Stochastic solutions of pde's: A tool for localized behavior and parallel computing

Rui Vilela Mendes

Centro de Matemática e Aplicações Fundamentais, Lisbon Instituto de Plasmas e Fusão Nuclear, IST, Lisbon (http://label2.ist.utl.pt/vilela/)

Contents

- Stochastic solutions and their uses
- The probabilistic domain decomposition (PDD) method
- Construction methods: McKean's and superprocesses
- The MacKean method: An example (KPP)
- Poisson-Vlasov and reduced Maxwell-Vlasov
- The scrape-off layer equations
- Fractional processes
- Superprocesses on measures, signed measures and ultradistributions

Stochastic solutions of pde's

- Stochastic solution $=$ a stochastic process which, when started from a particular point in the domain, generates after time t a boundary measure which, integrated over the initial condition at $t=0$, provides a solution of the equation at x and time t.

Stochastic solutions of pde's

- Stochastic solution $=$ a stochastic process which, when started from a particular point in the domain, generates after time t a boundary measure which, integrated over the initial condition at $t=0$, provides a solution of the equation at x and time t.
- Example: the heat equation

$$
\partial_{t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x) \quad \text { with } \quad u(0, x)=f(x)
$$

the process is Brownian motion, $d X_{t}=d B_{t}$, and the solution

$$
\begin{equation*}
u(t, x)=\mathbb{E}_{x} f\left(X_{t}\right) \tag{1}
\end{equation*}
$$

Stochastic solutions of pde's

- Stochastic solution $=$ a stochastic process which, when started from a particular point in the domain, generates after time t a boundary measure which, integrated over the initial condition at $t=0$, provides a solution of the equation at x and time t.
- Example: the heat equation

$$
\partial_{t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x) \quad \text { with } \quad u(0, x)=f(x)
$$

the process is Brownian motion, $d X_{t}=d B_{t}$, and the solution

$$
\begin{equation*}
u(t, x)=\mathbb{E}_{x} f\left(X_{t}\right) \tag{1}
\end{equation*}
$$

- The domain here is $\mathbb{R} \times[0, t)$ and the expectation value in (1) is the inner product $\left\langle\mu_{t}, f\right\rangle$ of the initial condition f with the measure μ_{t} generated by the Brownian motion at the t-boundary.

Stochastic solutions of pde's

- Using the heat kernel the solution is

$$
u(t, x)=\frac{1}{2 \sqrt{\pi}} \int_{\mathbb{R}} \frac{1}{\sqrt{t}} \exp \left(-\frac{(x-y)^{2}}{2 t}\right) f(y) d y
$$

Integration over the domain versus "integration" over paths.

Stochastic solutions of pde's

- Using the heat kernel the solution is

$$
u(t, x)=\frac{1}{2 \sqrt{\pi}} \int_{\mathbb{R}} \frac{1}{\sqrt{t}} \exp \left(-\frac{(x-y)^{2}}{2 t}\right) f(y) d y
$$

Integration over the domain versus "integration" over paths.

- Even for linear problems, the stochastic solution approach provides a way to express exact solutions in a way that is not possible with kernels and integral representations:

$$
\begin{gathered}
L f(x)=\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(x) \partial_{i j} f(x)+\sum_{i=1}^{d} b_{i}(x) \partial_{i} f(x) \\
(L+v(x)) u(x)=-g(x) \quad \text { with } \quad u=0 \quad \text { on } \quad \partial D \\
u(x)=\mathbb{E}^{x}\left[\int_{0}^{\tau_{D}} g\left(X_{s}\right) e^{\int_{0}^{s} v\left(X_{r}\right) d r} d s\right]
\end{gathered}
$$

Stochastic solutions of pde's

- Using the heat kernel the solution is

$$
u(t, x)=\frac{1}{2 \sqrt{\pi}} \int_{\mathbb{R}} \frac{1}{\sqrt{t}} \exp \left(-\frac{(x-y)^{2}}{2 t}\right) f(y) d y
$$

Integration over the domain versus "integration" over paths.

- Even for linear problems, the stochastic solution approach provides a way to express exact solutions in a way that is not possible with kernels and integral representations:

$$
\begin{gathered}
L f(x)=\frac{1}{2} \sum_{i, j=1}^{d} a_{i j}(x) \partial_{i j} f(x)+\sum_{i=1}^{d} b_{i}(x) \partial_{i} f(x) \\
(L+v(x)) u(x)=-g(x) \quad \text { with } \quad u=0 \quad \text { on } \quad \partial D \\
u(x)=\mathbb{E}^{x}\left[\int_{0}^{\tau_{D}} g\left(X_{s}\right) e^{\int_{0}^{s} v\left(X_{r}\right) d r} d s\right]
\end{gathered}
$$

- Classical results for linear pde's. Recent work in nonlinear pde's: KPP, Navier-Stokes, Poisson-Vlasov, MHD, etc.

Stochastic solutions: What are they good for?

- New exact solutions

Stochastic solutions: What are they good for?

- New exact solutions
- New numerical algorithms

Deterministic algorithms grow exponentially with the dimension d of the space, roughly N^{d} ($\frac{L}{N}$ the linear size of the grid). The stochastic process only grows with the dimension d.

Stochastic solutions: What are they good for?

- New exact solutions
- New numerical algorithms

Deterministic algorithms grow exponentially with the dimension d of the space, roughly N^{d} ($\frac{L}{N}$ the linear size of the grid). The stochastic process only grows with the dimension d.

- Provide localized solutions

Stochastic solutions: What are they good for?

- New exact solutions
- New numerical algorithms

Deterministic algorithms grow exponentially with the dimension d of the space, roughly N^{d} ($\frac{L}{N}$ the linear size of the grid). The stochastic process only grows with the dimension d.

- Provide localized solutions
- Sample paths started from the same point are independent. Likewise, paths starting from different points are independent from each other.
The stochastic algorithms are a natural choice for parallel and distributed computation.

Stochastic solutions: What are they good for?

- New exact solutions
- New numerical algorithms

Deterministic algorithms grow exponentially with the dimension d of the space, roughly N^{d} ($\frac{L}{N}$ the linear size of the grid). The stochastic process only grows with the dimension d.

- Provide localized solutions
- Sample paths started from the same point are independent. Likewise, paths starting from different points are independent from each other.
The stochastic algorithms are a natural choice for parallel and distributed computation.
- Stochastic algorithms handle equally well regular and complex boundary conditions.

Stochastic solutions: What are they good for?

- New exact solutions
- New numerical algorithms Deterministic algorithms grow exponentially with the dimension d of the space, roughly N^{d} ($\frac{L}{N}$ the linear size of the grid). The stochastic process only grows with the dimension d.
- Provide localized solutions
- Sample paths started from the same point are independent. Likewise, paths starting from different points are independent from each other.
The stochastic algorithms are a natural choice for parallel and distributed computation.
- Stochastic algorithms handle equally well regular and complex boundary conditions.
- Domain decomposition using interpolation of localized stochastic solutions and then, in each small domain, a deterministic code. Avoids the communication time problem. Fully parallel,

The probabilistic domain decomposition (PDD) method

(J. Acebrón, A. Rodríguez-Rozas, R. Spigler)

The probabilistic domain decomposition (PDD) method

$$
u_{t}=D u_{x x}-u+u^{2}, \quad u(x, 0)=1-\frac{1}{\left(1+\exp \frac{x}{\sqrt{6 D}}\right)^{2}}
$$

The probabilistic domain decomposition (PDD) method

$$
u_{t}=\left(x^{2}+1\right) u_{x x}+[2+\sin (x)] u_{x}-u+\frac{1}{2} u^{2}+\frac{1}{2} u^{3}
$$

$u(x, 0)=1$ for $0 \leq x<1$, and $u(x, 0) \equiv 0$ elsewhere on the line

Stochastic solutions: Two construction methods

- McKean's method: a probabilistic version of the Picard series. First the differential equation is written as an integral equation and rearranged in a such a way that the coefficients of the successive terms in the Picard iteration obey a normalization condition Then the Picard iteration is interpreted as an evolution and branching proces.
The stochastic solution is equivalent to importance sampling of a normalized Picard series.

