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A parallel computation problem

Domain decomposition

Communication time is the main problem afecting computation
e¢ ciency
Probabilistic domain decomposition (PDD) (J. Acébron, R. Spigler)
Needs a gridless method to �nd the solution at each point without
information about the solution at nearby points.
Stochastic solution: A stochastic process starting from a point x
that generates on the boundary a measure which integrated with the
boundary condition constructs the solution at x .
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Stochastic solutions

Well-known for linear problems. Example: the heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

the process is Brownian motion, dXt = dBt , and the solution

u(t, x) = Ex f (Xt )

The domain is R� [0, t) and the expectation value is the inner
product hµt , f i of the initial condition f with the measure µt
generated by the Brownian motion at the t�boundary.
For nonlinear problems: branching particle processes
Two methods: MacKean and superprocesses
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Superprocesses

Superprocesses are scaling limits of in�nitely fast branching stochastic
processes

generating a measure-valued process on the boundary

They are either models for evolving populations or tools to represent
the solutions of nonlinear partial di¤erential equations (PDE�s)
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Superprocesses

The �gure illustrates the superprocesses that represents the solutio of

∂u
∂t
=
1
2

∂2u
∂x2

� uα

for α = 2. Likewise superprocesses with di¤erent branching schemes
may be constructed for 1 < α � 2.
However, measure-valued superprocesses cannot handle α > 2, nor
interactions involving derivatives.

Suggestion: Enlarge the con�guration space of superprocesses. For
example go from a propagating δ branching to δ0s to δ branching to
arbitrary derivatives δ(n) or linear combinations ∑ cnδ(n). However, as
branchings accumulate we might have ∑∞

n=0 cnδ(n) which is not a
distribution.
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Distributions and ultradistributions

The theory of distributions is not just D 0 and S 0. There are many
other interesting spaces

Test function spaces, dense embeddings and Fourier maps
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Test function spaces

D = [K fDK : ϕ 2 C∞, supp (ϕ) � Kg ;
kϕk(p,K ) = max0�r�p

n
sup

���ϕ(r )���o
K = \∞

p=0Kp ;Kp = completion of C∞ for the norm

kϕk = max0�q�p
n
sup

���epjx jϕ(q)���o
S = \Sp,r =

n
ϕ 2 C∞ : kϕkp,r = sup

���xpϕ(r )
���o

E = ϕ 2 C∞ with ω�convergence on compacts
Z = ϕ : F fϕg 2 D, ϕ (z) entire :

��zk ϕ (z)
�� � CkeajIm(z )j

U = \∞
p=0Up ;Up = fϕ : F fϕg 2 Kpg ;

kϕkp = supz2Λp
f(1+ jz jp) jϕ (z)jg

H = Entire fns. with top. of uniform convergence on compacts of C

Zexp = \∞
j=1Zexp,j ;

Zexp,j =n
ϕ : kϕkexp,j = maxk�j

n
e j jRe(z )j

���ϕ(k ) (z)���oo
RVM (CMAF) 7 / 29



Distribution spaces
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Distribution spaces

D0 = Schwartz distributions; locally µ (x) = Dk (f (x))

K0 = Distributions of exponential type, µ (x) = Dk
�
eajx jf

�
S 0 = Tempered distributions
E 0 = Subspace of D0 of distributions of compact support

Z 0 = D0 F! Z 0;Z 0 F
�1
! D0

U 0 = Tempered ultradistributions
U 00 = Dual of H, ultradistributions of compact support
Z 0
exp = Top. dual of Zexp, contains U 0 and K0 as proper subspaces
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Analytic representation. Cauchy-Stieltjes transform

f 0 (z) = S (f ) = 1
2πi

R ∞
�∞

f (t)
t�z dt if the integral converges

For a �nite order distribution µ = Dk f ,
�
µ0
�
2 H (CnR) /H (C)

µ0φ = D
k
z

�
φS
�
f
φ

��
hµjϕi = lim

ε#0

Z ∞

�∞

�
µ0φ (x + iε)� µ0φ (x � iε)

�
ϕ (x) dx

Tempered ultradistributions: µ 2 U 0
, µ (x) = D r

�
ebjx jf (x)

�
For 8µ 2 U 0 9µ0 (z) de�ned and analytic on CnΛb 0 for b0 > b of
polynomial growth on CnΛb 0

hµjϕi =
I

Γb0

µ0 (z) ϕ (z) dz

For µ 2 U 0
0 there is a unique µ0 (z) vanishing at ∞
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Superprocesses

U � S , functions in S that may be extended into the complex plane
as entire functions of rapid decrease on strips.
U 0, the dual of U , (Silva�s space of tempered ultradistributions),
which can also be characterized as the space of all Fourier transforms
of distributions of exponential type
Restrict further to the space U 00 of tempered ultradistributions of
compact support.

