is

ψ
(σ)
λ (µ, ν, t) = φλ

�
t +

µ

ν

�
with eigenvalues

Bσψ
(σ)
λ (µ, ν, t) = Xλψ

(σ)
λ (µ, ν, t)

Xλ = ν

�
λ2 � µ2

2ν2

�
the tomogram being

M (σ)
f (µ, ν,Xλ) =

����Z ψ
(σ)�
λ (µ, ν, t) f (t) dt

����2
This tomogram is closely related to the Sudarshan-Glauber
P-representation.
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Multidimensional tomograms

Several types of multidimensional tomograms may be obtained from
generalizations of the one-dimensional ones. Consider a signal f (t1, t2).
The tomogram will depend on a vector variable ~X = (X1,X2) and four
real parameters µ1, µ2,ν1, and ν2. For example, the two-dimensional
time-frequency tomogram will be

M(~X ,~µ,~ν) =
1

4π2jν1ν2j

����Z f (t1, t2)e� iµ12ν1
t21�

iX1
ν1
t1+

iµ2
2ν2

t22�
iX2
ν2
t2
�
dt1 dt2

����2
From this one may also construct a center of mass tomogram

Mcm(Y ,~µ,~ν) =
Z
M(~X ,~µ,~ν) δ(Y � X1 � X2) dX1 dX2

=
Z

δ(Y � X1 � X2)
1

2πjν1j
1

2πjν2j����Z f (t1, t2)dt1 dt2 exp� iµ12ν1
t21 �

iz1X1
ν1

+
iµ2
2ν2

t22 �
iz2X2

ν2

�����2 dX1 dX2
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Multidimensional tomograms

The center of mass tomogram is normalizedZ
Mcm(X ,~µ,~ν) dX = 1

and a homogeneous function

Mcm(λX ,λ~µ,λ~ν) =
1
jλj Mcm(X ,~µ,~ν).

The generalization to N channels is straightforward.
As in the one-dimensional case, useful tomograms may be constructed
from the operators of Lie algebras. For example, using the generators of
the conformal algebra in Rd , d � 2,

ωk = i ∂
∂tk

D = i
�
t � r+ d

2

�
Rj ,k = i

�
tj ∂

∂tk
� tk ∂

∂tj

�
Kj = i

�
t2j

∂
∂tj
+ tj

�
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Multidimensional tomograms

Let, in two dimensions, t1 = t and t2 = x . The tomograms corresponding
to the operators

Bω = µ1t + µ2x + ν1ω1 + ν2ω2

BD = µ1t + µ2x + νD

Bω = µ1t + µ2x + ν1K1 + ν2K2

are straightforward generalizations of the corresponding one-dimensional
ones.
For the operator

BR = µ1t + µ2x + νR1,2
the eigenstates and the tomogram are:

ψ(R )
�!

µ , ν, x , t,X
�
= exp

i
ν

�
µ1x � µ2t + X tan

�1 t
x

�
Mf

�!
µ , ν,X

�
=

����Z ψ(R )�
�!

µ , ν, x , t,X
�
f (x , t) dxdt

����2
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Tomograms as operator symbols

Tomograms may be described not only as amplitudes of projections on a
complete basis of eigenvectors of a family of operators, but also as
operator symbols. That is, as a map of operators to a space of functions
where the operators non-commutativity is replaced by a modi�cation of
the usual product to a star-product.
Let Â be an operator in Hilbert space H and Û(~x), D̂(~x) two families of
operators called dequantizers and quantizers, respectively, such that

Tr
�
Û(~x)D̂(~x 0)

	
= δ(~x �~x 0) (1)

The labels ~x (with components x1, x2, . . . xn) are coordinates in a linear
space V where the functions (operator symbols) are de�ned. Some of the
coordinates may take discrete values, then the delta function in (1) should
be understood as a Kronecker delta. Provided the property (1) is satis�ed,
one de�nes the symbol of the operator Â by the formula

fA(~x) = Tr
�
Û(~x)Â

	
, (2)

assuming the trace to exist.
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Tomograms as operator symbols

In view of (1), one has the reconstruction formula

Â =
Z
fA(x)D̂(~x) d~x

The role of quantizers and dequantizers may be exchanged. Then

f dA (~x) = Tr
�
D̂(~x) Â

	
is called the dual symbol of fA(~x) and the reconstruction formula is

Â =
Z
f dA (x)Û(~x) d~x

Symbols of operators can be multiplied using the star-product kernel as
follows

fA(~x) ? fB (~x) =
Z
fA(~y)fB (~z)K (~y ,~z ,~x) d~y d~z

the kernel being

K (~y ,~z ,~x) = Tr
�
D̂(~y)D̂(~z)Û(~x)
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Tomograms as operator symbols

The star-product is associative,

(fA(~x) ? fB (~x)) ? fC (~x) = fA(~x) ? (fB (~x) ? fC (~x))

this property corresponding to the associativity of the product of operators
in Hilbert space.
With the dual symbols the trace of an operator may be written in integral
form

Tr
�
ÂB̂
	
=
Z
f dA (~x)fB (~x) d~x =

Z
f dB (~x)fA(~x) d~x .

