Non-commutative tomography: A tool for data analysis and signal processing

Rui Vilela Mendes
IPFN, EURATOM-IST Association
CMAF, FCT - Lisbon http://label2.ist.utl.pt/vilela/

October 2011

Outline

- Integral transforms: linear and bilinear
- Wavelet-type, quasi-distributions and tomograms: Examples and relations
- Tomograms and the conformal group operators
- Aplications:
(1) Detection of small signals
(2) Filtering and component separation
(3) Plasma reflectometry

Tomographic data analysis. General setting

- Integral transforms

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...
- Bilinear transforms: Wigner-Ville, Bertrand, Tomograms

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...
- Bilinear transforms: Wigner-Ville, Bertrand, Tomograms
- General setting

Consider signals $f(t)$ as vectors $|f\rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^{*}

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...
- Bilinear transforms: Wigner-Ville, Bertrand, Tomograms
- General setting

Consider signals $f(t)$ as vectors $|f\rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^{*}

- $\{U(\alpha): \alpha \in I\}$ a family of operators defined on \mathcal{N}^{*}. (In many cases $U(\alpha)$ generates a unitary group $\left.U(\alpha)=e^{i B(\alpha)}\right)$

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...
- Bilinear transforms: Wigner-Ville, Bertrand, Tomograms
- General setting

Consider signals $f(t)$ as vectors $|f\rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^{*}

- $\{U(\alpha): \alpha \in I\}$ a family of operators defined on \mathcal{N}^{*}. (In many cases $U(\alpha)$ generates a unitary group $\left.U(\alpha)=e^{i B(\alpha)}\right)$
- Three types of transforms

Let $h \in \mathcal{N}^{*}$ be a reference vector such that the linear span of $\left\{U(\alpha) h \in \mathcal{N}^{*}: \alpha \in I\right\}$ is dense in \mathcal{N}^{*}. In the set $\{U(\alpha) h\}$, a complete set of vectors can be chosen to serve as a basis

Tomographic data analysis. General setting

- Integral transforms
- Linear transforms: Fourier, Wavelets, Hilbert, ...
- Bilinear transforms: Wigner-Ville, Bertrand, Tomograms
- General setting

Consider signals $f(t)$ as vectors $|f\rangle \in$ dense nuclear subspace \mathcal{N} of a Hilbert space \mathcal{H} with dual space \mathcal{N}^{*}

- $\{U(\alpha): \alpha \in I\}$ a family of operators defined on \mathcal{N}^{*}. (In many cases $U(\alpha)$ generates a unitary group $\left.U(\alpha)=e^{i B(\alpha)}\right)$
- Three types of transforms

Let $h \in \mathcal{N}^{*}$ be a reference vector such that the linear span of $\left\{U(\alpha) h \in \mathcal{N}^{*}: \alpha \in I\right\}$ is dense in \mathcal{N}^{*}. In the set $\{U(\alpha) h\}$, a complete set of vectors can be chosen to serve as a basis

- 1 - Wavelet-type transform

$$
W_{f}^{(h)}(\alpha)=\langle U(\alpha) h \mid f\rangle
$$

Tomographic data analysis. General setting

- 2 - Quasi-distribution

$$
Q_{f}(\alpha)=\langle U(\alpha) f \mid f\rangle .
$$

Tomographic data analysis. General setting

- 2-Quasi-distribution

$$
Q_{f}(\alpha)=\langle U(\alpha) f \mid f\rangle
$$

- If $U(\alpha)$ is a unitary operator there is a self-adjoint operator $B(\alpha)$

$$
\begin{aligned}
& W_{f}^{(h)}(\alpha)=\langle h| e^{i B(\alpha)}|f\rangle \\
& Q_{f}^{(B)}(\alpha)=\langle f| e^{i B(\alpha)}|f\rangle
\end{aligned}
$$

Tomographic data analysis. General setting

- 2-Quasi-distribution

$$
Q_{f}(\alpha)=\langle U(\alpha) f \mid f\rangle .
$$

- If $U(\alpha)$ is a unitary operator there is a self-adjoint operator $B(\alpha)$

$$
\begin{aligned}
& W_{f}^{(h)}(\alpha)=\langle h| e^{i B(\alpha)}|f\rangle \\
& Q_{f}^{(B)}(\alpha)=\langle f| e^{i B(\alpha)}|f\rangle
\end{aligned}
$$