Stochastic solutions: Two construction methods

- McKean's method: a probabilistic version of the Picard series. First the differential equation is written as an integral equation and rearranged in a such a way that the coefficients of the successive terms in the Picard iteration obey a normalization condition Then the Picard iteration is interpreted as an evolution and branching proces.
The stochastic solution is equivalent to importance sampling of a normalized Picard series.
- The method of superprocesses: constructs the boundary measures of a measure-valued stochastic process and obtains the solutions of the differential equation by a scaling procedure.

The KPP equation: McKean's formulation

$$
\frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}+v^{2}-v
$$

$$
v(0, x)=g(x)
$$

- $G(t, x)=$ Green's operator for heat equation $\partial_{t} v(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} v(t, x)$

$$
G(t, x)=e^{\frac{1}{2} t \frac{\partial^{2}}{\partial x^{2}}}
$$

The KPP equation: McKean's formulation

$$
\frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}+v^{2}-v \quad v(0, x)=g(x)
$$

- $G(t, x)=$ Green's operator for heat equation $\partial_{t} v(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} v(t, x)$

$$
G(t, x)=e^{\frac{1}{2} t \frac{\partial^{2}}{\partial x^{2}}}
$$

- KPP in integral form

$$
\begin{equation*}
v(t, x)=e^{-t} G(t, x) g(x)+\int_{0}^{t} e^{-(t-s)} G(t-s, x) v^{2}(s, x) d s \tag{2}
\end{equation*}
$$

Denoting by $\left(\xi_{t}, \Pi_{x}\right)$ a Brownian motion starting from time zero and coordinate x, Eq.(2) may be rewritten as

$$
\begin{aligned}
v(t, x) & =\Pi_{x}\left\{e^{-t} g\left(\xi_{t}\right)+\int_{0}^{t} e^{-(t-s)} v^{2}\left(s, \xi_{t-s}\right) d s\right\} \\
& =\Pi_{x}\left\{e^{-t} g\left(\xi_{t}\right)+\int_{0}^{t} e^{-s} v^{2}\left(t-s, \xi_{s}\right) d s\right\}
\end{aligned}
$$

The KPP equation: McKean's formulation

- The stochastic solution process: a Brownian motion plus branching process with exponential holding time $T, P(T>t)=e^{-t}$. At each branching point the particle splits into two, the new particles going along independent Brownian paths. At time $t>0$ one has n particles located at $x_{1}(t), x_{2}(t), \cdots x_{n}(t)$. The solution is obtained by

$$
v(t, x)=\mathbb{E}\left\{g\left(x_{1}(t)\right) g\left(x_{2}(t)\right) \cdots g\left(x_{n}(t)\right)\right\}
$$

$$
|g(x)| \leq 1
$$

The KPP equation: McKean's formulation

- The stochastic solution process: a Brownian motion plus branching process with exponential holding time $T, P(T>t)=e^{-t}$. At each branching point the particle splits into two, the new particles going along independent Brownian paths. At time $t>0$ one has n particles located at $x_{1}(t), x_{2}(t), \cdots x_{n}(t)$. The solution is obtained by

$$
v(t, x)=\mathbb{E}\left\{g\left(x_{1}(t)\right) g\left(x_{2}(t)\right) \cdots g\left(x_{n}(t)\right)\right\}
$$

$|g(x)| \leq 1$

- An equivalent interpretation: a backwards-in-time process from time t at x. When it reaches $t=0$ samples the initial condition. Generates a measure at the $t=0$ boundary which is applied to $g(x)=v(0, x)$.

The KPP equation: McKean's formulation

Poisson-Vlasov equation (Cipriano, Floriani, Lima, RVM)

$$
\begin{gather*}
\frac{\partial f_{i}}{\partial t}+\vec{v} \cdot \nabla_{x} f_{i}-\frac{e_{i}}{m_{i}} \nabla_{x} \Phi \cdot \nabla_{v} f_{i}=0 \tag{3}\\
\Delta_{x} \Phi=-4 \pi\left\{\sum_{i} e_{i} \int f_{i}(\vec{x}, \vec{v}, t) d^{3} v\right\} \tag{4}
\end{gather*}
$$

Fourier transforming Eqs.(3) and (4), with

$$
\begin{gathered}
F_{i}(\xi, t)=\frac{1}{(2 \pi)^{3}} \int d^{6} \eta f_{i}(\eta, t) e^{i \xi \cdot \eta} \\
\eta=(\vec{x}, \vec{v}) \text { and } \xi=\left(\overrightarrow{\xi_{1}}, \overrightarrow{\xi_{2}}\right) \doteq\left(\xi_{1}, \xi_{2}\right), \text { one obtains } \\
\frac{\partial F_{i}(\xi, t)}{\partial t}=\vec{\xi}_{1} \cdot \nabla_{\xi_{2}} F_{i}(\xi, t)-\frac{4 \pi e_{i}}{m_{i}} \int d^{3} \xi_{1}^{\prime} F_{i}\left(\xi_{1}-\xi_{1}^{\prime}, \xi_{2}, t\right) \\
\left(\overrightarrow{\xi_{2}} \cdot \overrightarrow{\xi_{1}^{\prime}} /\left|\xi_{1}^{\prime}\right|^{2}\right) \sum_{j} e_{j} F_{j}\left(\xi_{1}^{\prime}, 0, t\right)
\end{gathered}
$$

The Poisson-Vlasov equation

The Fourier transformed equation

Changing variables to

$$
\tau=\gamma\left(\left|\xi_{2}\right|\right) t
$$

$\gamma\left(\left|\xi_{2}\right|\right)$ is a positive continuous function satisfying

$$
\begin{gathered}
\begin{array}{c}
\gamma\left(\left|\xi_{2}\right|\right)=1 \quad \text { if } \quad\left|\xi_{2}\right|<1 \\
\gamma\left(\left|\xi_{2}\right|\right) \geq\left|\xi_{2}\right| \quad \text { if } \quad\left|\xi_{2}\right| \geq 1
\end{array} \\
\frac{\partial F_{i}(\xi, \tau)}{\partial \tau}=\frac{\vec{\xi}_{1}}{\gamma\left(\left|\xi_{2}\right|\right)} \cdot \nabla_{\xi_{2}} F_{i}(\xi, \tau)-\frac{4 \pi e_{i}}{m_{i}} \int d^{3} \xi_{1}^{\prime} F_{i}\left(\xi_{1}-\vec{\xi}_{1}^{\prime}, \xi_{2}, \tau\right) \\
\\
\\
\times \frac{\overrightarrow{\xi_{2}} \cdot \hat{\xi_{1}^{\prime}}}{\gamma\left(\left|\xi_{2}\right|\right)\left|\vec{\xi}_{1}^{\prime}\right|} \sum_{j} e_{j} F_{j}\left(\xi_{1}^{\prime}, 0, \tau\right)
\end{gathered}
$$

with $\hat{\xi}_{1}=\frac{\vec{\xi}_{1}}{\left|\tilde{\xi}_{1}\right|}$.

