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Geometric Brownian motion 7
Stochastic volatility: Overview
The Heston model

The fractional volatility model

Questions:

- Arbitrage

- How many market regimes?
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Wanted: A good mathematical model for the market

Un krach des maths
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Geometric Brownian motion ?

dS:

St

a basis for most of mathematical finance (Black-Scholes, etc.)
Consequences:

Price changes would be log-normal

p<|n5T> = L exp (ln%_(V—U;)(T—t))Q

St 202 (T — t) - 202(T —t)

= udt 4+ odB (t)

Self-similar, Law(X(at))=Law(a"” X(t)) with Hurst coefficient H = 1/2

S5(t)
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Geometric Brownian motion ?

Empirical tests:
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Stylized market facts

e Returns (r (t,A) = S(t%)t;s(t)) have nearly no autocorrelation

@ The autocorrelations of |r (t, A)| decline slowly with increasing lag A.
Long memory effect

@ Leptokurtosis : asset returns have distributions with fat tails and
excess peakedness at the mean

e Autocorrelations of sign r (t, A) are insignificant

@ Volatility clustering : tendency of large changes to follow large
changes and small changes to follow small changes. Volatility occurs
in bursts.

@ Volatility is mean-reversing and the distribution is close to lognormal
or inverse gamma

o Leverage effect : volatility tends to rise more following a large price
fall than following a price rise
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Volatility as a function of time

@ Uncertainty and risk are the driving factors for investors' behavior.

@ When the future is uncertain investors are less likely to invest.
Uncertainty (volatility) will be changing in time. The natural
approach is to “... build a forecasting model for variance and make it
a well-defined process ..." (Robert Engle — 1982)

@ Structural models of the following type were considered:

y=b,+b,X,+bx,+..+u

b, b,,b,... factors
u errorterm
@ Models for the Conditional variance

Homoscedasticity = variance of errors is constant
Heteroscedasticity = variance of errors is not constant
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Volatility as a function of time

Models :
ARCH(q) (Autoregressive conditionally heteroscedastic)

sl=ap,tau’, tau, +..rall,
GARCH (1,1) (Generalized ARCH)
stz =4, +alut2-1+bst2-l
IGARCH (Integrated GARCH)
a+b=1

Leverage : GJR (Glosten, Jagannathan, Runkle)

s’=a,+(a,+d,)u’, +bs’

t — “o 1 gt-l t-1 t-1
l,,=1 ifu_,<0 ;=0 otherwise
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Volatility as a function of time

EGARCH (exponential GARCH)

2y = 2 U_, ¢ ut—1| 2
In(s;)=w+blIn(s ,)+g +taé——- .|—U
P

[a?2 A 2
st—l St—l
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Stochastic volatility models

In GARCH models, the conditional volatility is a deterministic function of
past quantities. In Stochastic Volatility Models it is itself a random
process.

@ Heston model
dS, = S (it +5s ,0dB(t)) (dBdB)=r <0
d(s,) =-Ws, - s,)dt +g5,dB' (1)

e Two-time scales model (Perello, Masoliver)

dS =S (mit +e"dB) (dBdB') = r <0
dx, =- WX, - X, )dt+giB'  (dBdB")=0
dXOt =-Wo (XOt B Xoo)dt + godB”
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Stochastic volatility models

o Comte and Renault
ds = S (mit +s,dB(t))
d(Ins,) =k(g - Ins,)dt + glB,, (1)

dBy (t) is fractional Brownian motion

@ The fractional volatility model

dSt = ]/lstdt—FU'tStdB(t)
logoe = B+ %5{Bu(t)—Bu(t—23)}
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The Heston model

dS; = uS, dt + .S, dB"

Changing the variable from price S; to log-return r, = In(S;/Sy) and
eliminating the drift by introducing x; = r; — ut,

dx, = _g dt + \/ve dBY.

v; = 02 is the variance.
A mean-reverting stochastic equation for the variance v;

dve = —(ve — 0) dt +x\/v; dB

The Wiener processes may be correlated

dB8® = pdB™ + /1= p? dz,

p € [—1,1] is the correlation coefficient.
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The Heston model

Fokker-Planck equation for the transition probability P:(x, v|v;) to have
log-return x and variance v at time t given the initial log-return x = 0 and
variance v; at t =0

d 0
2P = vy 2 (wP)
02 1 82 K2 92

tprs S (vP)+§ﬁ(vP)+ > 3y = (vP).

