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Stochastic solutions of pde�s

Stochastic solution = a stochastic process which, when started from
a particular point in the domain, generates after time t a boundary
measure which, integrated over the initial condition at t = 0, provides
a solution of the equation at x and time t.

Example: the heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

the process is Brownian motion, dXt = dBt , and the solution

u(t, x) = Ex f (Xt ) (1)

The domain here is R� [0, t) and the expectation value in (1) is the
inner product hµt , f i of the initial condition f with the measure µt
generated by the Brownian motion at the t�boundary.
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Stochastic solutions of pde�s

Using the heat kernel the solution is

u (t, x) =
1

2
p

π

Z
R

1p
t
exp

 
� (x � y)

2

2t

!
f (y) dy

Integration over the domain versus "integration" over paths.

Even for linear problems, the stochastic solution approach provides a
way to express exact solutions in a way that is not possible with
kernels and integral representations:

Lf (x) =
1
2

d

∑
i ,j=1

aij (x)∂ij f (x) +
d

∑
i=1
bi (x)∂i f (x)

(L+ v(x)) u(x) = �g(x) with u = 0 on ∂D

u(x) = Ex
hR τD
0 g(Xs )e

R s
0 v (Xr )drds

i
Classical results for linear pde�s. Recent work in nonlinear pde�s:
KPP, Navier-Stokes, Poisson-Vlasov, MHD, etc.
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Stochastic solutions: What are they good for?

New exact solutions

New numerical algorithms
Deterministic algorithms grow exponentially with the dimension d of
the space, roughly Nd ( LN the linear size of the grid). The stochastic
process only grows with the dimension d .
Provide localized solutions
Sample paths started from the same point are independent.
Likewise, paths starting from di¤erent points are independent from
each other.
The stochastic algorithms are a natural choice for parallel and
distributed computation.
Stochastic algorithms handle equally well regular and complex
boundary conditions.
Domain decomposition using interpolation of localized stochastic
solutions and then, in each small domain, a deterministic code.
Avoids the communication time problem. Fully parallel.
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The probabilistic domain decomposition (PDD) method

(J. Acebrón, A. Rodríguez-Rozas, R. Spigler )
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The probabilistic domain decomposition (PDD) method
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The probabilistic domain decomposition (PDD) method
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Stochastic solutions: Two construction methods

McKean�s method: a probabilistic version of the Picard series.
First the di¤erential equation is written as an integral equation and
rearranged in a such a way that the coe¢ cients of the successive
terms in the Picard iteration obey a normalization condition
Then the Picard iteration is interpreted as an evolution and branching
proces.
The stochastic solution is equivalent to importance sampling of a
normalized Picard series.

The method of superprocesses: constructs the boundary measures
of a measure-valued stochastic process and obtains the solutions of
the di¤erential equation by a scaling procedure.
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The KPP equation: McKean�s formulation

∂v
∂t
=
1
2

∂2v
∂x2

+ v2 � v v (0, x) = g (x)

G (t, x) = Green�s operator for heat equation ∂tv(t, x) = 1
2

∂2

∂x 2 v(t, x)

G (t, x) = e
1
2 t

∂2

∂x2

KPP in integral form

v (t, x) = e�tG (t, x) g (x) +
Z t

0
e�(t�s)G (t � s, x) v2 (s, x) ds (2)

Denoting by (ξt ,Πx ) a Brownian motion starting from time zero and
coordinate x , Eq.(2) may be rewritten as

v (t, x) = Πx

�
e�tg (ξt ) +

Z t

0
e�(t�s)v2 (s, ξt�s ) ds

�
= Πx

�
e�tg (ξt ) +

Z t

0
e�sv2 (t � s, ξs ) ds

�
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The KPP equation: McKean�s formulation

The stochastic solution process: a Brownian motion plus branching
process with exponential holding time T , P (T > t) = e�t . At each
branching point the particle splits into two, the new particles going
along independent Brownian paths. At time t > 0 one has n particles
located at x1 (t) , x2 (t) , � � � xn (t). The solution is obtained by

v (t, x) = E fg (x1(t)) g (x2(t)) � � � g (xn(t))g

jg (x)j � 1

An equivalent interpretation: a backwards-in-time process from time t
at x . When it reaches t = 0 samples the initial condition. Generates
a measure at the t = 0 boundary which is applied to g (x) = v (0, x).
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The KPP equation: McKean�s formulation
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Poisson-Vlasov equation (Cipriano, Floriani, Lima, RVM)