The Poisson-Vlasov equation

The Fourier transformed equation

Stochastic representation written for the following functions

$$
\chi_{i}\left(\xi_{1}, \xi_{2}, \tau\right)=e^{-\lambda \tau} \frac{F_{i}\left(\xi_{1}, \xi_{2}, \tau\right)}{h\left(\xi_{1}\right)}
$$

with λ a constant and $h\left(\xi_{1}\right)$ a positive function to be specified later. Define

$$
\begin{aligned}
\left(\left|\xi_{1}^{\prime}\right|^{-1} h * h\right) & =\int d^{3} \xi_{1}^{\prime}\left|\xi_{1}^{\prime}\right|^{-1} h\left(\xi_{1}-\xi_{1}^{\prime}\right) h\left(\xi_{1}^{\prime}\right) \\
p\left(\xi_{1}, \xi_{1}^{\prime}\right) & =\frac{\left|\xi_{1}^{\prime}\right|^{-1} h\left(\xi_{1}-\xi_{1}^{\prime}\right) h\left(\xi_{1}^{\prime}\right)}{\left(\left|\xi_{1}^{\prime}\right|^{-1} h * h\right)}
\end{aligned}
$$

The Poisson-Vlasov equation

The Fourier transformed equation

$$
\begin{align*}
& \chi_{i}\left(\xi_{1}, \xi_{2}, \tau\right) \\
= & \stackrel{e^{-\lambda \tau}}{x} \chi_{i}\left(\xi_{1}, \xi_{2}+\tau \frac{\xi_{1}}{\gamma\left(\left|\xi_{2}\right|\right)}, 0\right)-\frac{8 \pi e_{i}}{m_{i} \lambda} \frac{\left(\left|\xi_{1}\right|^{-1} h * h\right)\left(\xi_{1}\right)}{h\left(\xi_{1}\right)} \\
& \times \int_{0}^{\tau} d s \sqrt{\lambda e^{-\lambda s}} \int d^{3} \xi_{1}^{\prime} \left\lvert\, \overline{p\left(\xi_{1}, \xi_{1}^{\prime \prime}\right)} \chi_{i}\left(\xi_{1}-\xi_{1}^{\prime \prime}, \xi_{2}+s \frac{\xi_{1}}{\gamma\left(\left|\xi_{2}\right|\right)}, \tau-s\right)\right. \\
& \times \frac{\left(\xi_{2}+s \frac{\xi_{1}}{\gamma\left(\left|\xi_{2}\right|\right)}\right) \cdot \xi_{1}^{\prime}}{\gamma\left(\left|\xi_{2}+s \frac{\xi_{1}}{\gamma\left(\left|\xi_{2}\right|\right)}\right|\right)} \sum_{j}^{\sum \left\lvert\, \frac{1}{2}\right.} e_{j} e^{\lambda(\tau-s)} \chi_{j}\left(\xi_{1}^{\prime \prime}, 0, \tau-s\right) \tag{5}
\end{align*}
$$

Notice: Bifurcation occurs at $t^{\prime}=\frac{\tau-s}{\gamma\left(\left|\xi_{2}\right|\right)}$ and time rescaling always depends on the second argument

The Poisson-Vlasov equation

The Fourier transformed equation

The Poisson-Vlasov equation

The Fourier transformed equation

Eq.(5) has a stochastic interpretation (an exponential process plus branching and Bernoulli processes).
$e^{-\lambda \tau}=$ survival probability during time τ of the exponential process $\lambda e^{-\lambda s} d s=$ the decay probability
$p\left(\xi_{1}, \xi_{1}^{\prime \prime}\right) d^{3} \xi_{1}=$ branching probability of ξ_{1} mode into $\left(\xi_{1}-\xi_{1}^{\prime \prime}, \xi_{1}^{\prime \prime}\right)$
$\chi\left(\xi_{1}, \xi_{2}, \tau\right)$ computed from the expectation value of a multiplicative functional
Convergence of the multiplicative functional:
(A) $\left|\frac{F_{i}\left(\xi_{1}, \tilde{\zeta}_{2}, 0\right)}{h\left(\xi_{1}\right)}\right| \leq 1$
(B) $\left(\left|\xi_{1}^{\prime}\right|^{-1} h * h\right)\left(\xi_{1}\right) \leq h\left(\xi_{1}\right)$, satisfied, for example,
for

$$
h\left(\xi_{1}\right)=\frac{c}{\left(1+\left|\xi_{1}\right|^{2}\right)^{2}}\left(1-\theta\left(\left|\xi_{1}\right|-M\right)\right) \quad \text { and } \quad c \leq \frac{1}{3 \pi}
$$

The Poisson-Vlasov equation

The Fourier transformed equation

The multiplicative functional of the process $X\left(\xi_{1}, \xi_{2}, \tau\right)$ is the product of:

- At each branching point where $\mathbf{2}$ particles are born

$$
g_{i j}\left(\xi_{1}, \xi_{1}^{\prime}, s\right)=-e^{\lambda(\tau-s)} \frac{8 \pi e_{i} e_{j}}{m_{i} \lambda} \frac{\left(\left|\xi_{1}^{\prime}\right|^{-1} h * h\right)\left(\xi_{1}\right)}{h\left(\xi_{1}\right)} \frac{\left(\xi_{2}+s \frac{\xi_{1}}{\gamma\left(\left|\xi_{2}\right|\right)}\right) \cdot \hat{\xi_{1}^{\prime}}}{\gamma\left(\left|\xi_{2}+s \frac{\xi_{1}}{\gamma\left(| | \xi_{2} \mid\right)}\right|\right)}
$$

- When one particle reaches time zero and samples the initial condition

$$
g_{0 i}\left(\xi_{1}, \xi_{2}\right)=\frac{F_{i}\left(\xi_{1}, \xi_{2}, 0\right)}{h\left(\xi_{1}\right)}
$$

$$
\chi_{i}\left(\xi_{1}, \xi_{2}, \tau\right)=\mathbb{E}\left\{\Pi\left(g_{0} g_{0}^{\prime} \cdots\right)\left(g_{i i} g_{i i}^{\prime} \cdots\right)\left(g_{i j} g_{i j}^{\prime} \cdots\right)\right\}
$$

The Poisson-Vlasov equation

The Fourier transformed equation

- Choose $\lambda \geq\left|\frac{8 \pi e_{i} e_{j}}{\min _{i}\left\{m_{i}\right\}}\right|$ and $c \leq e^{-\lambda \tau_{M}} \frac{1}{3 \pi} \Longrightarrow$ the absolute value of all coupling constants is bounded by one. τ_{M} is an upper bound for τ in the successive branchings

$$
\tau_{M}=\frac{\left(M t+\gamma\left(\left|\xi_{2}\right|\right)\right)^{2}}{4 M}
$$

- The branching process, identical to Galton-Watson's, terminates with probability $1 \Longrightarrow$ no. of inputs to the functional is finite a.s.
- With the bounds on the coupling constants, the multiplicative functional is bounded by one in absolute value almost surely.
- Th. 1 - The stochastic process $X\left(\xi_{1}, \xi_{2}, \tau\right)$, above described, provides a stochastic solution for the Fourier-transformed Poisson-Vlasov equation $F_{i}\left(\xi_{1}, \xi_{2}, t\right)$ for any arbitrary finite value of the arguments, provided the initial conditions at time zero satisfy the boundedness conditions (A).

The Poisson-Vlasov equation

The Fourier transformed equation

- Instead of renormalizing the time one may write

$$
\Theta_{i}\left(\xi_{1}, \xi_{2}, t\right)=e^{-t\left|\xi_{2}\right|} \frac{F_{i}\left(\xi_{1}, \xi_{2}, t\right)}{h\left(\xi_{1}\right)}
$$

$p\left(\xi_{1}, \xi_{1}^{\prime}\right)$ and the conditions on $h\left(\xi_{1}\right)$ are the same as before.
The main difference is the survival probability, namely $e^{-t\left|\xi_{2}\right|}$ and $d s \Pi\left(\xi_{1}, \xi_{2}, s\right)$ the dying probability in time $d s$

$$
\Pi\left(\xi_{1}, \xi_{2}, s\right)=\frac{\left|\xi_{2}+s \xi_{1}\right| e^{(t-s)\left|\xi_{2}+s \xi_{1}\right|-t\left|\xi_{2}\right|}}{N\left(\xi_{1}, \xi_{2}, t\right)}
$$

The Poisson-Vlasov equation

The Fourier transformed equation

- Instead of renormalizing the time one may write

$$
\Theta_{i}\left(\xi_{1}, \xi_{2}, t\right)=e^{-t\left|\xi_{2}\right|} \frac{F_{i}\left(\xi_{1}, \xi_{2}, t\right)}{h\left(\xi_{1}\right)}
$$

$p\left(\xi_{1}, \xi_{1}^{\prime}\right)$ and the conditions on $h\left(\xi_{1}\right)$ are the same as before.
The main difference is the survival probability, namely $e^{-t\left|\xi_{2}\right|}$ and $d s \Pi\left(\xi_{1}, \xi_{2}, s\right)$ the dying probability in time $d s$

$$
\Pi\left(\xi_{1}, \xi_{2}, s\right)=\frac{\left|\xi_{2}+s \xi_{1}\right| e^{(t-s)\left|\xi_{2}+s \xi_{1}\right|-t\left|\xi_{2}\right|}}{N\left(\xi_{1}, \xi_{2}, t\right)}
$$

- Solutions also for Poisson-Vlasov in an external magnetic field (Fourier and configuration space)

The SOL equations (non-polynomial interactions)

(Ph. Ghendrih, RVM)
Transport and turbulence in the scrape-off layer (SOL) region

The SOL equations

SOLEDGE

$$
\begin{aligned}
\partial_{t} N+\frac{1}{q} \partial_{\theta} \Gamma+\frac{\chi}{\eta} N & =D \partial_{r}^{2} N \\
\partial_{t} \Gamma+\frac{1}{q}(1-\chi) \partial_{\theta}\left(\frac{\Gamma^{2}}{N}+N\right)+\frac{\chi}{\eta}\left(\Gamma-\Gamma_{0}\right) & =v \partial_{r}^{2} \Gamma
\end{aligned}
$$

Γ and N are the dimensionless parallel momentum and density, (r, θ) the radial and poloidal coordinates and the mask function χ equals 1 in a region where an obstacle is located and zero elsewhere.

