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Wanted: A good mathematical model for the market
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Geometric Brownian motion ?

dSt
St

= µdt + σdB (t)

a basis for most of mathematical �nance (Black-Scholes, etc.)
Consequences:
Price changes would be log-normal
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Geometric Brownian motion ?

Empirical tests:

- p
�
ln STSt

�
is not lognormal

- Deviations from scaling
- σ is not constant
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Stylized market facts

Returns (r (t,∆) = S (t+∆)�S (t)
S (t) ) have nearly no autocorrelation

The autocorrelations of jr (t,∆)j decline slowly with increasing lag ∆.
Long memory e¤ect

Leptokurtosis : asset returns have distributions with fat tails and
excess peakedness at the mean

Autocorrelations of sign r (t,∆) are insigni�cant
Volatility clustering : tendency of large changes to follow large
changes and small changes to follow small changes. Volatility occurs
in bursts.

Volatility is mean-reversing and the distribution is close to lognormal
or inverse gamma

Leverage e¤ect : volatility tends to rise more following a large price
fall than following a price rise
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Volatility as a function of time

Uncertainty and risk are the driving factors for investors�behavior.

When the future is uncertain investors are less likely to invest.
Uncertainty (volatility) will be changing in time. The natural
approach is to �... build a forecasting model for variance and make it
a well-de�ned process ...�(Robert Engle �1982)

Structural models of the following type were considered:

uxxy ++++= ...33221 βββ

termerroru
factors...,, 321 βββ

Models for the Conditional variance
Homoscedasticity = variance of errors is constant
Heteroscedasticity = variance of errors is not constant
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Volatility as a function of time

Models :
ARCH(q) (Autoregressive conditionally heteroscedastic)
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Volatility as a function of time

EGARCH (exponential GARCH)
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Stochastic volatility models

In GARCH models, the conditional volatility is a deterministic function of
past quantities. In Stochastic Volatility Models it is itself a random
process.

Heston model
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Two-time scales model (Perello, Masoliver)
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Stochastic volatility models

Comte and Renault
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dBH (t) is fractional Brownian motion

The fractional volatility model

dSt = µStdt + σtStdB (t)
log σt = β+ k

δ fBH (t)� BH (t � δ)g
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The Heston model

dSt = µSt dt + σtSt dB
(1)
t

Changing the variable from price St to log-return rt = ln(St/S0) and
eliminating the drift by introducing xt = rt � µt,

dxt = �
vt
2
dt +

p
vt dB

(1)
t .

vt = σ2t is the variance.
A mean-reverting stochastic equation for the variance vt

dvt = �γ(vt � θ) dt + κ
p
vt dB

(2)
t

The Wiener processes may be correlated

dB (2)t = ρ dB (1)t +
p
1� ρ2 dZt

ρ 2 [�1, 1] is the correlation coe¢ cient.
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The Heston model

Fokker-Planck equation for the transition probability Pt (x , v j vi ) to have
log-return x and variance v at time t given the initial log-return x = 0 and
variance vi at t = 0

∂

∂t
P = γ

∂

∂v
[(v � θ)P ] +

1
2

∂

∂x
(vP)

+ ρκ
∂2

∂x ∂v
(vP) +

1
2

∂2

∂x2
(vP) +

κ2

2
∂2

∂v2
(vP).

An analytical solution for Pt (x , v j vi ) was obtained (Dragulescu and
Yakovenko). Then, to obtain the pdf of the returns, Pt (x , v j vi ) was
integrated over the �nal variance v and averaged over the stationary
distribution Π�(vi ) of the initial variance vi :

Pt (x) =
Z ∞

0
dvi

Z ∞

0
dv Pt (x , v j vi )Π�(vi ).
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The Heston model

Case ρ = 0

Pt (x) =
e�x/2

x0

Z +∞

�∞

dp̃
2π

e i p̃ x̃+Ft̃ (p̃),

Ft̃ (p̃) =
αt̃
2
� α ln

�
cosh

Ω̃t̃
2
+

Ω̃2 + 1

2Ω̃
sinh

Ω̃t̃
2

�
,

Ω̃ =
p
1+ p̃2, t̃ = γt, x̃ = x/x0, x0 = κ/γ, α = 2γθ/κ2.