An analytical solution for P:(x, v | v;) was obtained (Dragulescu and
Yakovenko). Then, to obtain the pdf of the returns, P:(x, v | v;) was

integrated over the final variance v and averaged over the stationary
distribution I'L.(v;) of the initial variance v;:

P:(x) = /000 dv; /Ooo dv Pe(x, v | vi) TLi(v;).
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The Heston model

Case p=0
—x/2 400 A%
e dp ipsx
Pt(X) - X0 /oo 27'[ ’ +Ft(p)
[3 O O?+1 Ot
F:(p) = % —aln [cosh - + % sinh 2] ,

QO=1+p2 F=q9t X=x/x0, xo=K/7 «=2v0/x>.

In the long-time limit T > 2, P;(x) becomes a function of a single
combination z of the two variable x and t (up to the trivial normalization

factor N; and unimportant factor e */?):
Pi(x) = Ny e ™*2P,(z), P.(z) = Ki(2)/z, z=Vx2+2,
t=af/2=1t0/x3, N;=7%e'/mx,

Ki(z) is the first-order modified Bessel function.
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e Heston model

=7t K1
=qyt>1

o ] exp (— |x| \/2/91“)
Pr (%) exp (—X2/29t)

~1

Nasdaq data, 10/11/1984-10/22/2002 S&P500 data, 01/04/1982-10/22/2002
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3
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3

10 \, 20days 10"
5 days
10° 10° 5days
1 day
Y 1day
-1 ~075 -05 025 0 025 05 -05 -04 03 -0 o1 02 03
Log-return, x

RVM (CMAF) Stoch_ Volat August 2009




The fractional volatility model

Basic hypothesis:

e (H1) The log-price process log S; belongs to a probability space
QeQ
The first one, ), is the Wiener space
The second, ), is a probability space to be empirically reconstructed.
weQ,w e€Q and by F; and .7-'; the o—algebras in Q) and Q'
generated by
the processes up to t. Then,

log St (w, w,>

(H1) is not limitative.
@ (H2) The second hypothesis is stronger: Assume that for each fixed

w, log S¢ (o, a)/) is a square integrable random variable in ()

From (H2) it follows that, for each fixed w',
ds—‘(‘;‘ (O,w') = U, (mw/) dt+ o (o,w’) dB (t)
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The fractional volatility model

If {X¢, Ft} is a process such that
dX¢ = p,dt+o.dB(t)
with 1, and o being F;—adapted processes, then
He = J[’B% {E (Xete — Xe)| Fe }
ot = lmi{E = x| 7
The process associated to ’Ehe probability space Q' is now inferred from
the data. For each fixed w realization in () one has

o? (-,w/> = lim > {E(|°g St+e — 'Ogsf)z}

e—0¢

Because each set of market data corresponds to a particular realization w,
the 02 process may indeed be reconstructed from the data. Is called the
induced volatility.

What is the mathematical characterization of the induced volatility
process ?
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Fractional volatility: The induced volatility process

- Look for scaling properties. Neither of these hold
og(t+A)—o(t)
o (t)

Instead, the empirical integrated log-volatility is well represented by a
relation of the form t/9,log o (nd) = Bt + Ry (t) with
the R, (t) process displaying very accurate self-similar properties.
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The fractional volatility model

Recall: If a nondegenerate process X; has finite variance, stationary
increments and is self-similar

Law (Xst) = Law (aHXt)
it has covariance
1
Cov (Xe, Xe) = 5 (IsP! + ¢ = |s — ¢) £ (x)

and the simplest process with these properties is a Gaussian process called
fractional Brownian motion.
Hence the following fractional volatility model is obtained

dSt = ]/lstdt—FU'tStdB(t)

logo: = B+ 5{Bu(t)—Bu(t—0)}
é is the observation time scale and H is in the range 0.8 — 0.9
The volatility (at resolution ¢)