∂fi
∂t +

!
v � rx fi � ei

mi
rxΦ � rv fi = 0 (3)

∆xΦ = �4π

(
∑
i
ei
Z
fi
�!
x ,
!
v , t
�
d3v

)
(4)

Fourier transforming Eqs.(3) and (4), with

Fi (ξ, t) =
1

(2π)3

Z
d6ηfi (η, t) e iξ�η

η =
�!
x ,
!
v
�
and ξ =

�!
ξ1,

!
ξ2

�
$ (ξ1, ξ2), one obtains

∂Fi (ξ, t)
∂t

=
!
ξ1 � rξ2Fi (ξ, t)�

4πei
mi

Z
d3ξ

0
1Fi
�

ξ1 � ξ
0
1, ξ2, t

�
 
!
ξ2 �

!
ξ
0
1/
���ξ 01���2

!
∑
j
ejFj

�
ξ
0
1, 0, t

�
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The Poisson-Vlasov equation
The Fourier transformed equation

Changing variables to
τ = γ (jξ2j) t

γ (jξ2j) is a positive continuous function satisfying
γ (jξ2j) = 1 i f jξ2j < 1
γ (jξ2j) � jξ2j i f jξ2j � 1

∂Fi (ξ, τ)
∂τ

=

!
ξ1

γ (jξ2j)
� rξ2Fi (ξ, τ)�

4πei
mi

Z
d3ξ

0
1Fi
�

ξ1 � ξ
0
1, ξ2, τ

�

�
!
ξ2 �

^

ξ
0
1

γ (jξ2j)
���ξ 01��� ∑j ejFj

�
ξ
0
1, 0, τ

�

with
^

ξ1 =
!
ξ1
jξ1 j
.
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The Poisson-Vlasov equation
The Fourier transformed equation

Stochastic representation written for the following functions

χi (ξ1, ξ2, τ) = e
�λτ Fi (ξ1, ξ2, τ)

h (ξ1)

with λ a constant and h (ξ1) a positive function to be speci�ed later.
De�ne ����ξ 01����1 h � h� = Z

d3ξ
0
1

���ξ 01����1 h �ξ1 � ξ
0
1

�
h
�

ξ
0
1

�

p
�

ξ1, ξ
0
1

�
=

���ξ 01����1 h �ξ1 � ξ
0
1

�
h
�

ξ
0
1

�
����ξ 01����1 h � h�
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The Poisson-Vlasov equation
The Fourier transformed equation

χi (ξ1, ξ2, τ)

= e�λτχi

�
ξ1, ξ2 + τ

ξ1
γ (jξ2j)

, 0
�
� 8πei
miλ

�
jξ1j

�1 h � h
�
(ξ1)

h (ξ1)

�
Z τ

0
dsλe�λs

Z
d3ξ

0
1
p
�

ξ1, ξ
00
1

�
χi

�
ξ1 � ξ

00
1 , ξ2 + s

ξ1
γ (jξ2j)

, τ � s
�

�

�
ξ2 + s

ξ1
γ(jξ2 j)

�
�
^

ξ
0
1

γ
����ξ2 + s ξ1

γ(jξ2 j)

���� ∑
j

1
2ejeλ(τ�s)χj

�
ξ
00
1 , 0, τ � s

�
(5)

Notice: Bifurcation occurs at t 0 = τ�s
γ(jξ2 j)

and time rescaling always
depends on the second argument
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The Poisson-Vlasov equation
The Fourier transformed equation
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The Poisson-Vlasov equation
The Fourier transformed equation

Eq.(5) has a stochastic interpretation (an exponential process plus
branching and Bernoulli processes).
e�λτ = survival probability during time τ of the exponential process
λe�λsds = the decay probability
p
�

ξ1, ξ
00
1

�
d3ξ1 = branching probability of ξ1 mode into

�
ξ1 � ξ

00
1 , ξ

00
1

�
χ (ξ1, ξ2, τ) computed from the expectation value of a multiplicative
functional
Convergence of the multiplicative functional:
(A)

���Fi (ξ1,ξ2,0)h(ξ1)

��� � 1
(B)

����ξ 01����1 h � h� (ξ1) � h (ξ1) , satis�ed, for example,
for h (ξ1) =

c

(1+jξ1 j
2)
2 (1� θ (jξ1j �M)) and c � 1

3π
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The Poisson-Vlasov equation
The Fourier transformed equation