- 3 - Tomographic transform or tomogram

$$
M_{f}^{(B)}(X)=\langle f| \delta(B(\alpha)-X)|f\rangle
$$

Examples for wavelet-type and quasi-distributions

- Fourier transform: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha})=\alpha_{1} t+i \alpha_{2} \frac{d}{d t}$ and h is a (generalized) eigenvector of the time-translation operator

Examples for wavelet-type and quasi-distributions

- Fourier transform: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha})=\alpha_{1} t+i \alpha_{2} \frac{d}{d t}$ and h is a (generalized) eigenvector of the time-translation operator
- Ambiguity function: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$

Examples for wavelet-type and quasi-distributions

- Fourier transform: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha})=\alpha_{1} t+i \alpha_{2} \frac{d}{d t}$ and h is a (generalized) eigenvector of the time-translation operator
- Ambiguity function: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$
- Wigner-Ville transform: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$ plus the parity operator

$$
B^{(W V)}\left(\alpha_{1}, \alpha_{2}\right)=-i 2 \alpha_{1} \frac{d}{d t}-2 \alpha_{2} t+\frac{\pi\left(t^{2}-\frac{d^{2}}{d t^{2}}-1\right)}{2}
$$

Examples for wavelet-type and quasi-distributions

- Fourier transform: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha})=\alpha_{1} t+i \alpha_{2} \frac{d}{d t}$ and h is a (generalized) eigenvector of the time-translation operator
- Ambiguity function: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$
- Wigner-Ville transform: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$ plus the parity operator

$$
B^{(W V)}\left(\alpha_{1}, \alpha_{2}\right)=-i 2 \alpha_{1} \frac{d}{d t}-2 \alpha_{2} t+\frac{\pi\left(t^{2}-\frac{d^{2}}{d t^{2}}-1\right)}{2}
$$

- Wavelet transform: $W_{f}^{(h)}(\alpha)$ for $B_{W}(\vec{\alpha})=\alpha_{1} D+i \alpha_{2} \frac{d}{d t}, D$ being the dilation operator $D=-\frac{1}{2}\left(i t \frac{d}{d t}+i \frac{d}{d t} t\right)$

Examples for wavelet-type and quasi-distributions

- Fourier transform: is $W_{f}^{(h)}(\alpha)$ if $U(\alpha)$ is unitary generated by $B_{F}(\vec{\alpha})=\alpha_{1} t+i \alpha_{2} \frac{d}{d t}$ and h is a (generalized) eigenvector of the time-translation operator
- Ambiguity function: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$
- Wigner-Ville transform: $Q_{f}(\alpha)$ for the same $B_{F}(\vec{\alpha})$ plus the parity operator

$$
B^{(W V)}\left(\alpha_{1}, \alpha_{2}\right)=-i 2 \alpha_{1} \frac{d}{d t}-2 \alpha_{2} t+\frac{\pi\left(t^{2}-\frac{d^{2}}{d t^{2}}-1\right)}{2}
$$

- Wavelet transform: $W_{f}^{(h)}(\alpha)$ for $B_{W}(\vec{\alpha})=\alpha_{1} D+i \alpha_{2} \frac{d}{d t}, D$ being the dilation operator $D=-\frac{1}{2}\left(i t \frac{d}{d t}+i \frac{d}{d t} t\right)$
- Bertrand transform: $Q_{f}(\alpha)$ for B_{W}

The tomographic transform (tomogram)

$$
M_{f}^{(B)}(X)=\langle f| \delta(B(\alpha)-X)|f\rangle
$$

The tomographic transform (tomogram)

$$
M_{f}^{(B)}(X)=\langle f| \delta(B(\alpha)-X)|f\rangle
$$

- $M_{f}^{(B)}(\alpha)$ is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities

The tomographic transform (tomogram)

$$
M_{f}^{(B)}(X)=\langle f| \delta(B(\alpha)-X)|f\rangle
$$

- $M_{f}^{(B)}(\alpha)$ is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities
- For normalized $|f\rangle$,

$$
\langle f \mid f\rangle=1
$$

the tomogram is normalized

$$
\int M_{f}^{(B)}(X) d X=1
$$

It is a probability distribution for the random variable X corresponding to the observable defined by the operator $B(\alpha)$