TOKAM2D

$$
\begin{array}{ll}
\frac{\partial}{\partial t} n & =S-\{\phi, n\}-\sigma n e^{\Lambda-\phi}+D \Delta_{\perp} n \\
\frac{\partial}{\partial t} \Delta_{\perp} \phi & =\sigma\left(1-e^{\Lambda-\phi}\right)+v \Delta_{\perp}^{2} \phi-\left\{\phi, \Delta_{\perp} \phi\right\}-\frac{1}{n} g \partial_{y} n
\end{array}
$$

$n=\frac{N}{N_{0}}$ is the normalized density field and $\phi=\frac{e U}{T_{e}}$ the normalized electric potential. Poisson brackets: $\{f, g\}=\partial_{\chi_{1}} f \partial_{\chi_{2}} g-\partial_{\chi_{2}} f \partial_{x_{1}} g$, with $x_{1}=(r-a) / \rho_{s}$ the minor radius normalized by the Larmor radius
$\rho_{s}^{2}=T_{e} / m_{i}$ and $x_{2}=a \theta / \rho_{s}$, a being the plasma radius.

The SOLEDGE equation

Dealing with non-polynomial terms: Taylor expansions and operator labels at the branching points SOLEDGE $(\chi=0)$

$$
\begin{aligned}
& N(t, r, \theta)=e^{t D \partial_{r}^{2}} N(0, r, \theta)-\frac{1}{q} \int_{0}^{t} d \tau e^{\tau D \partial_{r}^{2}} \partial_{\theta} \Gamma(t-\tau, r, \theta) \\
& \Gamma(t, r, \theta)=e^{t v \partial_{r}^{2}} \Gamma(0, r, \theta)-\frac{1}{q} \int_{0}^{t} d \tau e^{\tau v \partial_{r}^{2}} \partial_{\theta}\left\{\frac{\Gamma^{2}}{N}+N\right\}(t-\tau, r, \theta)
\end{aligned}
$$

Denote by $\xi_{s}^{(N)}$ and $\xi_{s}^{(\Gamma)}$ two Brownian motions in the r-coordinate with diffusion coefficients $\sqrt{2 D}$ and $\sqrt{2 v}$. Then the equations may be reinterpreted as defining probabilistic processes for which the expectation values are the functions $N(t, r, \theta)$ and $\Gamma(t, r, \theta)$

The SOLEDGE equation

$$
\begin{aligned}
N(t, r, \theta)= & \mathbb{E}_{(t, r, \theta)}\left[p \frac{1}{p} N\left(0, \xi_{t}^{(N)}, \theta\right)\right. \\
& \left.-\frac{t}{q(1-p)} \int_{0}^{t} \frac{1-p}{t} d \tau \partial_{\theta} \Gamma\left(t-\tau, \xi_{\tau}^{(N)}, \theta\right)\right] \\
\Gamma(t, r, \theta)= & \mathbb{E}_{(t, r, \theta)}\left[p \frac{1}{p} \Gamma\left(0, \xi_{t}^{(\Gamma)}, \theta\right)\right. \\
& \left.-\frac{2 t}{q(1-p)} \int_{0}^{t} \frac{1-p}{t} d \tau \partial_{\theta}\left\{\frac{1}{2} \frac{\Gamma^{2}}{N}+\frac{1}{2} N\right\}\left(t-\tau, \xi_{\tau}^{(\Gamma)}, \theta\right)\right]
\end{aligned}
$$

The SOLEDGE equation

The SOLEDGE equation

The contribution of this sample path to the N-expectation value is

$$
\partial_{\theta}^{2}\left\{\left(\partial_{\theta}\left\{\frac{\Gamma^{2}\left(0, r_{0}^{(1)}, \theta\right)}{N\left(0, r_{0}^{(2)}, \theta\right)}\right\}\right)^{2}\left\{\partial_{\theta} \Gamma\left(0, r_{0}^{(3)}, \theta\right)\right\}^{-1}\right\}
$$

times the factor $\left(\frac{1}{p}\right)^{3} \frac{4 t \tau_{1} \tau_{2}^{2}}{q^{4}(1-p)^{4}}$.
If the initial conditions $\left|\frac{\Gamma^{2}}{N}, N, \Gamma\right|$ and all its derivatives are bound by a constant M, a worst case analysis implies that almost sure convergence of the expectation value is guaranteed for

$$
\frac{t}{q} M<1
$$

Fractional processes (F. Cipriano, H. Ouerdiane, RVM)

A fractional version of the KPP equation

$$
\begin{equation*}
{ }_{t} D_{*}^{\alpha} u(t, x)=\frac{1}{2}{ }_{x} D_{\theta}^{\beta} u(t, x)+u^{2}(t, x)-u(t, x) \tag{6}
\end{equation*}
$$

${ }_{t} D_{*}^{\alpha}$ is a Caputo derivative of order α

$$
{ }_{t} D_{*}^{\alpha} f(t)= \begin{cases}\frac{1}{\Gamma(m-\beta)} \int_{0}^{t} \frac{f^{(m)}(\tau) d \tau}{(t-\tau)^{\alpha+1-m}} & m-1<\alpha<m \\ \frac{d^{m}}{d t^{m}} f(t) & \alpha=m\end{cases}
$$

${ }_{x} D_{\theta}^{\beta}$ is a Riesz-Feller derivative defined through its Fourier symbol

$$
\mathcal{F}\left\{{ }_{x} D_{\theta}^{\beta} f(x)\right\}(k)=-\psi_{\beta}^{\theta}(k) \mathcal{F}\{f(x)\}(k)
$$

with $\psi_{\beta}^{\theta}(k)=|k|^{\beta} e^{i(\operatorname{sign} k) \theta \pi / 2}$.
Physically it describes a nonlinear diffusion with growing mass and in our fractional generalization it would represent the same phenomenon taking into account memory effects in time and long range correlations in space.

A fractional nonlinear equation

The first step towards a probabilistic formulation is the rewriting of Eq.(6) as an integral equation. Take the Fourier transform (\mathcal{F}) in space and the Laplace transform (\mathcal{L}) in time
$s^{\alpha} \tilde{\hat{u}}(s, k)=s^{\alpha-1} \hat{u}\left(0^{+}, k\right)-\frac{1}{2} \psi_{\beta}^{\theta}(k) \tilde{\hat{u}}(s, k)-\tilde{\hat{u}}(s, k)+\int_{0}^{\infty} d t e^{-s t} \mathcal{F}\left(u^{2}\right)$ where

$$
\begin{aligned}
& \hat{u}(t, k)=\mathcal{F}(u(t, x))=\int_{-\infty}^{\infty} e^{i k x} u(t, x) \\
& \tilde{u}(s, x)=\mathcal{L}(u(t, x))=\int_{0}^{\infty} e^{-s t} u(t, x)
\end{aligned}
$$