The multiplicative functional of the process X (ξ1, ξ2, τ) is the product of:
- At each branching point where 2 particles are born

gij
�

ξ1, ξ
0
1, s
�
= �eλ(τ�s) 8πeiej

miλ

����ξ 01����1 h � h� (ξ1)
h (ξ1)

�
ξ2 + s

ξ1
γ(jξ2 j)

�
�
^

ξ
0
1

γ
����ξ2 + s ξ1

γ(jξ2 j)

����
- When one particle reaches time zero and samples the initial
condition

g0i (ξ1, ξ2) =
Fi (ξ1, ξ2, 0)
h (ξ1)

χi (ξ1, ξ2, τ)=E
n

Π
�
g0g

0
0 � � �

� �
giig

0
ii � � �

� �
gijg

0
ij � � �

�o
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The Poisson-Vlasov equation
The Fourier transformed equation

Choose λ �
��� 8πei ej
mini fmi g

��� and c � e�λτM 1
3π =) the absolute value of

all coupling constants is bounded by one. τM is an upper bound for τ
in the successive branchings

τM =
(Mt + γ (jξ2j))

2

4M
The branching process, identical to Galton-Watson�s, terminates with
probability 1 =) no. of inputs to the functional is �nite a. s.
With the bounds on the coupling constants, the multiplicative
functional is bounded by one in absolute value almost surely.
Th. 1 - The stochastic process X (ξ1, ξ2, τ), above described,
provides a stochastic solution for the Fourier-transformed
Poisson-Vlasov equation Fi (ξ1, ξ2, t) for any arbitrary �nite value of
the arguments, provided the initial conditions at time zero satisfy the
boundedness conditions (A).
RVM (CMAF, IPFN) 20 / 56



The Poisson-Vlasov equation
The Fourier transformed equation

Instead of renormalizing the time one may write

Θi (ξ1, ξ2, t) = e
�t jξ2 jFi (ξ1, ξ2, t)

h (ξ1)

p
�

ξ1, ξ
0
1

�
and the conditions on h (ξ1) are the same as before.

The main di¤erence is the survival probability, namely e�t jξ2 j and
dsΠ (ξ1, ξ2, s) the dying probability in time ds

Π (ξ1, ξ2, s) =
jξ2 + sξ1j e(t�s)jξ2+sξ1 j�t jξ2 j

N (ξ1, ξ2, t)

Solutions also for Poisson-Vlasov in an external magnetic �eld
(Fourier and con�guration space)
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The SOL equations (non-polynomial interactions)

(Ph. Ghendrih, RVM)
Transport and turbulence in the scrape-o¤ layer (SOL) region
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The SOL equations

SOLEDGE

∂tN +
1
q

∂θΓ+
χ

η
N = D∂2rN

∂tΓ+
1
q
(1� χ) ∂θ

�
Γ2

N
+N

�
+

χ

η
(Γ� Γ0) = ν∂2r Γ

Γ and N are the dimensionless parallel momentum and density, (r , θ) the
radial and poloidal coordinates and the mask function χ equals 1 in a
region where an obstacle is located and zero elsewhere.
TOKAM2D

∂
∂t n = S � fφ, ng � σneΛ�φ +D∆?n
∂
∂t∆?φ = σ

�
1� eΛ�φ

�
+ ν∆2?φ� fφ,∆?φg � 1

ng∂yn

n = N
N0
is the normalized density �eld and φ = eU

Te
the normalized electric

potential. Poisson brackets: ff , gg = ∂x1 f ∂x2g � ∂x2 f ∂x1g , with
x1 = (r � a) /ρs the minor radius normalized by the Larmor radius
ρ2s = Te/mi and x2 = aθ/ρs , a being the plasma radius.
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The SOLEDGE equation

Dealing with non-polynomial terms: Taylor expansions and operator labels
at the branching points
SOLEDGE (χ = 0)

N (t, r , θ) = etD∂2rN (0, r , θ)� 1
q

Z t

0
dτeτD∂2r ∂θΓ (t � τ, r , θ)

Γ (t, r , θ) = etν∂2r Γ (0, r , θ)� 1
q

Z t

0
dτeτν∂2r ∂θ

�
Γ2

N
+N

�
(t � τ, r , θ)

Denote by ξ(N )s and ξ(Γ)s two Brownian motions in the r�coordinate with
di¤usion coe¢ cients

p
2D and

p
2ν. Then the equations may be

reinterpreted as de�ning probabilistic processes for which the expectation
values are the functions N (t, r , θ) and Γ (t, r , θ)
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The SOLEDGE equation