The tomographic transform (tomogram)

$$
M_{f}^{(B)}(X)=\langle f| \delta(B(\alpha)-X)|f\rangle
$$

- $M_{f}^{(B)}(\alpha)$ is positive and may be interpreted as a probability distribution. Benefits from the properties of the bilinear transforms, without interpretation ambiguities
- For normalized $|f\rangle$,

$$
\langle f \mid f\rangle=1
$$

the tomogram is normalized

$$
\int M_{f}^{(B)}(X) d X=1
$$

It is a probability distribution for the random variable X corresponding to the observable defined by the operator $B(\alpha)$

- The tomogram is a homogeneous function

$$
M_{f}^{(B / p)}(X)=|p| M_{f}^{(B)}(p X)
$$

Relations between the three types of transforms

$$
M_{f}^{(B)}(X)=\frac{1}{2 \pi} \int Q_{f}^{(k B)}(\alpha) e^{-i k X} d k
$$

Relations between the three types of transforms

$$
\begin{aligned}
M_{f}^{(B)}(X) & =\frac{1}{2 \pi} \int Q_{f}^{(k B)}(\alpha) e^{-i k X} d k \\
Q_{f}^{(B)}(\alpha) & =\int M_{f}^{(B / p)}(X) e^{i p X} d X
\end{aligned}
$$

Relations between the three types of transforms

$$
\begin{gathered}
M_{f}^{(B)}(X)=\frac{1}{2 \pi} \int Q_{f}^{(k B)}(\alpha) e^{-i k X} d k \\
Q_{f}^{(B)}(\alpha)=\int M_{f}^{(B / p)}(X) e^{i p X} d X \\
Q_{f}^{(B)}(\alpha)=W_{f}^{(f)}(\alpha)
\end{gathered}
$$

Relations between the three types of transforms

$$
\begin{gathered}
M_{f}^{(B)}(X)=\frac{1}{2 \pi} \int Q_{f}^{(k B)}(\alpha) e^{-i k X} d k \\
Q_{f}^{(B)}(\alpha)=\int M_{f}^{(B / p)}(X) e^{i p X} d X \\
Q_{f}^{(B)}(\alpha)=W_{f}^{(f)}(\alpha), \\
W_{f}^{(h)}(\alpha)=\frac{1}{4} \int e^{i X}\left[\begin{array}{c}
M_{f_{1}}^{(B)}(X)-i M_{f_{2}}^{(B)}(X) \\
-M_{f_{3}}^{(B)}(X)+i M_{f_{4}}^{(B)}(X)
\end{array}\right] d X,
\end{gathered}
$$

with

$$
\begin{array}{ll}
\left.f_{1}\right\rangle=|h\rangle+|f\rangle ; \quad\left|f_{3}\right\rangle=|h\rangle-|f\rangle ; \\
\left.f_{2}\right\rangle=|h\rangle+i|f\rangle ; \quad\left|f_{4}\right\rangle=|h\rangle-i|f\rangle
\end{array}
$$

Husimi-Kano type quasi-distribution

- Other type of operator

$$
U(\alpha)=e^{i B(\alpha)} P_{h} e^{-i B(\alpha)}
$$

$P_{h}=$ projector on a reference vector $|h\rangle$

Husimi-Kano type quasi-distribution

- Other type of operator

$$
U(\alpha)=e^{i B(\alpha)} P_{h} e^{-i B(\alpha)}
$$

$P_{h}=$ projector on a reference vector $|h\rangle$

- Quasidistribution of the Husimi-Kano type

$$
H_{f}^{(b)}(\alpha)=\langle f| U(\alpha)|f\rangle
$$

The conformal group

- The generators of the conformal group

$$
\text { in } \mathbb{R}^{d} \quad \begin{array}{ll}
& \omega_{k}=i \frac{\partial}{\partial t_{k}} \\
& D=i\left(t \bullet \nabla+\frac{d}{2}\right) \\
& R_{j, k}=i\left(t_{j} \frac{\partial}{\partial t_{k}}-t_{k} \frac{\partial}{\partial t_{j}}\right) \\
& K_{j}=i\left(t_{j}^{2} \frac{\partial}{\partial t_{j}}+t_{j}\right)
\end{array}
$$