2
o(t) = Geg{BH(t)fBH(ffé)}fé(g) §2H
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The fractional volatility model. Leverage

Experimentally one finds in actual markets the following nonlinear
correlation of the returns

L@ = (Ire+D)Pr(e)) = (|r(e+0)P) (r ()
This is called leverage or the leverage effect and it is found that for T > 0,
L (T) starts from a negative value whose modulus constantly decays to
zero whereas for T < 0 it has almost negligible values.
In the definition of the fractional volatility model the o; acts on the
log-price, but is not affected by it.
A modification with leverage: Use

By (t) = C {/Ooo (= 9)""F — (=5)""F] 4B (5) +/0t (t—s)""%dB (s):

Then, the fractional volatility model may be rewritten as

d5t = ‘ustdt + O'tStdB(l) (t)
logoe = B+k [f_(t—s)"2dBD (s)
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The fractional volatility model. Leverage

BW (s) and B®?) (s) are Brownian processes. If B() (s) # B() (s) there
is no leverage effect but if B(1) (s) = B(?) (s) one obtains a qualitatively
correct leverage.

DA
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The fractional volatility model. Statistics of returns

At each fixed time log o is a Gaussian random variable with mean 8 and
variance k262H=2. Then,

1 (logo — 5)2
ps (log ) = \/27wk(5H’1 P {_ 2k252H—2

Ps (Iog SHA) / dops (o <Iog 5t5+A>
t
with
2
o <|og sHA) 1) (ee(() - (n-%))

S B

therefore

V2o A &P 202A

The probability distribution of the returns might depend both on the time
lag A and on the observation time scale § used to construct the volatility
process. This latter dependence might actually be very weak
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The fractional volatility model. Statistics of returns

Closed form

L Oo L _1 PRV
Pl = gy fy ot

(r(A)—n)’
r(A) =logSein—logSe, 0=¢€f, A= YV i

o’ 2 2H—2
fo = .”_7 A, C =8k

Then

1

-1
Z=3

with asymptotic behavior, for large returns
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The fractional volatility model. Statistics of returns

Qualitatively it resembles the double exponential distribution recognized by
Silva, Prange and Yakovenko as a new stylized fact in market data. Shown,
by Dragulescu and Yakovenko, to follow from the Heston model. Differs
from Heston's in that volatility is driven by a process with memory. The
analytic form of the distribution and the asymptotic behavior are different.
H=0.83, k=059 = -5 45=1 A=1and A =10 data.

pira)
AR
i
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The fractional volatility model. Statistics of returns

Same parameters but A = ﬁ (one minute). The prediction of the model
is compared with one-minute data of USDollar-Euro market for a couple of
months in 2001. The result is surprising, because one would not expect
the volatility parametrization to carry over to such a different time scale
and also because one is dealing with different markets.

3000

2500  A=1/1440
p=-5

2000 -
(*) 1 min data

RVM (CMAF) Stoch _Volat August 2009 25 /



The fractional volatility model. Option pricing

Assuming risk neutrality, the value V (S, 04, t) of an option is the present
value of the expected terminal value discounted at the risk-free rate

V (S, 00, ) = e—f<T—f>/v<5T,aT, T) p (Sr|Se, o) dS7
V (St,07, T) = max|[0, S — K] and the conditional probability for the

terminal price depends on S; and ¢;. K is the strike price, T the maturity
time and S; and o the price and volatility of the underlying security.

p(ST|St,0¢) = /p (S71S¢.log ) p (logo|log o) d (log o)

log o being the random variable

1 T
I = — I d
ogo T—t/t 0ogUsdas

log o is the mean volatility from time t to the maturity time T conditioned
to an average value log o; at time t.
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The fractional volatility model. Option pricing

Then,
V (S, 04, t) = / C (St, elog? t) p (logcllogo:) d (log o)
C (50,7, 1) = /e*’<T*f>V(ST,aT, T) p (S7|S:. log ) dSt