N (t, r , θ) = E(t ,r ,θ)

�
p
1
p
N
�
0, ξ(N )t , θ

�
� t
q (1� p)

Z t

0

1� p
t
dτ∂θΓ

�
t � τ, ξ

(N )
τ , θ

��

Γ (t, r , θ) = E(t ,r ,θ)

�
p
1
p

Γ
�
0, ξ(Γ)t , θ

�
� 2t
q (1� p)

Z t

0

1� p
t
dτ∂θ

�
1
2

Γ2

N
+
1
2
N
��

t � τ, ξ
(Γ)
τ , θ

��
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The SOLEDGE equation

Figure: A sample path of the N � Γ stochastic process
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The SOLEDGE equation

The contribution of this sample path to the N�expectation value is

∂2θ

8><>:
0@∂θ

8<:Γ2
�
0, r (1)0 , θ

�
N
�
0, r (2)0 , θ

�
9=;
1A2 n

∂θΓ
�
0, r (3)0 , θ

�o�19>=>;
times the factor

�
1
p

�3 4tτ1τ22
q4(1�p)4 .

If the initial conditions
��� Γ2
N ,N, Γ

��� and all its derivatives are bound by a
constant M, a worst case analysis implies that almost sure convergence of
the expectation value is guaranteed for

t
q
M < 1
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Fractional processes (F. Cipriano, H. Ouerdiane, RVM)

A fractional version of the KPP equation

tDα
�u (t, x) =

1
2 xD

β
θ u (t, x) + u

2 (t, x)� u (t, x) (6)

tDα
� is a Caputo derivative of order α

tDα
� f (t) =

(
1

Γ(m�β)

R t
0

f (m)(τ)dτ

(t�τ)α+1�m
m� 1 < α < m

dm
dtm f (t) α = m

xD
β
θ is a Riesz-Feller derivative de�ned through its Fourier symbol

F
n
xD

β
θ f (x)

o
(k) = �ψθ

β (k)F ff (x)g (k)

with ψθ
β (k) = jk j

β e i (signk )θπ/2.
Physically it describes a nonlinear di¤usion with growing mass and in our
fractional generalization it would represent the same phenomenon taking
into account memory e¤ects in time and long range correlations in space.
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A fractional nonlinear equation

The �rst step towards a probabilistic formulation is the rewriting of Eq.(6)
as an integral equation.Take the Fourier transform (F ) in space and the
Laplace transform (L) in time

sα
s
^
u (s, k) = sα�1 ^u

�
0+, k

�
� 1
2

ψθ
β (k)

s
^
u (s, k)�

s
^
u (s, k)+

Z ∞

0
dte�stF

�
u2
�

where
^
u (t, k) = F (u (t, x)) =

Z ∞

�∞
e ikxu (t, x)

s
u (s, x) = L (u (t, x)) =

Z ∞

0
e�stu (t, x)

This equation holds for 0 < α � 1 or for 0 < α � 2 with ∂
dt u (0

+, x) = 0.

Solving for
s
^
u (s, k) one obtains an integral equation

s
^
u (s, k) =

sα�1

sα + 1
2ψθ

β (k)
^
u
�
0+, k

�
+
Z ∞

0
dt

e�st

sα + 1
2ψθ

β (k)
F
�
u2 (t, x)

�
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A fractional nonlinear equation

Taking the inverse Fourier and Laplace transforms

u (t, x)

= Eα,1 (�tα)
Z ∞

�∞
dyF�1

0@Eα,1

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,1 (�tα)

1A (x � y) u (0, y)
+
Z t

0
dτ(t � τ)α�1 Eα,α

�
� (t � τ)α�

Z ∞

�∞
dyF�1

0@Eα,α

�
�
�
1+ 1

2ψθ
β (k)

�
(t � τ)α

�
Eα,α

�
� (t � τ)α�

1A (x � y) u2 (τ, y)
Eα,ρ is the generalized Mittag-Le er function Eα,ρ (z) = ∑∞

j=0
z j

Γ(αj+ρ)

Eα,1 (�tα) +
Z t

0
dτ (t � τ)α�1 Eα,α

�
� (t � τ)α� = 1
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A fractional nonlinear equation

We de�ne the following propagation kernel

G β
α,ρ (t, x) = F�1

0@Eα,ρ

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,ρ (�tα)