For two di¤erent symbols fA(~x) and fA(~y) corresponding, respectively, to
the pairs (Û(~x),D̂(~x)) and (Û1(~y),D̂1(~y)), one has the relation

fA(~x) =
Z
fA(~y)K (~x ,~y) d~y ,

with intertwining kernel

K (~x ,~y) = Tr
�
D̂1(~y)Û(~x)
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Tomograms as operator symbols

Let now each signal f (t) be identi�ed with the projection operator Πf on
the function f (t), denoted by

Πf = jf i hf j (3)

Then the tomograms and also other transforms are symbols of the
projection operators for several choices of quantizers and dequantizers.
Some examples:
# The Wigner-Ville function: is the symbol of j f ihf j corresponding to
the dequantizer

Û(~x) = 2D̂(2α)P̂, α =
t + iωp

2

P̂ is the inversion operator P̂f (t) = f (�t)
and D̂(γ) is a �displacement�operator

D̂(γ) = exp
�
1p
2

γ

�
t � ∂

∂t

�
� 1p

2
γ�
�
t +

∂

∂t

��
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Tomograms as operator symbols

The quantizer operator is

D̂(~x) := D̂(t,ω) =
1
2π
Û(t,ω),

t and ω being time and frequency.
The Wigner�Ville function is

W (t,ω) = 2Tr
�
j f ihf j D̂(2α)D̂

	
or, in integral form

W (t,ω) = 2
Z
f �(t)D̂(2α)f (�t) dt

# The symplectic tomogram or time-frequency tomogram of j f ihf j
corresponds to the dequantizer

Û(~x) := Û(X , µ, ν) = δ
�
X 1̂� µt̂ � νω̂

�
,

t̂f (t) = tf (t), ω̂f (t) = �i ∂

∂t
f (t)

and X , µ, ν 2 R.
RVM (IPFN) November 2011 16 / 38



Tomograms as operator symbols

The quantizer of the symplectic tomogram is

D̂(~x) := D̂(X , µ, ν) =
1
2π

exp
�
i
�
X 1̂� µt̂ � νω̂

��
# The optical tomogram is the same as above for the case

µ = cos θ, ν = sin θ.

Thus the optical tomogram is

M(X , θ) = Tr
�
j f ihf j δ

�
X 1̂� µt̂ � νω̂

�	
=

1
2π

Z
f �(t)e ikX exp

�
ik
�
X � t cos θ + i

∂

∂t
sin θ

��
f (t) dt dk

=
1

2πj sin θj

����Z f (t) exp �i �cot θ

2
t2 � Xt

sin θ

��
dt

����2 .
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Tomograms as operator symbols

One important feature of the formulation of tomograms as operator
symbols is that one may work with deterministic signals f (t) as easily as
with probabilistic ones. In this latter case the projector would be replaced
by

Πp =
Z
pµ

��fµ� 
fµ�� dµ

with
R
pµdµ = 1, the tomogram being the symbol of this new operator.

This also provides a framework for an algebraic formulation of signal
processing more general than was done in the past. There, a signal model
is a triple (A,M,Φ) A being an algebra of linear �lters,M a A-module
and Φ a map from the vector space of signals to the module. With the
operator symbol interpretation both (deterministic or random) signals and
(linear or nonlinear) transformations on signals are operators. By the
application of the dequantizer they are mapped onto functions, the �lter
operations becoming star-products.
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Rotated-time tomography

Now consider a version of tomography where a discrete random
variable is used as an argument of the probability distribution
function. We call this tomography rotated time tomography.

It is a variant of the spin-tomographic approach for the description of
discrete spin states in quantum mechanics.

For a �nite duration signal f (t), with 0 � t � T ,we consider discrete
values of time f (tm) � fm , where with the labeling
m = �j ,�j + 1,�j + 2, . . . , 0, 1, . . . , j � 1, j they are like the
components of a spinor j f i. This means that we split the interval
[0,T ] onto N parts at time values t�j , t�j+1, . . . , tj and replace the
signal f (t), a function of continuous time, by a discrete set of values
organized as a spinor. By dividing by a factor we normalize the spinor,
i.e.,

hf j f i =
j

∑
m=�j

jfm j2 = 1
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Rotated-time tomography

Without loss of generality, consider the "spin" values to be integers, i.e.,
j = 0, 1, 2, . . . and use an odd number N = 2j + 1 of values.
In this setting, j f i being a column vector, we construct the N�N matrix

ρ =j f ihf j

with matrix elements
ρmm 0 = fm f

�
m 0 .