The conformal group

- The generators of the conformal group

$$
\text { in } \mathbb{R}^{d} \quad \begin{array}{ll}
& \omega_{k}=i \frac{\partial}{\partial t_{k}} \\
& D=i\left(t \bullet \nabla+\frac{d}{2}\right) \\
& R_{j, k}=i\left(t_{j} \frac{\partial}{\partial t_{k}}-t_{k} \frac{\partial}{\partial t_{j}}\right) \\
& K_{j}=i\left(t_{j}^{2} \frac{\partial}{\partial t_{j}}+t_{j}\right)
\end{array}
$$

- For $d=1$

$$
\text { in } \mathbb{R} \quad \begin{aligned}
\omega & =i \frac{d}{d t} \\
D & =i\left(t \frac{d}{d t}+\frac{1}{2}\right) \\
K & =i\left(t^{2} \frac{d}{d t}+t\right)
\end{aligned}
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
B_{1}=\mu t+i v \frac{d}{d t}
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
B_{1}=\mu t+i v \frac{d}{d t}
$$

- Time-scale

$$
B_{2}=\mu t+i v\left(t \frac{d}{d t}+\frac{1}{2}\right)
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
B_{1}=\mu t+i v \frac{d}{d t}
$$

- Time-scale

$$
B_{2}=\mu t+i v\left(t \frac{d}{d t}+\frac{1}{2}\right)
$$

- Frequency-scale

$$
B_{3}=i \mu \frac{d}{d t}+i v\left(t \frac{d}{d t}+\frac{1}{2}\right)
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
B_{1}=\mu t+i v \frac{d}{d t}
$$

- Time-scale

$$
B_{2}=\mu t+i v\left(t \frac{d}{d t}+\frac{1}{2}\right)
$$

- Frequency-scale

$$
B_{3}=i \mu \frac{d}{d t}+i v\left(t \frac{d}{d t}+\frac{1}{2}\right)
$$

- Time-conformal

$$
B_{4}=\mu t+i v\left(t^{2} \frac{d}{d t}+t\right)
$$

Tomograms associated to the conformal group

- General construction of the tomograms: Let

$$
\int d Y|Y\rangle\langle Y|=1
$$

be a decomposition of the unit, with generalized eigenvectors of the operator B. Then

$$
M(\alpha, X)=\int d Y\langle f| \delta(B(\alpha)-X)|Y\rangle\langle Y||f\rangle=|\langle X \mid f\rangle|^{2}
$$

Tomograms associated to the conformal group

- General construction of the tomograms: Let

$$
\int d Y|Y\rangle\langle Y|=1
$$

be a decomposition of the unit, with generalized eigenvectors of the operator B. Then

$$
M(\alpha, X)=\int d Y\langle f| \delta(B(\alpha)-X)|Y\rangle\langle Y||f\rangle=|\langle X \mid f\rangle|^{2}
$$

- Therefore the construction of the tomograms reduces to the calculation of the generalized eigenvectors of each B operator

Tomograms associated to the conformal group

- General construction of the tomograms: Let

$$
\int d Y|Y\rangle\langle Y|=1
$$

be a decomposition of the unit, with generalized eigenvectors of the operator B. Then

$$
M(\alpha, X)=\int d Y\langle f| \delta(B(\alpha)-X)|Y\rangle\langle Y||f\rangle=|\langle X \mid f\rangle|^{2}
$$

- Therefore the construction of the tomograms reduces to the calculation of the generalized eigenvectors of each B operator
- $B_{1} \psi_{1}(\mu, \nu, t, X)=X \psi_{1}(\mu, \nu, t, X)$

$$
\begin{gathered}
\psi_{1}(\mu, v, t, X)=\exp i\left(\frac{\mu t^{2}}{2 v}-\frac{t X}{v}\right) \\
\int d t \psi_{1}^{*}(\mu, v, t, X) \psi_{1}\left(\mu, v, t, X^{\prime}\right)=2 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

Tomograms associated to the conformal group

- $B_{2} \psi_{2}(\mu, v, t, X)=X \psi_{2}(\mu, v, t, X)$

$$
\begin{gathered}
\psi_{2}(\mu, v, t, X)=\frac{1}{\sqrt{|t|}} \exp i\left(\frac{\mu t}{v}-\frac{X}{v} \log |t|\right) \\
\int d t \psi_{2}^{*}(\mu, v, t, X) \psi_{2}\left(\mu, v, t, X^{\prime}\right)=4 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