1A (x)
u (t, x)

= Eα,1 (�tα)
Z ∞

�∞
dyG

β
α,1 (t, x � y)u

�
0+, y

�
+
Z t

0
dτ(t � τ)α�1 Eα,α

�
� (t � τ)α�

Z ∞

�∞
dyG

β
α,α (t � τ, x � y)u2 (τ, y)

Eα,1 (�tα) and (t � τ)α�1 Eα,α

�
� (t � τ)α� = survival probability up to

time t and the probability density for the branching at time τ (branching
process Bα)
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A fractional nonlinear equation
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A fractional nonlinear equation

u(t, x) = Ex (ϕ1ϕ2 � � � ϕn)

with

ϕi =
Z
dy (i )1 dy

(i )
2 � � � dy (i )k�1dy

(i )
k G

β
α,α (τ1, x � y1)G β

α,α (τ2, y1 � y2) � � �

� � �G β
α,α (τk�1, yk�2 � yk�1)G β

α,1 (τk , yk�1 � yk ) u
�
0+, yk

�
with ∑k

i=1 τj = t, k � 1 being the number of branchings leading to
particle i
The propagation kernels satisfy the conditions to be the Green�s functions
of stochastic processes in R:

u(t, x) = Ex
�
u(0+, x + ξ1)u(0

+, x + ξ2) � � � u(0+, x + ξn)
�
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A fractional nonlinear equation

Denote the processes associated to G β
α,1 (t, x) and G

β
α,α (t, x), respectively

by Πβ
α,1 and Πβ

α,α

Proposition: The nonlinear fractional partial di¤erential equation (6),
with 0 < α � 1, has a stochastic solution, the coordinates x + ξ i in the
arguments of the initial condition obtained from the exit values of a
propagation and branching process, the branching being ruled by the
process Bα and the propagation by Πβ

α,1 for the �rst particle and by Πβ
α,α

for all the remaining ones.
A su¢ cient condition for the existence of the solution is��u(0+, x)�� � 1
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The Green´s functions and characterization of the
processes

The processes Πβ
α,1 and Πβ

α,α

F
n
G β

α,1 (t, x)
o
(t, k) =

Eα,1

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,1 (�tα)

F
n
G β

α,α (t, x)
o
(t, k) =

Eα,α

�
�
�
1+ 1

2ψθ
β (k)

�
tα
�

Eα,α (�tα)

For a propagation kernel G (t, x) to be the Green�s function of a
stochastic process, the following conditions should be satis�ed:
(i) G (0, x � y) = δ (x � y) or F fGg (0, k) = 1 8k
(ii)
R
dxG (t, x) = 1 8t or F fGg (t, 0) = 1

(iii) G (t, x) should be real and � 0
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The Green´s functions and characterization of the
processes

For the processes Πβ
α,1 and Πβ

α,α

(i) F
n
G β

α,1

o
(0, k) = Eα,1(0)

Eα,1(0)
= 1 and F

n
G β

α,α

o
(0, k) = Eα,α(0)

Eα,α(0)
= 1

(ii) F
n
G β

α,1

o
(t, 0) = Eα,1(�tα)

Eα,1(�tα)
= 1 and F

n
G β

α,α

o
(t, 0) = Eα,α(�tα)

Eα,α(�tα)
= 1

(iii) If F fGg (t,�k) = (F fGg (t, k))� then G (t, x) is real.
Because ψθ

β (�k) =
�

ψθ
β (k)

��
it follows

Eα,1

�
�
�
1+

1
2

ψθ
β (�k)

�
tα

�
=

�
Eα,1

�
�
�
1+

1
2

ψθ
β (k)

�
tα

���

Eα,α

�
�
�
1+

1
2

ψθ
β (�k)

�
tα

�
=

�
Eα,1

�
�
�
1+

1
2

ψθ
β (k)

�
tα

���
implying that both G β

α,1 (t, x) and G
β
α,α (t, x) are real.
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The Green´s functions and characterization of the
processes

Finally, for the positivity, one notices that for 0 < α � 1 and ρ � α,
Eα,ρ (�x) is a completely monotone function. Therefore

Eα,ρ (�x) =
Z ∞

0
e�rxdF (r)

with F nondecreasing and bounded. For G β
α,ρ (t, x) (ρ = 1 and ρ = α) one

has

G β
α,ρ (t, x) =

1
2πEα,ρ (�tα)

Z ∞

0
dF (r)