C (St, eloe, t) is the Black-Scholes price for an option with average

volatility €'°8¢, known to be

C(S:.0,t)=S5;(a+b)N(ab)—Ke "T=8) (a—b) N (a, —b)
a = ;(\';&Jrn/T t) b = VT —t

N / dye yj a+b

Instead of V/ (S¢, 04, t), it Would be more correct to write V (S¢, o<, t).
However, Markov properties of the processes are not assumed, only their

Gaussian nature.
RVM (CMAF) Stoch_ Volat
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The fractional volatility model. Option pricing

ogo = log oy + —— /fds/ (dBy (1) — dBy (T — 6))

Notice that, because we want to compute the conditional probability of
log o given log o at time t, 0, is not a process but simply the value of the
argument in the V (S, 0y, t) function.

As a t—dependent process the double integral is a centered Gaussian
process. Therefore, given log o, at time t, log o is a Gaussian variable with
conditional mean E {@| IogUt} = log o and variance

= E{(Iog(f—log(ft)2||og(7t}
k? 1
= h+bh ¢+ k252H=2
(52(T—t){2(T—t)1 2}

h =

2 ( t+5)2H+2 (T ot 5)2H+2
(2H +1) (2H +2) —2(T — )2H+2 _ p52H+2
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The fractional volatility model. Option pricing

1 N2HAL 2HHL 1, o\2H+1
12_2H+1{2(T t) (T—t+4) (T—t—0) }

In general, for option pricing purposes, § < (T — t) and one may
i ~ _K? 5 \2—2H
approximate a? ~ R (1 —(2H-1) (ﬁ) )

Then )
— (logo — log o¢) }

S 1
p (logcllogo:) = N exp { 52

Finally -
V (S, 00 t) = [ dgC (e, t) p (] logor)

August 2009 29 / 50
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The fractional volatility model. Option pricing

One obtains

V (Se00t) = {S:[aM( a,b)+ bM (a,b,a)]
—Ke="(T=1) [aM (&, 3, —b) — bM (at, —b, a)]}

og? x 2 2
M(Dé,a,b) = %/ dy/ dxe Izgaz *%(ax+§)

e ()

Plots: V/ (5S¢, 04, t) intherange T —t € [5, 100] and S/K € [0.5,1.5] as
well as (V (S¢,0¢,t) — C (S, 04, t)) /K for k =1 and k = 2. Other
parameters fixed at ¢ = 0.01,r = 0.001,6 = 1, H = 0.8. Compared with
the implied volatility required in the BS model to reproduce the same
results (implied volatility surface corresponding to V (S;, 0, t) for k = 1),
Predicts a smile effect with the smile increasing as maturity approaches.
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The fractional volatility model. Option pricing

k=1

VIK

T+t 0705  gK T4 005 gk

k=2

(V-CYK

T4 0705 gk
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Arbitrage with the price process driven by fractional Brownian
motion
Two assets: A risk-free investment

dSo (t) = rSp (t) dt
and a risky one
dSi (t) = uSi (t) dt+ 05 (t) dBy (t)

What is the meaning of dBy (t) ? For H > % there two possible notions
of integration
# Forward (or pathwise) integration (d~ By (t))

N—-1

[ 9w a B () = tim Y ¢ (t) (B (ten) — B (1)
0 0 =0

At —

This integral exists for H > % because By (t) has finite g—variation for
qg>1/H
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# The Skorohod integral (uses the chaos expansion)
1- For B (t)

(o]

u(t,w) =Y In(f (te))

n=0

I,,(f):n!/R(/Z---(/T;f(Tl,~-- ) dB(11)) - - - dB (Th))

with Hermite functions

— Z c,,((t)'Ha (w)

wel
Ho (w) == hay ({(w,81)) + - ha, ({@,C 1))
by (1) Vb ()
Then

/R(tw(SB SM(N) /R(tw)ovv()