Tomograms associated to the conformal group

- $B_{2} \psi_{2}(\mu, \nu, t, X)=X \psi_{2}(\mu, \nu, t, X)$

$$
\begin{gathered}
\psi_{2}(\mu, v, t, X)=\frac{1}{\sqrt{|t|}} \exp i\left(\frac{\mu t}{v}-\frac{X}{v} \log |t|\right) \\
\int d t \psi_{2}^{*}(\mu, v, t, X) \psi_{2}\left(\mu, v, t, X^{\prime}\right)=4 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

- $B_{3} \psi_{3}(\mu, \nu, \omega, X)=X \psi_{3}(\mu, \nu, \omega, X)$

$$
\begin{gathered}
\psi_{3}(\mu, v, t, X)=\exp (-i)\left(\frac{\mu}{v} \omega-\frac{X}{v} \log |\omega|\right) \\
\int d \omega \psi_{1}^{*}(\mu, v, \omega, X) \psi_{1}\left(\mu, v, \omega, X^{\prime}\right)=2 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

Tomograms associated to the conformal group

- $B_{2} \psi_{2}(\mu, v, t, X)=X \psi_{2}(\mu, v, t, X)$

$$
\begin{gathered}
\psi_{2}(\mu, v, t, X)=\frac{1}{\sqrt{|t|}} \exp i\left(\frac{\mu t}{v}-\frac{X}{v} \log |t|\right) \\
\int d t \psi_{2}^{*}(\mu, v, t, X) \psi_{2}\left(\mu, v, t, X^{\prime}\right)=4 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

- $B_{3} \psi_{3}(\mu, v, \omega, X)=X \psi_{3}(\mu, \nu, \omega, X)$

$$
\begin{gathered}
\psi_{3}(\mu, v, t, X)=\exp (-i)\left(\frac{\mu}{v} \omega-\frac{X}{v} \log |\omega|\right) \\
\int d \omega \psi_{1}^{*}(\mu, v, \omega, X) \psi_{1}\left(\mu, v, \omega, X^{\prime}\right)=2 \pi v \delta\left(X-X^{\prime}\right)
\end{gathered}
$$

- $B_{4} \psi_{4}(\mu, v, t, X)=X \psi_{4}(\mu, v, t, X)$

$$
\begin{gathered}
\psi_{4}(\mu, v, t, X)=\frac{1}{|t|} \exp i\left(\frac{X}{v t}+\frac{\mu}{v} \log |t|\right) \\
\int d t \psi_{4}^{*}(\mu, v, t, s) \psi_{4}\left(\mu, v, t, s^{\prime}\right)=2 \pi v \delta\left(s-s^{\prime}\right)_{\equiv}
\end{gathered}
$$

Tomograms associated to the conformal group

$$
\mu=0
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
M_{1}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int \exp \left[\frac{i \mu t^{2}}{2 v}-\frac{i t X}{v}\right] f(t) d t\right|^{2}
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
M_{1}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int \exp \left[\frac{i \mu t^{2}}{2 v}-\frac{i t X}{v}\right] f(t) d t\right|^{2}
$$

- Time-scale tomogram

$$
M_{2}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d t \frac{f(t)}{\sqrt{|t|}} e^{\left[i\left(\frac{\mu}{v} t-\frac{\chi}{v} \log |t|\right)\right]}\right|^{2}
$$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
M_{1}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int \exp \left[\frac{i \mu t^{2}}{2 v}-\frac{i t X}{v}\right] f(t) d t\right|^{2}
$$

- Time-scale tomogram

$$
M_{2}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d t \frac{f(t)}{\sqrt{|t|}} e^{\left[i\left(\frac{\mu}{v} t-\frac{X}{v} \log |t|\right)\right]}\right|^{2}
$$

- Frequency-scale tomogram

$$
M_{3}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d \omega \frac{f(\omega)}{\sqrt{|\omega|}} e^{\left[-i\left(\frac{\mu}{v} \omega-\frac{X}{v} \log |\omega|\right)\right]}\right|^{2}
$$