In the long-time limit t̃ � 2, Pt (x) becomes a function of a single
combination z of the two variable x and t (up to the trivial normalization
factor Nt and unimportant factor e�x/2):

Pt (x) = Nt e�x/2P�(z), P�(z) = K1(z)/z , z =
p
x̃2 + t̄2,

t̄ = αt̃/2 = tθ/x20 , Nt = t̄e t̄/πx0,

K1(z) is the �rst-order modi�ed Bessel function.
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The Heston model

Pt (x) ∝
�
exp

�
� jx j

p
2/θt

�
t̃ = γt � 1

exp
�
�x2/2θt

�
t̃ = γt � 1
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The fractional volatility model

Basic hypothesis:
(H1) The log-price process log St belongs to a probability space
Ω
Ω

0

The �rst one, Ω, is the Wiener space
The second, Ω

0
, is a probability space to be empirically reconstructed.

ω 2 Ω , ω
0 2 Ω

0
and by Ft and F

0
t the σ�algebras in Ω and Ω

0

generated by
the processes up to t. Then,

log St
�

ω,ω
0
�

(H1) is not limitative.
(H2) The second hypothesis is stronger: Assume that for each �xed
ω
0
, log St

�
�,ω0

�
is a square integrable random variable in Ω

From (H2) it follows that, for each �xed ω
0
,

dSt
St

�
�,ω0

�
= µt

�
�,ω0

�
dt + σt

�
�,ω0

�
dB (t)

with µt

�
�,ω0

�
and σt

�
�,ω0

�
well-de�ned processes in Ω.
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The fractional volatility model

If fXt ,Ftg is a process such that
dXt = µtdt + σtdB (t)

with µt and σt being Ft�adapted processes, then
µt = lim

ε!0
1
ε fE (Xt+ε � Xt )j Ftg

σ2t = lim
ε!0

1
ε

n
E (Xt+ε � Xt )2

���Fto
The process associated to the probability space Ω

0
is now inferred from

the data. For each �xed ω
0
realization in Ω

0
one has

σ2t

�
�,ω0

�
= lim

ε!0
1
ε

n
E (log St+ε � log St )2

o
Because each set of market data corresponds to a particular realization ω

0
,

the σ2t process may indeed be reconstructed from the data. Is called the
induced volatility.
What is the mathematical characterization of the induced volatility
process ?
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Fractional volatility: The induced volatility process

- Look for scaling properties. Neither of these hold

E jσ (t + ∆)� σ (t)j � ∆H E

����σ (t + ∆)� σ (t)
σ (t)

���� � ∆H

Instead, the empirical integrated log-volatility is well represented by a
relation of the form ∑t/δ

n=0 log σ (nδ) = βt + Rσ (t) with
the Rσ (t) process displaying very accurate self-similar properties.
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The fractional volatility model

Recall: If a nondegenerate process Xt has �nite variance, stationary
increments and is self-similar

Law (Xat ) = Law
�
aHXt

�
it has covariance

Cov (Xs ,Xt ) =
1
2

�
js j2H + jtj2H � js � tj2H

�
E
�
X 21
�

and the simplest process with these properties is a Gaussian process called
fractional Brownian motion.
Hence the following fractional volatility model is obtained

dSt = µStdt + σtStdB (t)
log σt = β+ k

δ fBH (t)� BH (t � δ)g
δ is the observation time scale and H is in the range 0.8� 0.9
The volatility (at resolution δ)

σ (t) = θe
k
δ fBH (t)�BH (t�δ)g� 1

2 (
k
δ )

2
δ2H
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The fractional volatility model. Leverage

Experimentally one �nds in actual markets the following nonlinear
correlation of the returns

L (τ) =
D
jr (t + τ)j2 r (t)

E
�
D
jr (t + τ)j2

E
hr (t)i

This is called leverage or the leverage e¤ect and it is found that for τ > 0,
L (τ) starts from a negative value whose modulus constantly decays to
zero whereas for τ < 0 it has almost negligible values.
In the de�nition of the fractional volatility model the σt acts on the
log-price, but is not a¤ected by it.
A modi�cation with leverage: Use

BH (t) = C
�Z 0

�∞

h
(t � s)H�

1
2 � (�s)H�

1
2

i
dB (s) +

Z t

0
(t � s)H�

1
2 dB (s)

�
Then, the fractional volatility model may be rewritten as

dSt = µStdt + σtStdB (1) (t)

log σt = β+ k
0 R t
�∞ (t � s)

H� 3
2 dB (2) (s)
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The fractional volatility model. Leverage