Theorem (S. Silva)

If µ 2 U 0
0, µ may be expanded in a multipole series

�
µ0
�
=

"
∞

∑
i=1
cn

1
(z � a)n

#
= �

∞

∑
i=1
(�1)n 2πi

n!
cnδ(n) (z � a)

Therefore at each branching point it is enough to know the action on
δ(n) (z)
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Superprocesses

(Xt ,P0 ,ν) a branching stochastic process with values in U 00 and
transition probability P0,ν starting from time 0 and ν 2 U 00.
The process satis�es the branching property if given ν = ν1 + ν2

P0,ν = P0,ν1 � P0,ν2
that is, after the branching

�
X 1t ,P0,ν1

�
and

�
X 2t ,P0 ,ν2

�
are

independent and X 1t + X
2
t has the same law as (Xt ,P0,ν).

For the transition operator Vt operating on functions on H the
branching property is

hVt f , ν1 + ν2i = hVt f , ν1i+ hVt f , ν2i
with e�hVt f ,νi $ P0,νe�hf ,Xt i

hVt f , νi = � logP0,νe�hf ,Xt i f 2 H, ν 2 U 00
In the construction of superprocesses on measures, an initial δx
branches into other δ0s with, at most, scaling factors. The restriction
to U 00 generalizes this interpretation with branchings to ∑ cnδ(n).
RVM (CMAF) 12 / 29



Superprocesses

In M = [0,∞)� E consider a set Q � M and the associated exit
process ξ = (ξt ,Π0,x ) with parameter k de�ning the lifetime. The
process stars from x 2 E carrying along an ultradistribution in U 00.
At each branching point of the ξt�process there is a transition ruled
by the P probability in U 00 leading to one or more elements in U 00.
These U 00 elements are then carried along by the new paths of the
ξt�process. The whole process stops at the boundary ∂Q, de�ning a
exit process (XQ ,P0,ν) on U 00. If the initial ν is δx

u (x) = hVQ f , δx i = � logP0,x e�hf ,XQ i

hf ,XQ i is computed on the (space-time) boundary with the exit
ultradistribution generated by the process.
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Superprocesses

The connection to nonlinear pde�s is established by de�ning the
whole process to be a (ξ,ψ)-superprocess if u (x) satis�es the
equation

u + GQψ (u) = KQ f (1)

GQ f (r , x) = Π0,x

Z τ

0
f (s, ξs ) ds ; KQ f (x) = Π0,x1τ<∞f (ξτ)

ψ (u) means ψ (0, x ; u (0, x)) and τ is the �rst exit time from Q.

RVM (CMAF) 14 / 29



Superprocesses

Construction of the superprocess: Let ϕ (s, x ; z) be the branching
function at time s and point x . Then, with P0,x e�hf ,XQ i $ e�w (0,x )

e�w (0,x ) = Π0,x

�
e�kτe�f (τ,ξτ) +

Z τ

0
dske�ks ϕ

�
s, ξs ; e

�w (τ�s ,ξs )
��
(2)

τ is the �rst exit time from Q and f (τ, ξτ) = hf ,XQ i computed with
the exit boundary ultradistribution. For measure-valued
superprocesses ϕ (s, y ; z) = c ∑∞

0 pn(s, y)z
n, now it may be a more

general function.