$f(\omega)=$ Fourier transform of $f(t)$

Tomograms associated to the conformal group

- Time-frequency tomogram

$$
M_{1}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int \exp \left[\frac{i \mu t^{2}}{2 v}-\frac{i t X}{v}\right] f(t) d t\right|^{2}
$$

- Time-scale tomogram

$$
M_{2}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d t \frac{f(t)}{\sqrt{|t|}} e^{\left[i\left(\frac{\mu}{v} t-\frac{X}{v} \log |t|\right)\right]}\right|^{2}
$$

- Frequency-scale tomogram

$$
M_{3}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d \omega \frac{f(\omega)}{\sqrt{|\omega|}} e^{\left[-i\left(\frac{\mu}{v} \omega-\frac{X}{v} \log |\omega|\right)\right]}\right|^{2}
$$

$f(\omega)=$ Fourier transform of $f(t)$

- Time-conformal tomogram

$$
M_{4}(\mu, v, X)=\frac{1}{2 \pi|v|}\left|\int d t \frac{f(t)}{|t|} e^{\left[i\left(\frac{X}{v t}+\frac{\mu}{v} \log |t|\right)\right]}\right|^{2}
$$

Basis functions of the tomograms in the time-frequency plane

Time-frequency

Basis functions of the tomograms in the time-frequency plane

Time-scale

Basis functions of the tomograms in the time-frequency plane

Time-scale

Basis functions of the tomograms in the time-frequency plane

Time-conformal

Applications

- 1-Detection of small signals in noise

Applications

- 1-Detection of small signals in noise
- Let in $M_{1}(\mu, v ; X)$

$$
\mu=\frac{\cos \theta}{T}, v=\frac{\sin \theta}{\Omega}
$$

(Radon transform)

Applications

- 1-Detection of small signals in noise
- Let in $M_{1}(\mu, v ; X)$

$$
\mu=\frac{\cos \theta}{T}, v=\frac{\sin \theta}{\Omega}
$$

(Radon transform)

- A signal generated as a superposition of a normally distributed random amplitude - random phase noise with a sinusoidal signal of same average amplitude, operating only during the time $0.45-0.55$. The signal to noise power ratio is $1 / 10$.

Applications

- 1-Detection of small signals in noise
- Let in $M_{1}(\mu, v ; X)$

$$
\mu=\frac{\cos \theta}{T}, v=\frac{\sin \theta}{\Omega}
$$

(Radon transform)

- A signal generated as a superposition of a normally distributed random amplitude - random phase noise with a sinusoidal signal of same average amplitude, operating only during the time $0.45-0.55$. The signal to noise power ratio is $1 / 10$.
- The. following figures show the signal, its Fourier transform and the tomogram $M_{f}^{(S)}(s, \mu, v)(T=1$ and $\Omega=1000)$

Detection of signals in noise

Fig.4C

Detection of signals in noise

Fig.4D

Detection of signals in noise

Detection of signals in noise

Fig.4B

Detection of signals in noise

- One clearly sees a sequence of small peaks connecting a time around 0.5 to a frequency around 200.

Detection of signals in noise

- One clearly sees a sequence of small peaks connecting a time around 0.5 to a frequency around 200.
- The signature that the signal leaves on the tomogram is a manifestation of the fact that, despite its low SNR, there is a certain number of directions in the (t, ω) plane along which detection happens to be more favorable. For different trials the coherent peaks appear at different locations, but the overall geometry of the ridge is the same.

Detection of signals in noise

- One clearly sees a sequence of small peaks connecting a time around 0.5 to a frequency around 200.
- The signature that the signal leaves on the tomogram is a manifestation of the fact that, despite its low SNR, there is a certain number of directions in the (t, ω) plane along which detection happens to be more favorable. For different trials the coherent peaks appear at different locations, but the overall geometry of the ridge is the same.
- A ridge of small peaks is reliable because the rigorous probability interpretation of $M(\theta, X)$ renders the method immune to spurious effects.

Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
Examples: Bat echolocation, whale sounds, radar, sonar, etc.

Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
Examples: Bat echolocation, whale sounds, radar, sonar, etc.
- The concept of signal component is not uniquely defined. The notion of component depends as much on the observer as on the observed object. When we speak about a component of a signal we are in fact referring to a particular feature of the signal that we want to emphasize.