B (1) (s) and B (2) (s) are Brownian processes. If B (1) (s) 6= B (2) (s) there
is no leverage e¤ect but if B (1) (s) = B (2) (s) one obtains a qualitatively
correct leverage.
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The fractional volatility model. Statistics of returns

At each �xed time log σt is a Gaussian random variable with mean β and
variance k2δ2H�2. Then,

pδ (σ) =
1
σ
pδ (log σ) =

1p
2πσkδH�1

exp

(
� (log σ� β)2

2k2δ2H�2

)
therefore

Pδ

�
log

St+∆

St

�
=
Z ∞

0
dσpδ (σ) pσ

�
log

St+∆

St

�
with

pσ

�
log

St+∆

St

�
=

1p
2πσ2∆

exp

8><>:�
�
log
�
St+∆
St

�
�
�

µ� σ2

2

�
∆
�2

2σ2∆

9>=>;
The probability distribution of the returns might depend both on the time
lag ∆ and on the observation time scale δ used to construct the volatility
process. This latter dependence might actually be very weak
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The fractional volatility model. Statistics of returns

Closed form

Pδ (r (∆)) =
1

4πθkδH�1
p

∆

Z ∞

0
dxx�

1
2 e�

1
C (log x )

2
e�λx

r (∆) = log St+∆ � log St , θ = eβ, λ =
(r (∆)� r0)2

2∆θ2

r0 =
�

µ� σ2

2

�
∆ , C = 8k2δ2H�2

Then

Pδ (r (∆)) = 1
4πθkδH�1

p
∆
1p
λ

�
e�

1
C (log λ� d

dz )
2

Γ (z)
�����

z= 1
2

with asymptotic behavior, for large returns

Pδ (r (∆)) � 1p
∆λ
e�

1
C log

2 λ
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The fractional volatility model. Statistics of returns

Qualitatively it resembles the double exponential distribution recognized by
Silva, Prange and Yakovenko as a new stylized fact in market data. Shown,
by Dragulescu and Yakovenko, to follow from the Heston model. Di¤ers
from Heston�s in that volatility is driven by a process with memory. The
analytic form of the distribution and the asymptotic behavior are di¤erent.
H = 0.83, k = 0.59, β = �5, δ = 1, ∆ = 1 and ∆ = 10 data.
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The fractional volatility model. Statistics of returns

Same parameters but ∆ = 1
440 (one minute). The prediction of the model

is compared with one-minute data of USDollar-Euro market for a couple of
months in 2001. The result is surprising, because one would not expect
the volatility parametrization to carry over to such a di¤erent time scale
and also because one is dealing with di¤erent markets.
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The fractional volatility model. Option pricing

Assuming risk neutrality, the value V (St , σt , t) of an option is the present
value of the expected terminal value discounted at the risk-free rate

V (St , σt , t) = e�r (T�t)
Z
V (ST , σT ,T ) p (ST jSt , σt ) dST

V (ST , σT ,T ) = max [0,S �K ] and the conditional probability for the
terminal price depends on St and σt . K is the strike price, T the maturity
time and St and σt the price and volatility of the underlying security.

p (ST jSt , σt ) =
Z
p
�
ST jSt , log σ

�
p
�
log σj log σt

�
d
�
log σ

�
log σ being the random variable

log σ =
1

T � t

Z T

t
log σsds

log σ is the mean volatility from time t to the maturity time T conditioned
to an average value log σt at time t.
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The fractional volatility model. Option pricing

Then,

V (St , σt , t) =
Z
C
�
St , e log σ, t

�
p
�
log σj log σt

�
d
�
log σ

�
C
�
St , e log σ, t

�
=
Z
e�r (T�t)V (ST , σT ,T ) p

�
ST jSt , log σ

�
dST

C
�
St , e log σ, t

�
is the Black-Scholes price for an option with average

volatility e log σ, known to be

C (St , σ, t) = St (a+ b)N (a, b)�Ke�r (T�t) (a� b)N (a,�b)

a = 1
σ

�
log StKp
T�t + r

p
T � t

�
b = σ

2

p
T � t

N (a, b) =
1p
2π

Z ∞

�1
dye�

y2
2 (a+b)

2

Instead of V (St , σt , t), it would be more correct to write V (St , σ�t , t).
However, Markov properties of the processes are not assumed, only their
Gaussian nature.
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The fractional volatility model. Option pricing

log σ = log σt +
1

T � t

Z T

t

k
δ
ds
Z s

t
(dBH (τ)� dBH (τ � δ))

