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Outline

Integral transforms: linear and bilinear

Wavelet-type, quasi-distributions and tomograms: Examples and
relations

Tomograms and the conformal group operators

Aplications:

1 Detection of small signals
2 Filtering and component separation
3 Plasma re�ectometry
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Tomographic data analysis. General setting

Integral transforms

Linear transforms: Fourier, Wavelets, Hilbert, ...
Bilinear transforms: Wigner-Ville, Bertrand, Tomograms
General setting
Consider signals f (t) as vectors j f i 2 dense nuclear subspace N of a
Hilbert space H with dual space N �

fU(α) : α 2 Ig a family of operators de�ned on N � . (In many cases
U (α) generates a unitary group U (α) = e iB (α))
Three types of transforms
Let h 2 N � be a reference vector such that the linear span of
fU(α)h 2 N � : α 2 Ig is dense in N � . In the set fU(α)hg, a
complete set of vectors can be chosen to serve as a basis
1 - Wavelet-type transform

W (h)
f (α) = hU (α) h j f i,
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Tomographic data analysis. General setting

2 - Quasi-distribution

Qf (α) = hU (α) f j f i.

If U (α) is a unitary operator there is a self-adjoint operator B (α)

W (h)
f (α) = hh j e iB (α) j f i

Q(B )f (α) = hf j e iB (α) j f i
3 - Tomographic transform or tomogram

M (B )
f (X ) = hf j δ (B (α)� X ) j f i
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Examples for wavelet-type and quasi-distributions

Fourier transform: is W (h)
f (α) if U (α) is unitary generated by

BF
��!α � = α1t + iα2 ddt and h is a (generalized) eigenvector of the

time-translation operator

Ambiguity function: Qf (α) for the same BF
��!α �

Wigner�Ville transform: Qf (α) for the same BF
��!α � plus the

parity operator

B (WV )(α1, α2) = �i2α1
d
dt
� 2α2t +

π
�
t2 � d 2

dt2 � 1
�

2
.

Wavelet transform: W (h)
f (α) for BW

��!α � = α1D + iα2 ddt , D being
the dilation operator D = � 1

2

�
it ddt + i

d
dt t
�

Bertrand transform: Qf (α) for BW
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The tomographic transform (tomogram)

M (B )
f (X ) = hf j δ (B (α)� X ) j f i

M (B )
f (α) is positive and may be interpreted as a probability

distribution. Bene�ts from the properties of the bilinear transforms,
without interpretation ambiguities
For normalized j f i,

hf j f i = 1
the tomogram is normalizedZ

M (B )
f (X ) dX = 1

It is a probability distribution for the random variable X
corresponding to the observable de�ned by the operator B (α)
The tomogram is a homogeneous function

M (B/p)
f (X ) = jpjM (B )

f (pX )
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Relations between the three types of transforms

M (B )
f (X ) =

1
2π

Z
Q(kB )f (α) e�ikX dk

Q(B )f (α) =
Z
M (B/p)
f (X ) e ipX dX .

Q(B )f (α) = W (f )
f (α),

W (h)
f (α) =

1
4

Z
e iX

"
M (B )
f1
(X )� iM (B )

f2
(X )

�M (B )
f3
(X ) + iM (B )

f4
(X )

#
dX ,

with

j f1i =j hi+ j f i; j f3i =j hi� j f i;
j f2i =j hi+ i j f i; j f4i =j hi � i j f i.
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Husimi�Kano type quasi-distribution

Other type of operator

U(α) = e iB (α)Phe
�iB (α),

Ph = projector on a reference vector j hi

Quasidistribution of the Husimi�Kano type

H (b)f (α) = hf j U(α) j f i.
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The conformal group

The generators of the conformal group

in Rd ωk = i ∂
∂tk

D = i
�
t � r+ d

2

�
Rj ,k = i

�
tj ∂

∂tk
� tk ∂

∂tj

�
Kj = i

�
t2j

∂
∂tj
+ tj

�

For d = 1
in R ω = i ddt

D = i
�
t ddt +

1
2

�
K = i

�
t2 ddt + t

�
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Tomograms associated to the conformal group

Time-frequency tomogram

B1 = µt + iν
d
dt

Time-scale

B2 = µt + iν
�
t
d
dt
+
1
2

�
Frequency-scale

B3 = iµ
d
dt
+ iν

�
t
d
dt
+
1
2

�
Time-conformal

B4 = µt + iν
�
t2
d
dt
+ t
�
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Tomograms associated to the conformal group