Z ∞

�∞
dke�ikx e

�rtα
�
1+ 1

2ψθ
β(�k )

�

=
1

2πEα,ρ (�tα)

Z ∞

0
dF (r) e�rt

α
Z ∞

�∞
dke�ikx e�

rtα
2 ψθ

β(�k )

We recognize the last integral (in k) as the Green�s function of a Levy
process. Therefore one has an integral in r of positive quantities implying
that G β

α,1 (t, x) and G
β
α,α (t, x) are positive.
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The Green´s functions and characterization of the
processes

The process Bα

The decaying probability in time dτ of this process is

τα�1Eα,α (�τα)

From Z t

0
τα�1Eα,α (�τα) dτ = 1� Eα,1 (�tα)

it follows that Eα,1 (�tα) is the survival probability up to time t. The
process Bα is a fractional generalization of the exponential process.
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Superprocesses

S = the Schwartz space of functions of rapid decrease on E
U � S , functions in S that may be extended into the complex plane
as entire functions of rapid decrease on strips.
U 0, the dual of U , (Silva�s space of tempered ultradistributions),
which can also be characterized as the space of all Fourier transforms
of distributions of exponential type
Restrict further to the space U 00 of tempered ultradistributions of
compact support.
(Xt ,P0 ,ν) a branching stochastic process with values in U 00 and
transition probability P0,ν starting from time 0 and ν 2 U 00.
The process satis�es the branching property if given ν = ν1 + ν2

P0,ν = P0,ν1 � P0,ν2
that is, after the branching

�
X 1t ,P0,ν1

�
and

�
X 2t ,P0 ,ν2

�
are

independent and X 1t + X
2
t has the same law as (Xt ,P0,ν).
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Superprocesses

For the transition operator Vt operating on functions on U the
branching property is

hVt f , ν1 + ν2i = hVt f , ν1i+ hVt f , ν2i
with e�hVt f ,νi $ P0,νe�hf ,Xt i

hVt f , νi = � logP0,νe�hf ,Xt i f 2 U , ν 2 U 00
In the usual construction of superprocesses on measures, one starts
from an initial δx which branches into other δ0s with, at most, some
scaling factors. The restriction to U 00 preserves this pointwise
interpretation. Any ultradistribution in U 00 has a multipole expansion
at any point of its support (a series of δ0s and their derivatives)
In M = [0,∞)� E consider a set Q � M and the associated exit
process ξ = (ξt ,Π0,x ) with parameter k de�ning the lifetime. The
process stars from x 2 E carrying along an ultradistribution in U 00
with support on the path.
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Superprocesses

At each branching point of the ξt�process there is a transition ruled
by the P probability in U 00 leading to one or more elements in U 00.
These U 00 elements are then carried along by the new paths of the
ξt�process. The whole process stops at the boundary ∂Q, de�ning a
exit process (XQ ,P0,ν) on U 00. If the initial ν is δx

u (x) = hVQ f , νi = � logP0,x e�hf ,XQ i

hf ,XQ i is computed on the (space-time) boundary with the exit
ultradistribution generated by the process.
Connection to nonlinear pde�s established by de�ning the whole
process to be a (ξ,ψ)-superprocess if u (x) satis�es the equation

u + GQψ (u) = KQ f (7)

GQ f (r , x) = Π0,x

Z τ

0
f (s, ξs ) ds ; KQ f (x) = Π0,x1τ<∞f (ξτ)

ψ (u) means ψ (0, x ; u (0, x)) and τ is the �rst exit time from Q.
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Superprocesses

Construction of the superprocess: Let ϕ (s, x ; z) be the branching
function at time s and point x . Then, with P0,x e�hf ,XQ i $ e�w (0,x )

e�w (0,x ) = Π0,x

�
e�kτe�f (τ,ξτ) +

Z τ

0
dske�ks ϕ

�
s, ξs ; e

�w (τ�s ,ξs )
��

(8)

τ is the �rst exit time from Q and f (τ, ξτ) = hf ,XQ i is computed with
the exit boundary ultradistribution. For measure-valued superprocesses