Lemma

Eq. (2) = Π0,x

�
e�f (τ,ξτ) + k

Z τ

0
ds
h

ϕ
�
s, ξs ; e

�w (τ�s ,ξs )
�
� e�w (τ�s ,ξs )

i�
(3)

Uses
R τ
0 ke

�ksds = 1� e�kτ and Π0,x1s<τΠs ,ξs = Π0,x1s<τ
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Superprocesses

Eq.(1) is now obtained by a limiting process. Let in (3) replace
w (0, x) by βwβ (0, x) and f by βf . β is interpreted as the mass of
the particles and when XQ ! βXQ then Pµ ! P µ

β
.

e�βw (0,x ) =

Π0,x

h
e�βf (τ,ξτ) + kβ

R τ
0 ds

h
ϕβ

�
s, ξs ; e

�βw (τ�s ,ξs )
�
� e�βw (τ�s ,ξs )

ii
Scaling limit (�rst type)

u(1)β =
�
1� e�βwβ

�
/β ; f (1)β =

�
1� e�βf

�
/β

ψ
(1)
β

�
0, x ; u(1)β

�
=
kβ

β

�
ϕ
�
0, x ; 1� βu(1)β

�
� 1+ βu(1)β

�
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Superprocesses

u(1)β (0, x) +Π0,x

Z τ

0
dsψ(1)β

�
s, ξs ; u

(1)
β

�
= Π0,x f

(1)
β (τ, ξτ)

that is
u(1)β + GQψ

(1)
β

�
u(1)β

�
= KQ f

(1)
β

When β ! 0, f (1)β ! f and if ψβ goes to a well de�ned limit ψ then uβ

tends to a limit u solution of (1) associated to a superprocess. Also one
sees from that in the β ! 0 limit

u(1)β ! wβ = � logP0,x e�hf ,XQ i

The superprocess corresponds to a cloud of particles for which both the
mass and the lifetime tend to zero
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Superprocesses on measures

Restrict to measure-valued superprocesses, that is, in terms of paths, to
δ0s propagating along the paths of the (ξt ,Π0,x ) process and branching to
new δ measures at each branching point.

Theorem (Dynkin)
For 1 < α � 2,there is a superprocess providing a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

� uα

Proof: Comparing with (1) one should have

ψ (0, x ; u) = uα

Then, with z = 1� βu(1)β one has

ϕ (0, x ; z) = ∑n pnz
n = z + β

kβ
u(1)αβ = z + β

kβ

(1�z )α
βα

= z + 1
kββα�1

�
1� αz + α(α�1)

2 z2 � α(α�1)(α�2)
3! z3 + � � �

�
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Superprocesses on measures

Choosing kβ =
α

βα�1 the terms in z cancel and for 1 < α � 2 the
coe¢ cients of all z powers are positive and may be interpreted as
branching probabilities pn into new δ0s

p0 =
1
α
; p1 = 0; � � � pn =

(�1)n

α

�
α
n

�
; ∑

n
pn = 1

With kβ =
α

βα�1 and β ! 0 the superprocess provides a solution to

∂u
∂t
=
1
2

∂2u
∂x2

� uα

α = 2 is an upper bound for this representation, because for α > 2 some
of the p0ns would be negative. For the particular case

∂u
∂t
=
1
2

∂2u
∂x2

� u2

p1 = 0; p0 = p2 =
1
2
; kβ =

2
β
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Superprocesses and a nonlinear heat equation

α = 2
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Superprocesses on measures: other limits

Superprocesses are usually associated with nonlinear pde�s in the scaling
limit β ! 0. However other limits may also be useful.

Theorem
With pn = δn,2, β = 1 and kβ = 1 the superprocess constructs a solution
of the KPP equation

∂u
∂t
=
1
2

∂2u
∂x2

� u2 + u

Proof:

ψ
(1)
β

�
0, x ; u(1)β

�
=

kβ

β

�
∑ pn

�
1� βu(1)β

�n
� 1+ βu(1)β

�
=

kβ

β

�
β2u(1)2β � βu(1)β

�
! u2 � u

Because β = 1 instead of β ! 0, the solution is given by (1� e�w )
instead of u(1)β ! wβ = � logP0,x e�hf ,XQ i. Interpretation as an exit
measure allows for arbitrary boundary conditions.
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Superprocesses on ultradistributions

Superprocesses on measures allows the construction of solutions for
equations which do not possess a natural Poisson clock. It has the
severe limitation of requiring a polynomial branching function
ϕ (s, x ; z). Restricts the nonlinear terms in the pde�s to be powers of
u (ua). In addition, these terms must be such that all coe¢ cients in
the zn expansion be positive (1 < α � 2).

The variable z in ϕβ (s, x ; z) is z = e
�βw (τ�s ,ξs ) = P0,x e�hβf ,X i.