Notice that, because we want to compute the conditional probability of
log σ given log σt at time t, σt is not a process but simply the value of the
argument in the V (St , σt , t) function.
As a t�dependent process the double integral is a centered Gaussian
process. Therefore, given log σt at time t, log σ is a Gaussian variable with
conditional mean E

�
log σj log σt

	
= log σt and variance

α2 = E
n�
log σ� log σt

�2 j log σt
o

=
k2

δ2 (T � t)

�
1

2 (T � t) I1 + I2
�
+ k2δ2H�2

I1 =
2

(2H + 1) (2H + 2)

(
(T � t + δ)2H+2 + (T � t � δ)2H+2

�2 (T � t)2H+2 � 2δ2H+2

)
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The fractional volatility model. Option pricing

I2 =
1

2H + 1

n
2 (T � t)2H+1 � (T � t + δ)2H+1 � (T � t � δ)2H+1

o
In general, for option pricing purposes, δ � (T � t) and one may
approximate α2 ' k 2

δ2�2H

�
1� (2H � 1)

�
δ

T�t
�2�2H�

Then

p
�
log σj log σt

�
=

1p
2πα

exp

(
�
�
log σ� log σt

�2
2α2

)
Finally

V (St , σt , t) =
Z ∞

�∞
dξC

�
St , eξ , t

�
p (ξj log σt )
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The fractional volatility model. Option pricing

One obtains

V (St , σt , t) = fSt [aM (α, a, b) + bM (α, b, a)]
�Ke�r (T�t) [aM (α, a,�b)� bM (α,�b, a)]

o

M (α, a, b) =
1
2πα

Z ∞

�1
dy
Z ∞

0
dxe�

log2 x
2α2 e�

y2
2 (ax+

b
x )

2

=
1
4α

r
2
π

Z ∞

0
dx
e�

log2 x
2α2

ax + b
x

er f c
�
� axp

2
� bp

2x

�
Plots: V (St , σt , t) in the range T � t 2 [5, 100] and S/K 2 [0.5, 1.5] as
well as (V (St , σt , t)� C (St , σt , t)) /K for k = 1 and k = 2. Other
parameters �xed at σ = 0.01, r = 0.001, δ = 1,H = 0.8. Compared with
the implied volatility required in the BS model to reproduce the same
results (implied volatility surface corresponding to V (St , σt , t) for k = 1).
Predicts a smile e¤ect with the smile increasing as maturity approaches.
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The fractional volatility model. Option pricing
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Arbitrage

Arbitrage with the price process driven by fractional Brownian
motion
Two assets: A risk-free investment

dS0 (t) = rS0 (t) dt

and a risky one

dS1 (t) = µS1 (t) dt + σS1 (t) dBH (t)

What is the meaning of dBH (t) ? For H > 1
2 there two possible notions

of integration
# Forward (or pathwise) integration (d�BH (t))Z T

0
φ (t,ω) d�BH (t) = lim

∆tk!0

N�1
∑
k=0

φ (tk ) (BH (tk+1)� BH (tk ))

This integral exists for H > 1
2 because BH (t) has �nite q�variation for

q � 1/H
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Arbitrage

# The Skorohod integral (uses the chaos expansion)
1- For B (t)

u (t,ω) =
∞

∑
n=0

In (fn (t, �))

In (f ) = n!
Z
R
(
Z τn

�∞
� � � (

Z τ2

�∞
f (τ1, � � � , τn) dB (τ1)) � � � dB (τn))

with Hermite functions

u (t,ω) = ∑
α2I

c (t)α Hα (ω)

Hα (ω) == hα1 (hω, ξ1i) � � � hαn (hω, ξni)

ξn = π�1/4 ((n� 1)!)�1/2 hn
�p

2x
�
e�x

2/2

Then Z
R
u (t,ω) δB (t) =

∞

∑
n=0

In+1

�
s
fn

�
=
Z
R
u (t,ω)�W (t) dt
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Arbitrage

where
s
fn (t1, � � � , tn+1) = ffn (t1, � � � , tn+1) + � � �+ fn (� � � , ti�1, ti+1, � � � , ti )

� � �+ fn (t1, � � � , tn+1, t1)g
1

n+ 1

(F�G ) (ω) = ∑
α,β2I

c (F )α c (G )β Hα+β (ω)