This equation holds for $0<\alpha \leq 1$ or for $0<\alpha \leq 2$ with $\frac{\partial}{d t} u\left(0^{+}, x\right)=0$.
Solving for $u(s, k)$ one obtains an integral equation

$$
\tilde{\hat{u}}(s, k)=\frac{s^{\alpha-1}}{s^{\alpha}+\frac{1}{2} \psi_{\beta}^{\theta}(k)} \hat{u}\left(0^{+}, k\right)+\int_{0}^{\infty} d t \frac{e^{-s t}}{s^{\alpha}+\frac{1}{2} \psi_{\beta}^{\theta}(k)} \mathcal{F}\left(u^{2}(t, x)\right)
$$

A fractional nonlinear equation

Taking the inverse Fourier and Laplace transforms

$$
\begin{aligned}
& u(t, x) \\
= & {\left[E_{\alpha, 1}\left(-t^{\alpha}\right)\right.} \\
& +\int_{-\infty}^{\infty} d y \mathcal{F}^{-1}\left(\frac{E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, 1}\left(-t^{\alpha}\right)}\right)(x-y) u(0, y) \\
& \int_{-\infty}^{\infty} d y \mathcal{F}^{-1}\left(\frac{E_{\alpha, \alpha}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right)(t-\tau)^{\alpha}\right)}{E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)}\right)(x-y) u^{2}(\tau, y)
\end{aligned}
$$

$E_{\alpha, \rho}$ is the generalized Mittag-Leffler function $E_{\alpha, \rho}(z)=\sum_{j=0}^{\infty} \frac{z^{j}}{\Gamma(\alpha j+\rho)}$

$$
E_{\alpha, 1}\left(-t^{\alpha}\right)+\int_{0}^{t} d \tau(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)=1
$$

A fractional nonlinear equation

We define the following propagation kernel

$$
\begin{aligned}
& G_{\alpha, \rho}^{\beta}(t, x)=\mathcal{F}^{-1}\left(\frac{E_{\alpha, \rho}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, \rho}\left(-t^{\alpha}\right)}\right)(x) \\
&= u(t, x) \\
& E_{\alpha, 1}\left(-t^{\alpha}\right) \int_{-\infty}^{\infty} d y G_{\alpha, 1}^{\beta}(t, x-y) \\
& u\left(0^{+}, y\right) \\
&+\int_{0}^{t} d \tau \sqrt[(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)]{ } \\
& \int_{-\infty}^{\infty} d y G_{\alpha, \alpha}^{\beta}(t-\tau, x-y)
\end{aligned} u^{2}(\tau, y)
$$

$E_{\alpha, 1}\left(-t^{\alpha}\right)$ and $(t-\tau)^{\alpha-1} E_{\alpha, \alpha}\left(-(t-\tau)^{\alpha}\right)=$ survival probability up to time t and the probability density for the branching at time τ (branching process B_{α})

A fractional nonlinear equation

A fractional nonlinear equation

$$
u(t, x)=\mathbb{E}_{x}\left(\varphi_{1} \varphi_{2} \cdots \varphi_{n}\right)
$$

with

$$
\begin{aligned}
\varphi_{i}= & \int d y_{1}^{(i)} d y_{2}^{(i)} \cdots d y_{k-1}^{(i)} d y_{k}^{(i)} G_{\alpha, \alpha}^{\beta}\left(\tau_{1}, x-y_{1}\right) G_{\alpha, \alpha}^{\beta}\left(\tau_{2}, y_{1}-y_{2}\right) \cdots \\
& \cdots G_{\alpha, \alpha}^{\beta}\left(\tau_{k-1}, y_{k-2}-y_{k-1}\right) G_{\alpha, 1}^{\beta}\left(\tau_{k}, y_{k-1}-y_{k}\right) u\left(0^{+}, y_{k}\right)
\end{aligned}
$$

with $\sum_{i=1}^{k} \tau_{j}=t, k-1$ being the number of branchings leading to particle i
The propagation kernels satisfy the conditions to be the Green's functions of stochastic processes in \mathbb{R} :

$$
u(t, x)=\mathbb{E}_{x}\left(u\left(0^{+}, x+\xi_{1}\right) u\left(0^{+}, x+\xi_{2}\right) \cdots u\left(0^{+}, x+\xi_{n}\right)\right)
$$

A fractional nonlinear equation

Denote the processes associated to $G_{\alpha, 1}^{\beta}(t, x)$ and $G_{\alpha, \alpha}^{\beta}(t, x)$, respectively by $\Pi_{\alpha, 1}^{\beta}$ and $\Pi_{\alpha, \alpha}^{\beta}$
Proposition: The nonlinear fractional partial differential equation (6), with $0<\alpha \leq 1$, has a stochastic solution, the coordinates $x+\xi_{i}$ in the arguments of the initial condition obtained from the exit values of a propagation and branching process, the branching being ruled by the process B_{α} and the propagation by $\Pi_{\alpha, 1}^{\beta}$ for the first particle and by $\Pi_{\alpha, \alpha}^{\beta}$ for all the remaining ones.
A sufficient condition for the existence of the solution is

$$
\left|u\left(0^{+}, x\right)\right| \leq 1
$$

The Green's functions and characterization of the processes

The processes $\Pi_{\alpha, 1}^{\beta}$ and $\Pi_{\alpha, \alpha}^{\beta}$

$$
\begin{aligned}
& \mathcal{F}\left\{G_{\alpha, 1}^{\beta}(t, x)\right\}(t, k)=\frac{E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, 1}\left(-t^{\alpha}\right)} \\
& \mathcal{F}\left\{G_{\alpha, \alpha}^{\beta}(t, x)\right\}(t, k)=\frac{E_{\alpha, \alpha}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)}{E_{\alpha, \alpha}\left(-t^{\alpha}\right)}
\end{aligned}
$$

For a propagation kernel $G(t, x)$ to be the Green's function of a stochastic process, the following conditions should be satisfied:
(i) $G(0, x-y)=\delta(x-y)$ or $\mathcal{F}\{G\}(0, k)=1 \forall k$
(ii) $\int d x G(t, x)=1 \forall t$ or $\mathcal{F}\{G\}(t, 0)=1$
(iii) $G(t, x)$ should be real and ≥ 0

The Green's functions and characterization of the

 processesFor the processes $\Pi_{\alpha, 1}^{\beta}$ and $\Pi_{\alpha, \alpha}^{\beta}$
(i) $\mathcal{F}\left\{G_{\alpha, 1}^{\beta}\right\}(0, k)=\frac{E_{\alpha, 1}(0)}{E_{\alpha, 1}(0)}=1$ and $\mathcal{F}\left\{G_{\alpha, \alpha}^{\beta}\right\}(0, k)=\frac{E_{\alpha, \alpha}(0)}{E_{\alpha, \alpha}(0)}=1$
(ii) $\mathcal{F}\left\{G_{\alpha, 1}^{\beta}\right\}(t, 0)=\frac{E_{\alpha, 1}\left(-t^{\alpha}\right)}{E_{\alpha, 1}\left(-t^{\alpha}\right)}=1$ and $\mathcal{F}\left\{G_{\alpha, \alpha}^{\beta}\right\}(t, 0)=\frac{E_{\alpha, \alpha}\left(-t^{\alpha}\right)}{E_{\alpha, \alpha}\left(-t^{\alpha}\right)}=1$
(iii) If $\mathcal{F}\{G\}(t,-k)=(\mathcal{F}\{G\}(t, k))^{*}$ then $G(t, x)$ is real.

Because $\psi_{\beta}^{\theta}(-k)=\left(\psi_{\beta}^{\theta}(k)\right)^{*}$ it follows

$$
\begin{aligned}
& E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(-k)\right) t^{\alpha}\right)=\left(E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)\right)^{*} \\
& E_{\alpha, \alpha}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(-k)\right) t^{\alpha}\right)=\left(E_{\alpha, 1}\left(-\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(k)\right) t^{\alpha}\right)\right)^{*}
\end{aligned}
$$

implying that both $G_{\alpha, 1}^{\beta}(t, x)$ and $G_{\alpha, \alpha}^{\beta}(t, x)$ are real.