General construction of the tomograms: LetZ
dY jY i hY j = 1

be a decomposition of the unit, with generalized eigenvectors of the
operator B. Then

M(α,X ) =
Z
dY hf j δ (B (α)� X ) jY i hY j j f i = jhX j f ij2

Therefore the construction of the tomograms reduces to the
calculation of the generalized eigenvectors of each B operator
B1ψ1 (µ, ν, t,X ) = Xψ1 (µ, ν, t,X )

ψ1 (µ, ν, t,X ) = exp i
�

µt2

2ν
� tX

ν

�
Z
dtψ�1 (µ, ν, t,X )ψ1

�
µ, ν, t,X 0

�
= 2πνδ

�
X � X 0

�
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Tomograms associated to the conformal group

B2ψ2 (µ, ν, t,X ) = Xψ2 (µ, ν, t,X )

ψ2 (µ, ν, t,X ) =
1p
jtj
exp i

�
µt
ν
� X

ν
log jtj

�
Z
dtψ�2 (µ, ν, t,X )ψ2

�
µ, ν, t,X 0

�
= 4πνδ

�
X � X 0

�

B3ψ3 (µ, ν,ω,X ) = Xψ3 (µ, ν,ω,X )

ψ3 (µ, ν, t,X ) = exp (�i)
�

µ

ν
ω� X

ν
log jωj

�
Z
dωψ�1 (µ, ν,ω,X )ψ1

�
µ, ν,ω,X 0

�
= 2πνδ

�
X � X 0

�
B4ψ4 (µ, ν, t,X ) = Xψ4 (µ, ν, t,X )

ψ4 (µ, ν, t,X ) =
1
jtj exp i

�
X
νt
+

µ

ν
log jtj

�
Z
dtψ�4 (µ, ν, t, s)ψ4

�
µ, ν, t, s 0

�
= 2πνδ

�
s � s 0

�
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Tomograms associated to the conformal group
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Tomograms associated to the conformal group

Time-frequency tomogram

M1 (µ, ν,X ) =
1

2πjνj

����Z exp � iµt22 ν
� itX

ν

�
f (t) dt

����2

Time-scale tomogram

M2(µ, ν,X ) =
1

2πjνj

�����
Z
dt
f (t)p
jtj
e[i(

µ
ν t�

X
ν log jt j)]

�����
2

Frequency-scale tomogram

M3(µ, ν,X ) =
1

2πjνj

�����
Z
dω

f (ω)p
jωj

e[�i(
µ
ν ω� X

ν log jωj)]

�����
2

f (ω) = Fourier transform of f (t)
Time-conformal tomogram

M4(µ, ν,X ) =
1

2πjνj

����Z dt f (t)jtj e[i( Xνt+ µ
ν log jt j)]
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Basis functions of the tomograms in the time-frequency
plane
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Basis functions of the tomograms in the time-frequency
plane
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Applications

1 - Detection of small signals in noise

Let in M1 (µ, ν;X )

µ =
cos θ

T
, ν =

sin θ

Ω
(Radon transform)

A signal generated as a superposition of a normally distributed
random amplitude - random phase noise with a sinusoidal signal of
same average amplitude, operating only during the time 0.45� 0.55.
The signal to noise power ratio is 1/10.
The. following �gures show the signal, its Fourier transform and the
tomogram M (S )

f (s, µ, ν) (T = 1 and Ω = 1000)
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Detection of signals in noise
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Detection of signals in noise
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Detection of signals in noise
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Detection of signals in noise
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Detection of signals in noise

One clearly sees a sequence of small peaks connecting a time around
0.5 to a frequency around 200.

The signature that the signal leaves on the tomogram is a
manifestation of the fact that, despite its low SNR, there is a certain
number of directions in the (t,ω) plane along which detection
happens to be more favorable. For di¤erent trials the coherent peaks
appear at di¤erent locations, but the overall geometry of the ridge is
the same.

A ridge of small peaks is reliable because the rigorous probability
interpretation of M(θ,X ) renders the method immune to spurious
e¤ects.
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Component decomposition

Most natural and man-made signals are nonstationary and have a
multicomponent structure.
Examples: Bat echolocation, whale sounds, radar, sonar, etc.