W (t) =
∞

∑
k=1

ξkHε(k ) (ω)

2 - For BH (t) Z
R
u (t,ω) δBH (t) =

Z
R
u (t,ω)�WH (t) dt

WH (t) =
∞

∑
k=1

MξkHε(k ) (ω)

ε(k ) = (0, 0, � � � , 1) 2 Rk F fMf (y)g = cH jy j
1
2�H F ff (y)g
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Arbitrage

Arbitrage with pathwise integration
Two assets: A risk-free investment

dS0 (t) = rS0 (t) dt

and a risky one

dS1 (t) = µS1 (t) dt + σS1 (t) dBH (t)

The wealth process

V θ (t) = θ0 (t) S0 (t) + θ1 (t) S1 (t)

Self-�nancing portfolio

dV θ (t) = θ (t) � dS (t)
A portfolio is called an arbitrage if the wealth process satis�es:

V θ (0) = 0
V θ (T ) � 0 a.s.

P
�
V θ (T ) > 0

�
> 0
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Arbitrage

1) dBH (t) = d�BH (t) (Rogers, Shiryaev)

S1 (t) = S1 (0) exp (σBH (t) + µt)

Let µ = r , σ = 1 = S1 (0) and construct the portfolio

θ0 (t) = 1� e2BH (t) θ1 (t) = 2
�
eBH (t) � 1

�
It is self-�nancing

dθ0 (t) S0 (t) + dθ1 (t) S1 (t) = 0

and

V θ (t) = θ0 (t) S0 (t) + θ1 (t) S1 (t)

=
�
1� e2BH (t)

�
ert + 2

�
eBH (t) � 1

�
e(BH (t)+rt)

= ert
�
eBH (t) � 1

�2
> 0

for a.a. (t,ω)
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Arbitrage

2) dBH (t) = δBH (t) (Elliott and van der Hoek, Hu and Oksendal)

S1 (t) = S1 (0) exp
�

σBH (t) + µt � 1
2

σ2t2H
�

V (T ) = V (0) +
Z T

0
θ (t) � δS (t) = V (0) +

Z T

0
rθ0 (t) S0 (t) dt

+
Z T

0
µθ1 (t)�S1 (t) dt +

Z T

0
σθ1 (t)�S1 (t) δBH

Change of measure
v
BH (t) =

µ� r
σ

t + BH (t)

V (t) = ertV (0) + ert
Z t

0
e�rsσθ1 (s)�S1 (s) δ

v
BH

leads to
EfV θ (T )g = erTV θ (0)

No arbitrage
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Arbitrage

However: (Björk and Hult, Sottinen and Valkeila, Nualart and
Taqqu)
The Skorohod integral approach requires either that the portfolio value be

V θ (t) = θ0 (t) S0 (t) + θ1 (t)�S1 (t)

or that the self-�nancing condition be

dV θ (t) = θ (t)�dS (t)

or both. This might not be reasonable from an economic point of view
(for example positive portfolio with negative Wick value, etc.)
Question: In the fractional volatility model the fractional noise is on the
volatility, not on the price. Is there an arbitrage?

RVM (CMAF) Stoch_Volat August 2009 38 / 50



How many market regimes ?
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.
Two agent-based models are considered.
- In the �rst the traders strategies play a determinant role.
- In the second the determinant e¤ect is the limit-order book dynamics,
the agents having a random nature.
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Comparison with agent-based models

A market model with self-adapted or �xed strategies
The dominance of two types of strategies was to a large extent
determined by the initial conditions.
Di¤erent types of return statistics corresponded to the relative
importance of either �value investors�or �technical traders�.
The occurrence of market bubbles correspondes to situations where
technical trader strategies were well represented.
Consider a set of investors playing against the market (in addition to
the impact of this group of investors, the other factors are represented
by a stochastic process)

zt+1 = f (zt ,ωt ) + ηt

(zt = log pt ), ωt is the total investment made by the group of traders
and ηt the stochastic process that represents all the other factors.

s = amount of stock
m = cash
pt = price of the traded asset at time t,
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Comparison with agent-based models

The purpose of the investors is to increase the total wealth mt + pt � st
Each investor payo¤ at time t is
∆(i )t =

�
m(i )t + pt � s(i )t

�
�
�
m(i )0 + p0 � s(i )0

�
.