Component decomposition

- Most natural and man-made signals are nonstationary and have a multicomponent structure.
Examples: Bat echolocation, whale sounds, radar, sonar, etc.
- The concept of signal component is not uniquely defined. The notion of component depends as much on the observer as on the observed object. When we speak about a component of a signal we are in fact referring to a particular feature of the signal that we want to emphasize.
- One possibility: Separation of components using its behavior in the time-frequency plane. Consider the finite-time tomogram

$$
M(\theta, X)=\left|\int f(t) \psi_{\theta, X}(t) d t\right|^{2}=|<f, \psi>|^{2}
$$

with

$$
\psi_{\theta, X}(t)=\frac{1}{\sqrt{T}} \exp \left(\frac{-i \cos \theta}{2 \sin \theta} t^{2}+\frac{i X}{\sin \theta} t\right)
$$

$$
\mu=\cos \theta, v=\sin \theta
$$

Component decomposition

- θ is a parameter that interpolates between the time and the frequency operators, running from 0 to $\pi / 2$ whereas X is allowed to be any real number.

Component decomposition

- θ is a parameter that interpolates between the time and the frequency operators, running from 0 to $\pi / 2$ whereas X is allowed to be any real number.
- For all different θ 's the $U(\theta)$ are unitarily equivalent operators, hence all the tomograms share the same information. The component separation technique is based on the search for an intermediate value of θ where a good compromise might be found between time localization and frequency information.

Component decomposition

- θ is a parameter that interpolates between the time and the frequency operators, running from 0 to $\pi / 2$ whereas X is allowed to be any real number.
- For all different θ 's the $U(\theta)$ are unitarily equivalent operators, hence all the tomograms share the same information. The component separation technique is based on the search for an intermediate value of θ where a good compromise might be found between time localization and frequency information.
- First select a subset X_{n} in such a way that the corresponding family $\left\{\psi_{\theta, X_{n}}(t)\right\}$ is orthogonal and normalized,

$$
<\psi_{\theta, X_{n}} \psi_{\theta, X_{m}}>=\delta_{m, n}
$$

This is possible by taking the sequence

$$
X_{n}=X_{0}+\frac{2 n \pi}{T} \sin \theta
$$

where X_{0} is freely chosen (in general we take $X_{0}=0$)

Component decomposition

- We then consider the projections of the signal $f(t)$

$$
c_{X_{n}}^{\theta}(f)=<f, \psi_{\theta, X_{n}}>
$$

which are used for the signal processing.

Component decomposition

- We then consider the projections of the signal $f(t)$

$$
c_{X_{n}}^{\theta}(f)=<f, \psi_{\theta, X_{n}}>
$$

which are used for the signal processing.

- Denoising consists in eliminating the $c_{X_{n}}^{\theta}(f)$ such that

$$
\left|c_{X_{n}}^{\theta}(f)\right|^{2} \leq \epsilon
$$

for some threshold ϵ

Component decomposition

- We then consider the projections of the signal $f(t)$

$$
c_{X_{n}}^{\theta}(f)=<f, \psi_{\theta, X_{n}}>
$$

which are used for the signal processing.

- Denoising consists in eliminating the $c_{X_{n}}^{\theta}(f)$ such that

$$
\left|c_{X_{n}}^{\theta}(f)\right|^{2} \leq \epsilon
$$

for some threshold ϵ

- Multi-component analysis is done by selecting subsets \mathcal{F}_{k} of the X_{n} and reconstructing partial signals (k-components) by restricting the sum to

$$
f_{k}(t)=\sum_{n \in \mathcal{F}_{k}} c_{X_{n}}^{\theta}(f) \psi_{\theta, X_{n}}(t)
$$

for each k.