When one generalizes to U 00, changes of sign and transitions from
deltas to their derivatives are allowed. There are basically two new
transitions at the branching points:
1) A change of sign in the point support ultradistribution

ehβf ,δx i = eβf (x ) ! ehβf ,�δx i = e�βf (x )

which corresponds to

z ! 1
z
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Superprocesses on ultradistributions

2) A change from δ(n) to �δ(n+1), for example

ehβf ,δx i = eβf (x ) ! ehβf ,�δ0x i = e�βf 0(x )

which corresponds to
z ! e�∂x log z

Case 1) corresponds to an extension of superprocesses on measures to
superprocesses on signed measures and case 2) to superprocesses in
U 00.
How these transformations provide stochastic representations of
solutions for other classes of pde�s, will be illustrated by two results
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Superprocesses on ultradistributions

Theorem
There is a superprocess that, in the β ! 0 limit, provides a solution to the
equation

∂u
∂t
=
1
2

∂2u
∂x2

� 2u2 � 1
2
(∂xu)

2

Proof:
ϕ(1) (0, x ; z) = p1e∂x log z + p2e�∂x log z + p3z2

This branching function means that at the branching point, with
probability p1 a derivative is added to the propagating ultradistribution,
with probability p2 a derivative is added plus a change of sign and with
probability p3 the ultradistribution branches into two identical ones. Using
the transformation and scaling limit one has, for small β

z ! e�∂x log z = e
�∂x log

�
1�βu(1)β

�
= 1� β∂xu

(1)
β +

β2

2

��
∂xu

(1)
β

�2
� ∂xu

(1)2
β

�
+O

�
β3
�
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Superprocesses on ultradistributions

z ! z2 =
�
1� βu(1)β

�2
= 1� 2βu(1)β + β2u(1)2β

Computing ψβ

�
0, x ; u(1)β

�
with p1 = p2 = 1

4 and p3 =
1
2 one obtains

ψ
(1)
β

�
0, x ; u(1)β

�
=

kβ

β

�
ϕ(1)

�
0, x ; 1� βu(1)β

�
� 1+ βu(1)β

�
=

kβ

β

�
1
8

β2
�

∂xu
(1)
β

�2
+
1
2

β2u(1)2β +O
�

β3
��

meaning that, with kβ =
4
β , the superprocess provides, in the β ! 0 limit,

a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

� 2u2 � 1
2
(∂xu)

2
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Superprocesses on ultradistributions

Now a di¤erent scaling limit will be used, namely

u(2)β =
1
2β

�
eβwβ � e�βwβ

�
; f (2)β =

1
2β

�
eβf � e�βf

�
Notice that, as before, u(2)β ! wβ and f

(2)
β ! f when β ! 0. In this case

with z = eβwβ one has

z = �2βu(2)β + 2

r
β2u(2)2β + 1

= 2� 2βu(2)β + β2u(2)2β +O
�

β4
�

and

1
z
= 2βu(2)β + 2

r
β2u(2)2β + 1

= 2+ 2βu(2)β + β2u(2)2β +O
�

β4
�
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Superprocesses on ultradistributions

For the integral equation one has

u(2)β (0, x) +Π0,x

Z τ

0
dsψ(2)β

�
s, ξs ; u

(2)
β

�
= Π0,x f

(2)
β (τ, ξτ)

with

ψ
(2)
β

�
0, x ; u(2)β

�
= kβ

�
1
2β

�
ϕ (0, x ; z)� ϕ

�
0, x ;

1
z

��
� u(2)β

�

Theorem
There is a superprocess providing a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

+ u3
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Superprocesses on ultradistributions

Proof: Let
ϕ(2) (0, x ; z) = p1z2 + p2

1
z

This branching function means that with probability p1 the
ultradistribution branches into two identical ones and with probability p2 it
changes its sign. Therefore, in this case, one is simply extending the
superprocess construction to signed measures.

ψ
(2)
β

�
0, x ; u(2)β

�
= kβ

�
�p18u(2)β

�
1+

1
2

β2u(2)2β

�
+ p2u

(2)
β � u(2)β +O

�
β4
��

and with p1 = 1
10 ; p2 =

9
10 and kβ =

5
2β2

one obtains in the in the β ! 0

limit
ψ
(2)
β

�
0, x ; u(2)β

�
! �u(2)3β

meaning that this superprocess provides a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

+ u3
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