Market impact

zt+1 � zt =
ωt

λ0 + λ1 jωt jα
+ ηt

α = 1
2

Agent strategies

The di¤erence (misprice) between price and perceived value vt

ξt � zt = log(vt )� log(pt )
The price trend

zt � zt�1 = log(pt )� log(pt�1)
A non-decreasing function f (x) such that f (�∞) = 0 and f (∞) = 1.
Example f1(x) = θ(x) or f2(x) = 1

1+exp(�βx ) , β > 0).
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Comparison with agent-based models

Information about misprice and price trend coded on a
four-component vector

γt =

0BB@
f (ξt � zt )f (zt � zt�1)

f (ξt � zt ) (1� f (zt � zt�1))
(1� f (ξt � zt )) f (zt � zt�1)

(1� f (ξt � zt )) (1� f (zt � zt�1))

1CCA
The strategy of each investor is a four-component vector α(i ) with
entries �1, 0, or 1.
�1 means to sell, 1 means to buy and 0 means to do nothing.
At each time, the investment of agent i is α(i ) � γ .
Fundamental (value-investing strategy) α(i ) = (1, 1,�1,�1)
Pure trend-following strategy α(i ) = (1,�1, 1,�1) .
Total number of possible strategies 34 = 81.
Strategies labelled by numbers n(i ) = ∑3

k=0 3
k
�

α
(i )
k + 1

�
(Fundamental = 72, Trend-following = 60)
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Comparison with agent-based models

Evolution dynamics:

After r time steps, s agents copy the strategy of the s best performers
and, at the same time, have some probability to mutate that strategy.

The model was run with di¤erent initial conditions and with or
without evolution of the strategies.

When the model is run with evolution the asymptotic steady-state
behavior depends on the initial conditions.

Simulation without evolution, with a �xed 50% of fundamental
strategies (no. 72) and 50% of trend-following (no. 60), one sees a
large number of bubbles and crashes in the price evolution and the
price increments distribution has fat tails.

To compare with the behavior of the fractional volatility model:
σ2t =

1
jT0�T1 jvar (log pt ), the parameters in ∑t/δ

n=0 log σ (nδ) = βt + Rσ (t)
and jRσ (t + ∆)� Rσ (t)j were estimated from model simulation.
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Comparison with agent-based models
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Comparison with agent-based models

Notice the lack of scaling behavior of Rσ (t) with an asymptotic
exponent 0.55, denoting the lack of memory of the volatility process.
This might already be evident from the time behavior of Rσ (t) in the
lower left plot.

Also, although the returns have fat tails in this case, they are of
di¤erent shape from those observed in the market data. Similar
conclusions are obtained with other combinations of agent strategies.

In conclusion: It seems that the features of the fractional
volatility model (which are also those of the bulk market data)
are not easily captured by a choice of strategies in an
agent-based model.
Agents�reactions and strategies are very probably determinant during
market crisis and market bubbles.
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Comparison with agent-based models

A limit-order book

Asks and bids arrive at random on a window [p � w , p + w ] around
the current price p.
Every time a buy order arrives it is ful�lled by the closest non-empty
ask slot, the new current price being determined by the value of the
ask that ful�lls it.
If no ask exists when a buy order arrives it goes to a cumulative
register to wait to be ful�lled. The symmetric process occurs when a
sell order arrives, the new price being the bid that buys it.
Because the window around the current price moves up and down,
asks and bids that are too far away from the current price are
automatically eliminated.
Sell and buy orders, asks and bids all arrive at random.
The only parameters of the model are the width w of the limit-order
book and the size n of the asks and bids, the sell and buy orders
being normalized to one.
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Comparison with agent-based models
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Comparison with agent-based models

Model run for di¤erent widths w and liquidities n. Although the exact
values of the statistical parameters depend on w and n, the statistical
nature of the results is essentially the same. In the �gure n = 2, the
limit-order book divided into 2w + 1 = 21 discrete price slots with
∆p = 0.1.
The scaling properties of Rσ (t) are quite evident from the lower right
plot in the �gure, the Hurst coe¢ cient being 0.96.

Conclusion: the main statistical properties of the market data
(fast decay of the linear correlation of the returns,
non-Gaussianity and volatility memory) are already generated
by the dynamics of the limit-order book with random behavior
of the agents.
A large part of the market statistical properties (in normal
business-as-usual days) depends more on the nature of the price �xing
�nancial institutions than on particular investor strategies.
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