Y ETS) Stoch _Volat August 2009 33 / 50



where
fn(tly"'ytn—i-l) — {fn(tly"'.tn+1)+"‘+fn("'yti—lyti+1."' ti)
~~~+f(t R t) i
n 1, ’ n+11 1 n+1
(FOG) (w) = ¥ a7t Mg (w)
w,BET
W(t) =) SkHen (w)
k=1
2 - For By (t)

/u(t,w)asH(t):/ u (t, @) OWy (t) dt
R R

Wy (t) = ki MG Hew (w)
=1

e) = (0,0,---,1) € R FIMF(0)} = cu | FL{F (v)}
RVM (CMAF)
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Arbitrage with pathwise integration
Two assets: A risk-free investment

dSo (t) = rSp (t) dt
and a risky one
dSy (t) = pSy (1) dt + 051 (t) dBy (1)
The wealth process
VO () = 00 (t) So (t) + 01 (t) S1 ()
Self-financing portfolio
dv?(t) =6(t) e dS(t)

A portfolio is called an arbitrage if the wealth process satisfies:

Ve (0) = 0
ve(T) > 0 as.
P(V'(T)>0) > 0
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1) dBy (t) = d~ By (t) (Rogers, Shiryaev)
Si(t) =51 (0)exp (0By (t) + ut)
Let p =r,0 =1 = 5; (0) and construct the portfolio
0y (t) =1 — 2Bn(®) 1 (t) = 2 (B0 — 1)
It is self-financing
dby (t) So (t) +db1 (t) S1(t) =0
and
VO(e) = B (2) So () + 01 (6) St (1
_ (1 _ ezsm)) e 4+ D <eBH<t) _ 1) o(Bu(t)+rt)

= e (eB"’(t) — 1)2 >0

for a.a. (t,w)
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2) dBy (t) = 6By (t) (Elliott and van der Hoek, Hu and Oksendal)

S1(t) =51 (0)exp (UB,_, (t) + ut — ;UztzH)

V(T) = o)+/ £) 055 ( (O)—i—/OTrBO(t)So(t)dt

NETACEENG dt—l—/OT(T(h(t) 051 (t) 6By

Change of measure

B (t) = £ (t)

V(t) = eV (0) + e /0 2 e"500; (5) 051 () 6B,

leads to
E{VO(T)} =€V (0)
No arbitrage
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However: (Bjork and Hult, Sottinen and Valkeila, Nualart and

Taqqu)
The Skorohod integral approach requires either that the portfolio value be

VO (t) = 6o (t) So (t) + 61 (t) 051 (t)
or that the self-financing condition be
dV? (t) =0 (t)0dS (t)

or both. This might not be reasonable from an economic point of view
(for example positive portfolio with negative Wick value, etc.)
Question: In the fractional volatility model the fractional noise is on the
volatility, not on the price. Is there an arbitrage?
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market regimes 7

D1

PO
P D)

* *: % *

02 o1 o o1 10° 5

0*
o) ol (o)

Two agent-based models are considered.

- In the first the traders strategies play a determinant role.

- In the second the determinant effect is the limit-order book dynamics,
the agents having a random nature.
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Comparison with agent-based models

A market model with self-adapted or fixed strategies

@ The dominance of two types of strategies was to a large extent
determined by the initial conditions.

o Different types of return statistics corresponded to the relative
importance of either “value investors” or “technical traders”.

@ The occurrence of market bubbles correspondes to situations where
technical trader strategies were well represented.

o Consider a set of investors playing against the market (in addition to
the impact of this group of investors, the other factors are represented
by a stochastic process)

zi11 = f(ze,w¢) + 17,
(z: = log pt), w; is the total investment made by the group of traders

and 77, the stochastic process that represents all the other factors.

s = amount of stock
m = cash
p; = price of the traded asset at time t,

RVM (CMAF) Stoch _Volat August 2009 40 / 50



Comparison with agent-based models

The purpose of the investors is to increase the total wealth m; 4+ p; X s;
Each investor payoff at time t is

Agi) = (mgi) + pr X s,:(i)> — <m(()i) + pg X sé”).
o Market impact

Wt

_ = 7t 4
Zt41 — Zt Ao+ A |0l /R

_ 1
k=3

o Agent strategies
The difference (misprice) between price and perceived value v;

&, —zr = log(ve) — log(pt)
The price trend

z; — z;—1 = log(pt) — log(pe-1)

A non-decreasing function f(x) such that f(—oo) =0 and f(o0) = 1.

Example fi(x) = 6(x) or f(x) = ,B >.0).

Stoch_ Volat
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Comparison with agent-based models

@ Information about misprice and price trend coded on a
four-component vector

f(& —z)f(zt — ze-1)
y, = f(Ge—z) (1—f(z — z-1))
! (1_f(‘:t_zt))f(zt—zt—1)
(1=1F(&—2)) (1= f(z — z-1))

@ The strategy of each investor is a four-component vector al) with