The tomogram is de�ned as the probability-distribution function

M(m, u) = jhm j u j f ij2, m = �j , . . . , j � 1, j

where u is the unitary N�N matrix

uu† = 1N

For this matrix we use an unitary irreducible representation of the rotation
group (or SU(2))
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Rotated-time tomography

with matrix elements

umm 0(θ) =
(�1)j�m 0

(m+m0)!

�
(j +m)!(j +m0)!
(j �m)!(j �m0)!

�1/2 �
sin

θ

2

�m�m 0 �
cos

θ

2

�m+m 0
�Fj�m

�
2m+ 1,m+m02

θ

2

�
Fj�m being a function with Jacobi polynomial structure expressed in terms
of hypergeometric function as

Fn(a, b, t) = F (�n, a+ n, b; t)

=
(b� 1)!

(b+ n� 1)! t
1�b(1� t)b�a

�
d
dt

�n h
tb+n�1(1� t)a�b+1

i
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Rotated-time tomography

The dequantizer in the rotated-time tomography is

Û(~x) � U(m,~n) = δ(m1� u†Jzu) = δ
�
m1�~n~J

�
where Jz is the matrix with diagonal matrix elements

(Jz )mm 0 = mδmm 0

The vector ~n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) determines a direction in 3D
space. The matrix was written for ϕ = 0 but, if this angle is nonzero, the
matrix element has to be multiplied by the phase factor e imϕ.
The quantizer can take several forms. In integral form, it reads

D̂(m,~n) =
2j + 1

π

Z 2π

0
sin2

γ

2
exp(�i~J~n)γ dγ(� � � )
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Rotated-time tomography

The tomogramM(m, u) is a nonnegative normalized probability
distribution depending on the direction ~n, i.e.,M(m, u) � 0 and

j

∑
m=�j

M(m, u) = 1

To compute the tomogram for a given direction with angles ϕ = 0 and θ,
one has to estimate

M(m, θ) =
j

∑
m 00,m 0=�j

u�mm 0(θ)fm f
�
m 00um 00m(θ)

where the matrix um 00m(θ) given above. The following form for the matrix
um 0m(θ) is more convenient for numerical calculations:

um 0m(θ) =
�
(j +m0)!(j �m0)!
(j +m)!(j �m)!

�1/2 �
cos

θ

2

�m 0+m �
sin

θ

2

�m 0�m
Pm

0�m,m 0+m
j�m 0 (cos θ)

where Pa,bn are Jacobi polynomials.
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Rotated-time tomography

In principle, one could use not only this unitary matrix but arbitrary
unitary matrices. They contain a larger number of parameters (equal to
N2 � 1) and can provide additional information on the signal structure.
How the time-rotated tomogram explores the time-frequency plane is, as
before, illustrated by spectrograms of the eigenstates (see �gures). For
m = 0, um 0m(θ) reduces to the set of normalized associated Legendre
functions Lm

0
j :

um 0,0(θ) =

s
2

2j + 1
Lm

0
j (cos(θ)).

The normalized associated Legendre functions are related to the
unmormalized ones Pm

0
j through:

Lm
0

j (cos(θ)) =

s
2j + 1
2

(j �m0)
(j +m0)

Pm
0

j (cos θ).
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Rotated-time tomography

In the tomogram, θ is the parameter labelling the vectors of the basis
associated to m = 0,m0. The index j is the variable. In order to illustrate
the e¤ect of this tomogram, we computed numerically some vectors in the
time-frequency plane. In the discrete setting, If we choose m0 = N, where
N is the number of points, the fLNj gj form an orthonormal basis of the
discrete time-frequency plane. Hence the projection on the eigenvectors of
the rotated tomogram with m = 0,m0 = N can be seen as the projection
on the bended lines in the time-frequency plane. This tomogram should be
adapted for the study of functions which possess certain symetry in the
time-frequency plane.
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Rotated-time tomography
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Rotated-time tomography
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Hermite-basis tomography

Here we consider a dequantizer

Û(n, α) = D̂(α) j nihn j D̂†(α), α = jαje iθα

and a quantizer

D̂(n, α) =
4

π(1� λ2)

�
λ+ 1
λ� 1

�n
D̂(α)