ϕ (s, y ; z) = c
∞

∑
0
pn(s, y)zn

with ∑n pn = 1, but now it may be a more general function.
Using

R τ
0 ke

�ksds = 1� e�kτ and the Markov property
Π0,x1s<τΠs ,ξs = Π0,x1s<τ Eq.(8) is converted into

e�w (0,x ) = Π0,x

�
e�f (τ,ξτ) + k

Z τ

0
ds
h

ϕ
�
s, ξs ; e

�w (τ�s ,ξs )
�
� e�w (τ�s ,ξs )

i�
(9)
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Superprocesses

Eq.(7) is now obtained by a limiting process. Let in (9) replace
w (0, x) by βwβ (0, x) and f by βf . β is interpreted as the mass of
the particles and when XQ ! βXQ then Pµ ! P µ

β
.

e�βw (0,x ) =

Π0,x

h
e�βf (τ,ξτ) + kβ

R τ
0 ds

h
ϕβ

�
s, ξs ; e

�βw (τ�s ,ξs )
�
� e�βw (τ�s ,ξs )

ii
Scaling limit (�rst type)

u(1)β =
�
1� e�βwβ

�
/β ; f (1)β =

�
1� e�βf

�
/β

ψ
(1)
β

�
0, x ; u(1)β

�
=
kβ

β

�
ϕ
�
0, x ; 1� βu(1)β

�
� 1+ βu(1)β

�
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Superprocesses

u(1)β (0, x) +Π0,x

Z τ

0
dsψ(1)β

�
s, ξs ; u

(1)
β

�
= Π0,x f

(1)
β (τ, ξτ)

that is
u(1)β + GQψ

(1)
β

�
u(1)β

�
= KQ f

(1)
β

When β ! 0, f (1)β ! f and if ψβ goes to a well de�ned limit ψ then uβ

tends to a limit u solution of (7) associated to a superprocess. Also one
sees from that in the β ! 0 limit

u(1)β ! wβ = � logP0,x e�hf ,XQ i

The superprocess corresponds to a cloud of particles for which both the
mass and the lifetime tend to zero
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Superprocesses on measures

Restrict to measure-valued superprocesses, that is, in terms of paths, to
δ0s propagating along the paths of the (ξt ,Π0,x ) process and branching to
new δ measures at each branching point. Let us construct a superprocess
providing a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

� uα

for 1 < α � 2. Comparing with (7) one should have

ψ (0, x ; u) = uα

Then, with z = 1� βu(1)β one has

ϕ (0, x ; z) = ∑n pnz
n = z + β

kβ
u(1)αβ = z + β

kβ

(1�z )α
βα

= z + 1
kββα�1

�
1� αz + α(α�1)

2 z2 � α(α�1)(α�2)
3! z3 + � � �

�
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Superprocesses on measures

Choosing kβ =
α

βα�1 the terms in z cancel and for 1 < α � 2 the
coe¢ cients of all z powers are positive and may be interpreted as
branching probabilities pn into new δ0s

p0 =
1
α
; p1 = 0; � � � pn =

(�1)n

α

�
α
n

�
; ∑

n
pn = 1

With kβ =
α

βα�1 and β ! 0 the superprocess provides a solution to

∂u
∂t
=
1
2

∂2u
∂x2

� uα

α = 2 is an upper bound for this representation, because for α > 2 some
of the p0ns would be negative. For the particular case

∂u
∂t
=
1
2

∂2u
∂x2

� u2

p1 = 0; p0 = p2 =
1
2
; kβ =

2
β
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Superprocesses and a nonlinear heat equation

α = 2
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Superprocesses on measures: other limits

Superprocesses are usually associated with nonlinear pde�s in the scaling
limit β ! 0. However other limits may also be useful. For example with
with pn = δn,2, β = 1 and kβ = 1 one obtains

ψ
(1)
β

�
0, x ; u(1)β

�
=

kβ

β

�
∑ pn

�
1� βu(1)β

�n
� 1+ βu(1)β

�
=

kβ

β

�
β2u(1)2β � βu(1)β

�
! u2 � u

In this case, one is led to the KPP equation

∂u
∂t
=
1
2

∂2u
∂x2

� u2 + u

Because β = 1 instead of β ! 0, the solution is given by (1� e�w )
instead of u(1)β ! wβ = � logP0,x e�hf ,XQ i. Although the solution of KPP
may be obtained by another method, interpretation as an exit measure
allows for the construction of solutions with arbitrary boundary conditions.
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Superprocesses on ultradistributions

Superprocesses on measures allows the construction of solutions for
equations which do not possess a natural Poisson clock. It has the
severe limitation of requiring a polynomial branching function
ϕ (s, x ; z). Restricts the nonlinear terms in the pde�s to be powers of
u (ua). In addition, these terms must be such that all coe¢ cients in
the zn expansion be positive (1 < α � 2).