entries —1, 0, or 1.
—1 means to sell, 1 means to buy and 0 means to do nothing.
At each time, the investment of agent / is (i) Sy
Fundamental (value-investing strategy) al) = (1,1,-1,-1)
Pure trend-following strategy al) = (1, 1,1, —1) .
Total number of possible strategies 3* = 81.
Strategies labelled by numbers n(i) = 22:0 3k (le(') + 1)
(Fundamental = 72, Trend-following = 60)
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Comparison with agent-based models

Evolution dynamics:

o After r time steps, s agents copy the strategy of the s best performers
and, at the same time, have some probability to mutate that strategy.

@ The model was run with different initial conditions and with or
without evolution of the strategies.

@ When the model is run with evolution the asymptotic steady-state
behavior depends on the initial conditions.

@ Simulation without evolution, with a fixed 50% of fundamental
strategies (no. 72) and 50% of trend-following (no. 60), one sees a
large number of bubbles and crashes in the price evolution and the
price increments distribution has fat tails.

To compare with the behavior of the fractional volatility model:
0?2 = ‘Toiimvar (log pt), the parameters in Y//% log o (nd) = Bt + Ry (t)
and |Ry (t+A) — Ry (t)| were estimated from model simulation.
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Comparison with agent-based models
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Comparison with agent-based models

o Notice the lack of scaling behavior of R, (t) with an asymptotic
exponent 0.55, denoting the lack of memory of the volatility process.
This might already be evident from the time behavior of R, (t) in the
lower left plot.

@ Also, although the returns have fat tails in this case, they are of
different shape from those observed in the market data. Similar
conclusions are obtained with other combinations of agent strategies.

@ In conclusion: It seems that the features of the fractional
volatility model (which are also those of the bulk market data)
are not easily captured by a choice of strategies in an
agent-based model.

@ Agents’ reactions and strategies are very probably determinant during
market crisis and market bubbles.
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Comparison with agent-based models

A limit-order book

@ Asks and bids arrive at random on a window [p — w, p + w] around
the current price p.

@ Every time a buy order arrives it is fulfilled by the closest non-empty
ask slot, the new current price being determined by the value of the
ask that fulfills it.

@ If no ask exists when a buy order arrives it goes to a cumulative
register to wait to be fulfilled. The symmetric process occurs when a
sell order arrives, the new price being the bid that buys it.

@ Because the window around the current price moves up and down,
asks and bids that are too far away from the current price are
automatically eliminated.

@ Sell and buy orders, asks and bids all arrive at random.

@ The only parameters of the model are the width w of the limit-order
book and the size n of the asks and bids, the sell and buy orders
being normalized to one.
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Comparison with agent-based models
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Comparison with agent-based models

@ Model run for different widths w and liquidities n. Although the exact
values of the statistical parameters depend on w and n, the statistical
nature of the results is essentially the same. In the figure n = 2, the
limit-order book divided into 2w 4+ 1 = 21 discrete price slots with
Ap=0.1.

@ The scaling properties of R, (t) are quite evident from the lower right
plot in the figure, the Hurst coefficient being 0.96.

@ Conclusion: the main statistical properties of the market data
(fast decay of the linear correlation of the returns,
non-Gaussianity and volatility memory) are already generated
by the dynamics of the limit-order book with random behavior
of the agents.

@ A large part of the market statistical properties (in normal
business-as-usual days) depends more on the nature of the price fixing
financial institutions than on particular investor strategies.
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