Component decomposition. Examples

$$
\begin{aligned}
& y(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)+b(t) \\
& y_{1}(t)=\exp (i 25 t), t \in[0,20] \\
& y_{2}(t)=\exp (i 75 t), t \in[0,5] \\
& y_{3}(t)=\exp (i 75 t), t \in[10,20]
\end{aligned}
$$

Component decomposition. Examples

$$
\begin{aligned}
& y(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)+b(t) \\
& y_{1}(t)=\exp (i 25 t), t \in[0,20] \\
& y_{2}(t)=\exp (i 75 t), t \in[0,5] \\
& y_{3}(t)=\exp (i 75 t), t \in[10,20]
\end{aligned}
$$

- Real part of the time signal

Component decomposition. Examples

- Separation at $\theta=\frac{\pi}{5}$

Component decomposition. Examples

- Separation at $\theta=\frac{\pi}{5}$

Component decomposition. Examples

- Reconstrution of the $y_{2}(t)$

Component decomposition. Examples

- Reconstrution of the $y_{2}(t)$

- and $y_{3}(t)$ components

Component decomposition. Examples

- Sum $y(t)=y_{0}(t)+y_{R}(t)+b(t)$ of an "incident" $y_{0}(t)$ and a "deformed reflected" chirp $y_{R}(t)$ delayed by $3 s$ with white noise added.

$$
y_{0}(t)=e^{i \Phi_{0}(t)} \quad y_{R}(t)=e^{i \Phi_{R}(t)}
$$

$$
\begin{aligned}
& \Phi_{0}(t)=a_{0} t^{2}+b_{0} t \text { and } \\
& \Phi_{R}(t)=a_{R}\left(t-t_{R}\right)^{2}+b_{R}\left(t-t_{R}\right)+10\left(t-t_{R}\right)^{\frac{3}{2}}
\end{aligned}
$$

Component decomposition. Examples

- Sum $y(t)=y_{0}(t)+y_{R}(t)+b(t)$ of an "incident" $y_{0}(t)$ and a "deformed reflected" chirp $y_{R}(t)$ delayed by $3 s$ with white noise added.

$$
y_{0}(t)=e^{i \Phi_{0}(t)} \quad y_{R}(t)=e^{i \Phi_{R}(t)}
$$

$$
\begin{aligned}
& \Phi_{0}(t)=a_{0} t^{2}+b_{0} t \text { and } \\
& \Phi_{R}(t)=a_{R}\left(t-t_{R}\right)^{2}+b_{R}\left(t-t_{R}\right)+10\left(t-t_{R}\right)^{\frac{3}{2}}
\end{aligned}
$$

Component decomposition. Examples

- Comparison of the phase derivatives $\frac{d}{d t} \Phi_{0}(t)$ and $\frac{d}{d t} \Phi_{R}(t)$. Except for the three first seconds, the spectrum of the signals $y_{0}(t)$ and $y_{R}(t)$ is almost the same

Component decomposition. Examples

- Comparison of the phase derivatives $\frac{d}{d t} \Phi_{0}(t)$ and $\frac{d}{d t} \Phi_{R}(t)$. Except for the three first seconds, the spectrum of the signals $y_{0}(t)$ and $y_{R}(t)$ is almost the same

Component decomposition. Examples

- Frequency representation

Component decomposition. Examples

- Tomogram of the chirps signal

Component decomposition. Examples

Separable spectrum at $\theta=\frac{\pi}{5}$

Component decomposition. Examples

The phase derivative

Component decomposition. Examples

- Reflectometry signal

Component decomposition. Examples

Component decomposition. Examples

Component decomposition. Examples

- Tomogram of the reflectometry signal

Component decomposition. Examples

- "Spectrum" at $\theta=\pi-\frac{\pi}{5}$

Component decomposition. Examples

Component decomposition. Examples

Component decomposition. Examples

References

- "Noncommutative time-frequency tomography" (V. I. Man'ko and RVM), Phys. Lett. A 263 (1999) 53-59
- "Tomograms and other transforms: a unified view" (M. A. Man'ko, V.
I. Man'ko and RVM), J. Phys. A: Math. Gen. 34 (2001) 8321-8332
- "A tomographic analysis of reflectometry data I: Component factorization"
(F. Briolle, R. Lima, V. I. Man'ko and RVM), Meas. Sci. Technol. 20 (2009) 105501.
- "A tomographic analysis of reflectometry data II: The phase derivative, (F. Briolle, R. Lima and RVM), Meas. Sci. Technol. 20 (2009) 105502.
- "Analysis and separation of time-frequency components in signals with chaotic behavior" (B. Ricaud, F. Briolle and F. Clairet), arXiv: 1003.0734
- "Non-commutative tomography: A tool for data analysis and signal processing" (F. Briolle, V. I. Man’ko, B. Ricaud and RVM), arXiv: 1107.0929