The variable z in ϕβ (s, x ; z) is z = e
�βw (τ�s ,ξs ) = P0,x e�hβf ,X i.

When one generalizes to U 00, changes of sign and transitions from
deltas to their derivatives are allowed. There are basically two new
transitions at the branching points:
1) A change of sign in the point support ultradistribution

ehβf ,δx i = eβf (x ) ! ehβf ,�δx i = e�βf (x )

which corresponds to

z ! 1
z
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Superprocesses on ultradistributions

2) A change from δ(n) to �δ(n+1), for example

ehβf ,δx i = eβf (x ) ! ehβf ,�δ0x i = e�βf 0(x )

which corresponds to
z ! e�∂x log z

Case 1) corresponds to an extension of superprocesses on measures to
superprocesses on signed measures and the second to superprocesses
in U 00.
How these transformations provide stochastic representations of
solutions for other classes of pde�s, will be illustrated by two examples
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Superprocesses on ultradistributions: Examples

ϕ(1) (0, x ; z) = p1e∂x log z + p2e�∂x log z + p3z2

This branching function means that at the branching point, with
probability p1 a derivative is added to the propagating ultradistribution,
with probability p2 a derivative is added plus a change of sign and with
probability p3 the ultradistribution branches into two identical ones. Using
the transformation and scaling limit one has, for small β

z ! e�∂x log z = e
�∂x log

�
1�βu(1)β

�
= 1� β∂xu

(1)
β +

β2

2

��
∂xu

(1)
β

�2
� ∂xu

(1)2
β

�
+O

�
β3
�

z ! z2 =
�
1� βu(1)β

�2
= 1� 2βu(1)β + β2u(1)2β
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Superprocesses on ultradistributions: Examples

Computing ψβ

�
0, x ; u(1)β

�
with p1 = p2 = 1

4 and p3 =
1
2 one obtains

ψ
(1)
β

�
0, x ; u(1)β

�
=

kβ

β

�
ϕ(1)

�
0, x ; 1� βu(1)β

�
� 1+ βu(1)β

�
=

kβ

β

�
1
8

β2
�

∂xu
(1)
β

�2
+
1
2

β2u(1)2β +O
�

β3
��

meaning that, with kβ =
4
β , the superprocess provides, in the β ! 0 limit,

a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

� 2u2 � 1
2
(∂xu)

2
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Superprocesses on ultradistributions: Examples

For the second example a di¤erent scaling limit will be used, namely

u(2)β =
1
2β

�
eβwβ � e�βwβ

�
; f (2)β =

1
2β

�
eβf � e�βf

�
Notice that, as before, u(2)β ! wβ and f

(2)
β ! f when β ! 0. In this case

with z = eβwβ one has

z = �2βu(2)β + 2

r
β2u(2)2β + 1

= 2� 2βu(2)β + β2u(2)2β +O
�

β4
�

and

1
z
= 2βu(2)β + 2

r
β2u(2)2β + 1

= 2+ 2βu(2)β + β2u(2)2β +O
�

β4
�
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Superprocesses on ultradistributions: Examples

For the integral equation one has

u(2)β (0, x) +Π0,x

Z τ

0
dsψ(2)β

�
s, ξs ; u

(2)
β

�
= Π0,x f

(2)
β (τ, ξτ)

with

ψ
(2)
β

�
0, x ; u(2)β

�
= kβ

�
1
2β

�
ϕ (0, x ; z)� ϕ

�
0, x ;

1
z

��
� u(2)β

�
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Superprocesses on ultradistributions: Examples

Let now
ϕ(2) (0, x ; z) = p1z2 + p2

1
z

This branching function means that with probability p1 the
ultradistribution branches into two identical ones and with probability p2 it
changes its sign. Therefore, in this case, one is simply extending the
superprocess construction to signed measures.

ψ
(2)
β

�
0, x ; u(2)β

�
= kβ

�
�p18u(2)β

�
1+

1
2

β2u(2)2β

�
+ p2u

(2)
β � u(2)β +O

�
β4
��

and with p1 = 1
10 ; p2 =

9
10 and kβ =

5
2β2

one obtains in the in the β ! 0

limit
ψ
(2)
β

�
0, x ; u(2)β

�
! �u(2)3β

meaning that this superprocess provides a solution to the equation

∂u
∂t
=
1
2

∂2u
∂x2

+ u3
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