The Green's functions and characterization of the processes

Finally, for the positivity, one notices that for $0<\alpha \leq 1$ and $\rho \geq \alpha$, $E_{\alpha, \rho}(-x)$ is a completely monotone function. Therefore

$$
E_{\alpha, \rho}(-x)=\int_{0}^{\infty} e^{-r x} d F(r)
$$

with F nondecreasing and bounded. For $G_{\alpha, \rho}^{\beta}(t, x)(\rho=1$ and $\rho=\alpha)$ one has

$$
\begin{aligned}
G_{\alpha, \rho}^{\beta}(t, x) & =\frac{1}{2 \pi E_{\alpha, \rho}\left(-t^{\alpha}\right)} \int_{0}^{\infty} d F(r) \int_{-\infty}^{\infty} d k e^{-i k x} e^{-r t^{\alpha}\left(1+\frac{1}{2} \psi_{\beta}^{\theta}(-k)\right)} \\
& =\frac{1}{2 \pi E_{\alpha, \rho}\left(-t^{\alpha}\right)} \int_{0}^{\infty} d F(r) e^{-r t^{\alpha}} \int_{-\infty}^{\infty} d k e^{-i k x} e^{-\frac{r^{\alpha}}{2} \psi_{\beta}^{\theta}(-k)}
\end{aligned}
$$

We recognize the last integral (in k) as the Green's function of a Levy process. Therefore one has an integral in r of positive quantities implying that $G_{\alpha, 1}^{\beta}(t, x)$ and $G_{\alpha, \alpha}^{\beta}(t, x)$ are positive.

The Green's functions and characterization of the processes

The process B_{α}
The decaying probability in time $d \tau$ of this process is

$$
\tau^{\alpha-1} E_{\alpha, \alpha}\left(-\tau^{\alpha}\right)
$$

From

$$
\int_{0}^{t} \tau^{\alpha-1} E_{\alpha, \alpha}\left(-\tau^{\alpha}\right) d \tau=1-E_{\alpha, 1}\left(-t^{\alpha}\right)
$$

it follows that $E_{\alpha, 1}\left(-t^{\alpha}\right)$ is the survival probability up to time t. The process B_{α} is a fractional generalization of the exponential process.

Superprocesses

- $\mathcal{S}=$ the Schwartz space of functions of rapid decrease on E
- $\mathcal{U} \subset \mathcal{S}$, functions in \mathcal{S} that may be extended into the complex plane as entire functions of rapid decrease on strips.
- \mathcal{U}^{\prime}, the dual of \mathcal{U}, (Silva's space of tempered ultradistributions), which can also be characterized as the space of all Fourier transforms of distributions of exponential type
- Restrict further to the space \mathcal{U}_{0}^{\prime} of tempered ultradistributions of compact support.
- $\left(X_{t}, P_{0, v}\right)$ a branching stochastic process with values in \mathcal{U}_{0}^{\prime} and transition probability $P_{0, v}$ starting from time 0 and $v \in \mathcal{U}_{0}^{\prime}$.
- The process satisfies the branching property if given $v=v_{1}+v_{2}$

$$
P_{0, v}=P_{0, v_{1}} * P_{0, v_{2}}
$$

that is, after the branching $\left(X_{t}^{1}, P_{0, v_{1}}\right)$ and $\left(X_{t}^{2}, P_{0, v_{2}}\right)$ are independent and $X_{t}^{1}+X_{t}^{2}$ has the same law as $\left(X_{t}, P_{0, v}\right)$.

Superprocesses

- For the transition operator V_{t} operating on functions on \mathcal{U} the branching property is

$$
\left\langle V_{t} f, v_{1}+v_{2}\right\rangle=\left\langle V_{t} f, v_{1}\right\rangle+\left\langle V_{t} f, v_{2}\right\rangle
$$

with $e^{-\left\langle V_{t} f, v\right\rangle} \stackrel{\circ}{=} P_{0, v} e^{-\left\langle f, X_{t}\right\rangle}$

$$
\left\langle V_{t} f, v\right\rangle=-\log P_{0, v} e^{-\left\langle f, X_{t}\right\rangle} \quad f \in \mathcal{U}, v \in \mathcal{U}_{0}^{\prime}
$$

- In the usual construction of superprocesses on measures, one starts from an initial δ_{x} which branches into other $\delta^{\prime} s$ with, at most, some scaling factors. The restriction to \mathcal{U}_{0}^{\prime} preserves this pointwise interpretation. Any ultradistribution in \mathcal{U}_{0}^{\prime} has a multipole expansion at any point of its support (a series of $\delta^{\prime} s$ and their derivatives)
- In $M=[0, \infty) \times E$ consider a set $Q \subset M$ and the associated exit process $\xi=\left(\xi_{t}, \Pi_{0, x}\right)$ with parameter k defining the lifetime. The process stars from $x \in E$ carrying along an ultradistribution in \mathcal{U}_{0}^{\prime} with support on the path.

Superprocesses

- At each branching point of the ξ_{t}-process there is a transition ruled by the P probability in \mathcal{U}_{0}^{\prime} leading to one or more elements in \mathcal{U}_{0}^{\prime}. These \mathcal{U}_{0}^{\prime} elements are then carried along by the new paths of the ξ_{t}-process. The whole process stops at the boundary ∂Q, defining a exit process $\left(X_{Q}, P_{0, v}\right)$ on \mathcal{U}_{0}^{\prime}. If the initial v is δ_{x}

$$
u(x)=\left\langle V_{Q} f, v\right\rangle=-\log P_{0, x} e^{-\left\langle f, x_{Q}\right\rangle}
$$

$\left\langle f, X_{Q}\right\rangle$ is computed on the (space-time) boundary with the exit ultradistribution generated by the process.

- Connection to nonlinear pde's established by defining the whole process to be a (ξ, ψ)-superprocess if $u(x)$ satisfies the equation

$$
\begin{equation*}
u+G_{Q} \psi(u)=K_{Q} f \tag{7}
\end{equation*}
$$

$$
G_{Q} f(r, x)=\Pi_{0, x} \int_{0}^{\tau} f\left(s, \xi_{s}\right) d s ; \quad K_{Q} f(x)=\Pi_{0, x} 1_{\tau<\infty} f\left(\xi_{\tau}\right)
$$

$\psi(u)$ means $\psi(0, x ; u(0, x))$ and τ is the first exit time from Q.

Superprocesses

Construction of the superprocess: Let $\varphi(s, x ; z)$ be the branching function at time s and point x. Then, with $P_{0, x} e^{-\left\langle f, X_{Q}\right\rangle} \doteq e^{-w(0, x)}$

$$
\begin{equation*}
e^{-w(0, x)}=\Pi_{0, x}\left[e^{-k \tau} e^{-f\left(\tau, \xi_{\tau}\right)}+\int_{0}^{\tau} d s k e^{-k s} \varphi\left(s, \xi_{s} ; e^{-w\left(\tau-s, \xi_{s}\right)}\right)\right] \tag{8}
\end{equation*}
$$

τ is the first exit time from Q and $f\left(\tau, \xi_{\tau}\right)=\left\langle f, X_{Q}\right\rangle$ is computed with the exit boundary ultradistribution. For measure-valued superprocesses

$$
\varphi(s, y ; z)=c \sum_{0}^{\infty} p_{n}(s, y) z^{n}
$$

with $\sum_{n} p_{n}=1$, but now it may be a more general function.
Using $\int_{0}^{\tau} k e^{-k s} d s=1-e^{-k \tau}$ and the Markov property
$\Pi_{0, x} 1_{s<\tau} \Pi_{s, \xi_{s}}=\Pi_{0, x} 1_{s<\tau}$ Eq.(8) is converted into
$e^{-w(0, x)}=\Pi_{0, x}\left[e^{-f\left(\tau, \xi_{\tau}\right)}+k \int_{0}^{\tau} d s\left[\varphi\left(s, \xi_{s} ; e^{-w\left(\tau-s, \tilde{\zeta}_{s}\right)}\right)-e^{-w\left(\tau-s, \tilde{\zeta}_{s}\right)}\right]\right]$