�
λ� 1
λ+ 1

�n
D̂(�α)

where �1 < λ < 1 is an arbitrary parameter and n is related to the order
of an Hermite polynomial. This is analogous to the use of a photon
number basis in quantum optics.
For any signal f (t), one has the probability distribution (tomogram)

Mf (n, α) = Tr j f ihf j Û(n, α)
and, from the tomogram, the signal is reconstructed by

j f ihf j=
∞

∑
n=0

Z
d2αM(n, α)D̂(n,λ)
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Hermite-basis tomography

One hasM(n, α) � 0 and
∞

∑
n=0

Mf (n, α) = 1 (4)

for any complex α. For an arbitrary operator Â, one has

Î Â =
∞

∑
n=0

Z
d2αD̂(n, α)Tr

�
Û(n, α)Â

�
, (5)

where Î is the identity operator.
The explicit form of the tomogram for a signal function f (t) is

Mf (n,λ) =
��hf j D̂(α) j ni��2 = ����Z f �(t)fn,α(t) dt����2 (6)

where
fn,α(t) = D̂(α)

h
π�1/4(2nn!)�1/2e�t

2/2Hn(t)
i

(7)

Hn(t) being an Hermite polynomial.
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Hermite-basis tomography

Thus, one has

fn,α(t) = π�1/4(2nn!)�1/2e�(α
2�α�2)/4e [(α�α�)t ]/

p
2e�t̃

2/2Hn(t̃)

and

t̃ = t � α+ α�p
2
.

For �xed jαj the tomogram is a function of the discrete set n = 0, 1, . . .
and the phase factor θα.
How the Hermite basis tomogram explores the time-frequency plane is, as
before, illustrated by spectrograms of the eigenstates. In the particular
case where α = 0, the functions fn,0 are the Hermite functions. Their
time-frequency representation has been calculated on the �gure. It shows
that the tomogram at α = 0 is suited for rotation invariant functions in
the time-frequency plane. One can see that: for real α this pattern is
shifted in time and for purely imaginary α the pattern is shifted in
frequency. The pattern can be shifted in both time and frequency by
choosing the appropriate complex value for α.
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Hermite-basis tomography
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A new application: Turbulent velocity �uctuations

Here we report brie�y on an analysis by the tomographic technique of a
velocity �uctuation signal of a turbulent �ow in a wind tunnel. It
illustrates the fact that the choice of the pair of non-commuting operators
in tomogram, should be adapted to the signal under study. As before we
use �nite-time tomograms in the interval (t0, t0 + T ) and a set of Xn�s
leading to an orthonormalized set of eigenstates.
The sets of orthonormalized eigenstates for the �nite-time time-scale
tomogram M2(µ, ν,X ) and for the �nite-time time-conformal tomogram
M4(µ, ν,X ) are

M2 (θ,X ) =

����Z t0+T

t0
f �(t)ψ(2)θ,X (t) dt

����2 = ���< f ,ψ(2) >���2
ψ
(2)
θ,X (t) =

1p
log jt0 + T j � log jt0j

1p
jtj
exp i

�
cos θ

sin θ
t � X

sin θ
log jtj

�
Xn = X0 +

2nπ

log jt0 + T j � log jt0j
sin θ n 2 Z
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A new application: Turbulent velocity �uctuations

and

M4(θ,X ) =

����Z t0+T

t0
f �(t)ψ(4)θ,X (t) dt

����2 = ���< f ,ψ(4) >���2
ψ
(4)
θ,X (t) =

r
t0 (t0 + T )

T
1
jtj exp i

�
cos θ

sin θ
log jtj+ X

t sin θ

�
Xn = X0 +

t0 (t0 + T )
T

2πn sin θ n 2 Z
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A new application: Turbulent velocity �uctuations
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A new application: Turbulent velocity �uctuations
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A new application: Turbulent velocity �uctuations

Analyzing the turbulent velocity �uctuations signal with these tomograms,
one notices that except for some features on the frequency axis
corresponding to some dominating frequencies, no interesting structures
are put into evidence when one use the time-frequency tomogram. The
situation is more interesting for the time-scale tomogram M2 (θ,X ). In the
�gure one shows a contour plot for M2 (θ,X ) corresponding to a section
of 1000 data points. For intermediate regions of θ one notices, a strong
concentration of energy in a few regions. This is put into evidence by a
cut at θ = 1.26. Projecting out the signal corresponding to these regions
with the corresponding ψ

(2)
θ,X (t)�s at this θ, one sees that although the

signal has many complex features most of the energy is concentrated in
fairly regular structures. The next �gure shows the structure η (t)
corresponding to the second peak.
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A new application: Turbulent velocity �uctuations
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