The concept of signal component is not uniquely de�ned. The notion
of component depends as much on the observer as on the observed
object. When we speak about a component of a signal we are in fact
referring to a particular feature of the signal that we want to
emphasize.
One possibility: Separation of components using its behavior in the
time-frequency plane. Consider the �nite-time tomogram

M(θ,X ) =

����Z f (t)ψθ,X (t) dt

����2 = j< f ,ψ >j2
with

ψθ,X (t) =
1p
T
exp

��i cos θ

2 sin θ
t2 +

iX
sin θ

t
�

µ = cos θ, ν = sin θ.
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Component decomposition

θ is a parameter that interpolates between the time and the frequency
operators, running from 0 to π/2 whereas X is allowed to be any real
number.

For all di¤erent θ�s the U(θ) are unitarily equivalent operators, hence
all the tomograms share the same information. The component
separation technique is based on the search for an intermediate value
of θ where a good compromise might be found between time
localization and frequency information.
First select a subset Xn in such a way that the corresponding familyn

ψθ,Xn (t)
o
is orthogonal and normalized,

< ψθ,Xn
ψθ,Xm

>= δm,n

This is possible by taking the sequence

Xn = X0 +
2nπ

T
sin θ

where X0 is freely chosen (in general we take X0 = 0)

RVM (IPFN) October 2011 26 / 45



Component decomposition

θ is a parameter that interpolates between the time and the frequency
operators, running from 0 to π/2 whereas X is allowed to be any real
number.
For all di¤erent θ�s the U(θ) are unitarily equivalent operators, hence
all the tomograms share the same information. The component
separation technique is based on the search for an intermediate value
of θ where a good compromise might be found between time
localization and frequency information.

First select a subset Xn in such a way that the corresponding familyn
ψθ,Xn (t)

o
is orthogonal and normalized,

< ψθ,Xn
ψθ,Xm

>= δm,n

This is possible by taking the sequence

Xn = X0 +
2nπ

T
sin θ

where X0 is freely chosen (in general we take X0 = 0)

RVM (IPFN) October 2011 26 / 45



Component decomposition

θ is a parameter that interpolates between the time and the frequency
operators, running from 0 to π/2 whereas X is allowed to be any real
number.
For all di¤erent θ�s the U(θ) are unitarily equivalent operators, hence
all the tomograms share the same information. The component
separation technique is based on the search for an intermediate value
of θ where a good compromise might be found between time
localization and frequency information.
First select a subset Xn in such a way that the corresponding familyn

ψθ,Xn (t)
o
is orthogonal and normalized,

< ψθ,Xn
ψθ,Xm

>= δm,n

This is possible by taking the sequence

Xn = X0 +
2nπ

T
sin θ

where X0 is freely chosen (in general we take X0 = 0)
RVM (IPFN) October 2011 26 / 45



Component decomposition

We then consider the projections of the signal f (t)

cθ
Xn (f ) =< f ,ψθ,Xn

>

which are used for the signal processing.

Denoising consists in eliminating the cθ
Xn (f ) such that���cθ

Xn (f )
���2 � ε

for some threshold ε

Multi-component analysis is done by selecting subsets Fk of the Xn
and reconstructing partial signals (k-components) by restricting the
sum to

fk (t) = ∑
n2Fk

cθ
Xn (f )ψθ,Xn

(t)

for each k.
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Component decomposition. Examples

y(t) = y1(t) + y2(t) + y3(t) + b(t)

y1 (t) = exp (i25t) , t 2 [0, 20]
y2 (t) = exp (i75t) , t 2 [0, 5]
y3 (t) = exp (i75t) , t 2 [10, 20]

Real part of the time signal
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Component decomposition. Examples

Separation at θ = π
5
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Component decomposition. Examples

Reconstrution of the y2 (t)
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Component decomposition. Examples

Sum y(t) = y0(t) + yR (t) + b(t) of an �incident� y0(t) and a
�deformed re�ected�chirp yR (t) delayed by 3s with white noise
added.

y0(t) = e iΦ0(t) yR (t) = e
iΦR (t)

Φ0(t) = a0t2 + b0t and
ΦR (t) = aR (t � tR )2 + bR (t � tR ) + 10(t � tR )

3
2 .
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Component decomposition. Examples

Comparison of the phase derivatives d
dtΦ0(t) and d

dtΦR (t). Except
for the three �rst seconds, the spectrum of the signals y0(t) and
yR (t) is almost the same
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Component decomposition. Examples

Frequency representation
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Component decomposition. Examples

Tomogram of the chirps signal
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Component decomposition. Examples

Separable spectrum at θ = π
5
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Component decomposition. Examples

The phase derivative
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Component decomposition. Examples

Re�ectometry signal
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Component decomposition. Examples
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Component decomposition. Examples

Tomogram of the re�ectometry signal
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Component decomposition. Examples

"Spectrum" at θ = π � π
5
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