Superprocesses

- Eq.(7) is now obtained by a limiting process. Let in (9) replace $w(0, x)$ by $\beta w_{\beta}(0, x)$ and f by $\beta f . \beta$ is interpreted as the mass of the particles and when $X_{Q} \rightarrow \beta X_{Q}$ then $P_{\mu} \rightarrow P_{\frac{\mu}{\beta}}$.
$e^{-\beta w(0, x)}=$

$$
\Pi_{0, x}\left[e^{-\beta f\left(\tau, \xi_{\tau}\right)}+k_{\beta} \int_{0}^{\tau} d s\left[\varphi_{\beta}\left(s, \xi_{s} ; e^{-\beta w\left(\tau-s, \xi_{s}\right)}\right)-e^{-\beta w\left(\tau-s, \xi_{s}\right)}\right]\right]
$$

- Scaling limit (first type)

$$
\begin{gathered}
u_{\beta}^{(1)}=\left(1-e^{-\beta w_{\beta}}\right) / \beta ; \quad f_{\beta}^{(1)}=\left(1-e^{-\beta f}\right) / \beta \\
\psi_{\beta}^{(1)}\left(0, x ; u_{\beta}^{(1)}\right)=\frac{k_{\beta}}{\beta}\left(\varphi\left(0, x ; 1-\beta u_{\beta}^{(1)}\right)-1+\beta u_{\beta}^{(1)}\right)
\end{gathered}
$$

Superprocesses

$$
u_{\beta}^{(1)}(0, x)+\Pi_{0, x} \int_{0}^{\tau} d s \psi_{\beta}^{(1)}\left(s, \xi_{s} ; u_{\beta}^{(1)}\right)=\Pi_{0, x} f_{\beta}^{(1)}\left(\tau, \xi_{\tau}\right)
$$

that is

$$
u_{\beta}^{(1)}+G_{Q} \psi_{\beta}^{(1)}\left(u_{\beta}^{(1)}\right)=K_{Q} f_{\beta}^{(1)}
$$

When $\beta \rightarrow 0, f_{\beta}^{(1)} \rightarrow f$ and if ψ_{β} goes to a well defined limit ψ then u_{β} tends to a limit u solution of (7) associated to a superprocess. Also one sees from that in the $\beta \rightarrow 0$ limit

$$
u_{\beta}^{(1)} \rightarrow w_{\beta}=-\log P_{0, x} e^{-\left\langle f, X_{Q}\right\rangle}
$$

The superprocess corresponds to a cloud of particles for which both the mass and the lifetime tend to zero

Superprocesses on measures

Restrict to measure-valued superprocesses, that is, in terms of paths, to $\delta^{\prime} s$ propagating along the paths of the $\left(\xi_{t}, \Pi_{0, x}\right)$ process and branching to new δ measures at each branching point. Let us construct a superprocess providing a solution to the equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-u^{\alpha}
$$

for $1<\alpha \leq 2$. Comparing with (7) one should have

$$
\psi(0, x ; u)=u^{\alpha}
$$

Then, with $z=1-\beta u_{\beta}^{(1)}$ one has

$$
\begin{aligned}
& \varphi(0, x ; z)=\sum_{n} p_{n} z^{n}=z+\frac{\beta}{k_{\beta}} u_{\beta}^{(1) \alpha}=z+\frac{\beta}{k_{\beta}} \frac{(1-z)^{\alpha}}{\beta^{\alpha}} \\
& \quad=z+\frac{1}{k_{\beta} \beta^{\alpha-1}}\left(1-\alpha z+\frac{\alpha(\alpha-1)}{2} z^{2}-\frac{\alpha(\alpha-1)(\alpha-2)}{3!} z^{3}+\cdots\right)
\end{aligned}
$$

Superprocesses on measures

Choosing $k_{\beta}=\frac{\alpha}{\beta^{\alpha-1}}$ the terms in z cancel and for $1<\alpha \leq 2$ the coefficients of all z powers are positive and may be interpreted as branching probabilities p_{n} into new $\delta^{\prime} s$

$$
p_{0}=\frac{1}{\alpha} ; \quad p_{1}=0 ; \quad \cdots \quad p_{n}=\frac{(-1)^{n}}{\alpha}\binom{\alpha}{n} ; \quad \sum_{n} p_{n}=1
$$

With $k_{\beta}=\frac{\alpha}{\beta^{\alpha-1}}$ and $\beta \rightarrow 0$ the superprocess provides a solution to

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-u^{\alpha}
$$

$\alpha=2$ is an upper bound for this representation, because for $\alpha>2$ some of the $p_{n}^{\prime} s$ would be negative. For the particular case

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-u^{2} \\
p_{1}=0 ; \quad p_{0}=p_{2}=\frac{1}{2} ; \quad k_{\beta}=\frac{2}{\beta}
\end{gathered}
$$

Superprocesses and a nonlinear heat equation

$\alpha=2$

Superprocesses on measures: other limits

Superprocesses are usually associated with nonlinear pde's in the scaling limit $\beta \rightarrow 0$. However other limits may also be useful. For example with with $p_{n}=\delta_{n, 2}, \beta=1$ and $k_{\beta}=1$ one obtains

$$
\begin{aligned}
\psi_{\beta}^{(1)}\left(0, x ; u_{\beta}^{(1)}\right) & =\frac{k_{\beta}}{\beta}\left(\sum p_{n}\left(1-\beta u_{\beta}^{(1)}\right)^{n}-1+\beta u_{\beta}^{(1)}\right) \\
& =\frac{k_{\beta}}{\beta}\left(\beta^{2} u_{\beta}^{(1) 2}-\beta u_{\beta}^{(1)}\right) \rightarrow u^{2}-u
\end{aligned}
$$

In this case, one is led to the KPP equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-u^{2}+u
$$

Because $\beta=1$ instead of $\beta \rightarrow 0$, the solution is given by $\left(1-e^{-w}\right)$ instead of $u_{\beta}^{(1)} \rightarrow w_{\beta}=-\log P_{0, x} e^{-\left\langle f, X_{Q}\right\rangle}$. Although the solution of KPP may be obtained by another method, interpretation as an exit measure allows for the construction of solutions with arbitrary boundary conditions.

Superprocesses on ultradistributions

- Superprocesses on measures allows the construction of solutions for equations which do not possess a natural Poisson clock. It has the severe limitation of requiring a polynomial branching function $\varphi(s, x ; z)$. Restricts the nonlinear terms in the pde's to be powers of $u\left(u^{a}\right)$. In addition, these terms must be such that all coefficients in the z^{n} expansion be positive $(1<\alpha \leq 2)$.

Superprocesses on ultradistributions

- Superprocesses on measures allows the construction of solutions for equations which do not possess a natural Poisson clock. It has the severe limitation of requiring a polynomial branching function $\varphi(s, x ; z)$. Restricts the nonlinear terms in the pde's to be powers of $u\left(u^{a}\right)$. In addition, these terms must be such that all coefficients in the z^{n} expansion be positive $(1<\alpha \leq 2)$.
- The variable z in $\varphi_{\beta}(s, x ; z)$ is $z=e^{-\beta w\left(\tau-s, \xi_{s}\right)}=P_{0, x} e^{-\langle\beta f, X\rangle}$. When one generalizes to \mathcal{U}_{0}^{\prime}, changes of sign and transitions from deltas to their derivatives are allowed. There are basically two new transitions at the branching points:

Superprocesses on ultradistributions

- Superprocesses on measures allows the construction of solutions for equations which do not possess a natural Poisson clock. It has the severe limitation of requiring a polynomial branching function $\varphi(s, x ; z)$. Restricts the nonlinear terms in the pde's to be powers of $u\left(u^{a}\right)$. In addition, these terms must be such that all coefficients in the z^{n} expansion be positive $(1<\alpha \leq 2)$.
- The variable z in $\varphi_{\beta}(s, x ; z)$ is $z=e^{-\beta w\left(\tau-s, \xi_{s}\right)}=P_{0, x} e^{-\langle\beta f, X\rangle}$. When one generalizes to \mathcal{U}_{0}^{\prime}, changes of sign and transitions from deltas to their derivatives are allowed. There are basically two new transitions at the branching points:
- 1) A change of sign in the point support ultradistribution

$$
e^{\left\langle\beta f, \delta_{x}\right\rangle}=e^{\beta f(x)} \rightarrow e^{\left\langle\beta f,-\delta_{x}\right\rangle}=e^{-\beta f(x)}
$$

which corresponds to

$$
z \rightarrow \frac{1}{z}
$$

Superprocesses on ultradistributions

- 2) A change from $\delta^{(n)}$ to $\pm \delta^{(n+1)}$, for example

$$
e^{\left\langle\beta f, \delta_{x}\right\rangle}=e^{\beta f(x)} \rightarrow e^{\left\langle\beta f, \pm \delta_{x}^{\prime}\right\rangle}=e^{\mp \beta f^{\prime}(x)}
$$

which corresponds to

$$
z \rightarrow e^{\mp \partial_{x} \log z}
$$

Superprocesses on ultradistributions

- 2) A change from $\delta^{(n)}$ to $\pm \delta^{(n+1)}$, for example

$$
e^{\left\langle\beta f, \delta_{x}\right\rangle}=e^{\beta f(x)} \rightarrow e^{\left\langle\beta f, \pm \delta_{x}^{\prime}\right\rangle}=e^{\mp \beta f^{\prime}(x)}
$$

which corresponds to

$$
z \rightarrow e^{\mp \partial_{x} \log z}
$$

- Case 1) corresponds to an extension of superprocesses on measures to superprocesses on signed measures and the second to superprocesses in \mathcal{U}_{0}^{\prime}.
How these transformations provide stochastic representations of solutions for other classes of pde's, will be illustrated by two examples

Superprocesses on ultradistributions: Examples

$$
\varphi^{(1)}(0, x ; z)=p_{1} e^{\partial_{x} \log z}+p_{2} e^{-\partial_{x} \log z}+p_{3} z^{2}
$$

This branching function means that at the branching point, with probability p_{1} a derivative is added to the propagating ultradistribution, with probability p_{2} a derivative is added plus a change of sign and with probability p_{3} the ultradistribution branches into two identical ones. Using the transformation and scaling limit one has, for small β

$$
\begin{aligned}
z \rightarrow & e^{\mp \partial_{x} \log z}=e^{\mp \partial_{x} \log \left(1-\beta u_{\beta}^{(1)}\right)} \\
= & 1 \pm \beta \partial_{x} u_{\beta}^{(1)}+\frac{\beta^{2}}{2}\left\{\left(\partial_{x} u_{\beta}^{(1)}\right)^{2} \pm \partial_{x} u_{\beta}^{(1) 2}\right\}+O\left(\beta^{3}\right) \\
& z \rightarrow z^{2}=\left(1-\beta u_{\beta}^{(1)}\right)^{2}=1-2 \beta u_{\beta}^{(1)}+\beta^{2} u_{\beta}^{(1) 2}
\end{aligned}
$$

Superprocesses on ultradistributions: Examples

Computing $\psi_{\beta}\left(0, x ; u_{\beta}^{(1)}\right)$ with $p_{1}=p_{2}=\frac{1}{4}$ and $p_{3}=\frac{1}{2}$ one obtains

$$
\begin{aligned}
\psi_{\beta}^{(1)}\left(0, x ; u_{\beta}^{(1)}\right) & =\frac{k_{\beta}}{\beta}\left(\varphi^{(1)}\left(0, x ; 1-\beta u_{\beta}^{(1)}\right)-1+\beta u_{\beta}^{(1)}\right) \\
& =\frac{k_{\beta}}{\beta}\left(\frac{1}{8} \beta^{2}\left(\partial_{x} u_{\beta}^{(1)}\right)^{2}+\frac{1}{2} \beta^{2} u_{\beta}^{(1) 2}+O\left(\beta^{3}\right)\right)
\end{aligned}
$$

meaning that, with $k_{\beta}=\frac{4}{\beta}$, the superprocess provides, in the $\beta \rightarrow 0$ limit, a solution to the equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-2 u^{2}-\frac{1}{2}\left(\partial_{x} u\right)^{2}
$$

Superprocesses on ultradistributions: Examples

For the second example a different scaling limit will be used, namely

$$
u_{\beta}^{(2)}=\frac{1}{2 \beta}\left(e^{\beta w_{\beta}}-e^{-\beta w_{\beta}}\right) \quad ; \quad f_{\beta}^{(2)}=\frac{1}{2 \beta}\left(e^{\beta f}-e^{-\beta f}\right)
$$

Notice that, as before, $u_{\beta}^{(2)} \rightarrow w_{\beta}$ and $f_{\beta}^{(2)} \rightarrow f$ when $\beta \rightarrow 0$. In this case with $z=e^{\beta w_{\beta}}$ one has

$$
\begin{aligned}
z & =-2 \beta u_{\beta}^{(2)}+2 \sqrt{\beta^{2} u_{\beta}^{(2) 2}+1} \\
& =2-2 \beta u_{\beta}^{(2)}+\beta^{2} u_{\beta}^{(2) 2}+O\left(\beta^{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{z} & =2 \beta u_{\beta}^{(2)}+2 \sqrt{\beta^{2} u_{\beta}^{(2) 2}+1} \\
& =2+2 \beta u_{\beta}^{(2)}+\beta^{2} u_{\beta}^{(2) 2}+O\left(\beta^{4}\right)
\end{aligned}
$$

Superprocesses on ultradistributions: Examples

For the integral equation one has

$$
u_{\beta}^{(2)}(0, x)+\Pi_{0, x} \int_{0}^{\tau} d s \psi_{\beta}^{(2)}\left(s, \xi_{s} ; u_{\beta}^{(2)}\right)=\Pi_{0, x} f_{\beta}^{(2)}\left(\tau, \xi_{\tau}\right)
$$

with

$$
\psi_{\beta}^{(2)}\left(0, x ; u_{\beta}^{(2)}\right)=k_{\beta}\left(\frac{1}{2 \beta}\left(\varphi(0, x ; z)-\varphi\left(0, x ; \frac{1}{z}\right)\right)-u_{\beta}^{(2)}\right)
$$

Superprocesses on ultradistributions: Examples

Let now

$$
\varphi^{(2)}(0, x ; z)=p_{1} z^{2}+p_{2} \frac{1}{z}
$$

This branching function means that with probability p_{1} the ultradistribution branches into two identical ones and with probability p_{2} it changes its sign. Therefore, in this case, one is simply extending the superprocess construction to signed measures.
$\psi_{\beta}^{(2)}\left(0, x ; u_{\beta}^{(2)}\right)=k_{\beta}\left\{-p_{1} 8 u_{\beta}^{(2)}\left(1+\frac{1}{2} \beta^{2} u_{\beta}^{(2) 2}\right)+p_{2} u_{\beta}^{(2)}-u_{\beta}^{(2)}+O\left(\beta^{4}\right)\right.$ and with $p_{1}=\frac{1}{10} ; p_{2}=\frac{9}{10}$ and $k_{\beta}=\frac{5}{2 \beta^{2}}$ one obtains in the in the $\beta \rightarrow 0$ limit

$$
\psi_{\beta}^{(2)}\left(0, x ; u_{\beta}^{(2)}\right) \rightarrow-u_{\beta}^{(2) 3}
$$

meaning that this superprocess provides a solution to the equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+u^{3}
$$

References

- H. P. McKean; Comm. on Pure and Appl. Math. 28 (1975) 323-331
- Y. LeJan and A. S. Sznitman ; Prob. Theory and Relat. Fields 109 (1997) 343-366.
- E. C. Waymire; Prob. Surveys 2 (2005) 1-32.
- RVM and F. Cipriano; Commun. Nonlinear Science and Num. Simul. 13 (2008) 221-226 and 1736.
- E. Floriani, R. Lima and RVM; European Physical Journal D 46 (2008) 295-302 and 407.
- RVM; Stochastics 81 (2009) 279-297.
- F. Cipriano, H. Ouerdiane, RVM; Frac.Calc.Ap.Anal. 12 (2009) 47-56.
- RVM; J. Math. Phys. 51 (2010) 043101.
- J. A. Acebrón, A. R.-Rozas and R. Spigler; J. of Comp. Phys. 228 (2009) 5574; 230 (2011) 7891; J. Sc. Comp. 43 (2010) 135.
- E. B. Dynkin; Diffusions, Superdiffusions and Partial Differential Equations, AMS Colloquium Pubs., Providence 2002.
- RVM; http://label2.ist.utl.pt/vilela/Papers/superproc.pdf

