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o Theory

@ Cocycle formulation of (generalized) ergodic parameters
@ Dynamical Renyi entropies and fluctuation moments

© Ergodic parameters and complexity measures
o Applications

@ Synchronization and clustering
@ Dynamical characterization of network topology

© Ergodic parameters and self-organized criticality



Generalized ergodic parameters: A cocycle formulation

@ Motivation: Lyapunov exponents are global functions of the
invariant measure. However, the invariant measure itself contains
more information. Ergodic parameters are averages of local
fluctuating quantities. The quantities describing the fluctuations are
again ergodic parameters, etc. (Ruelle)

@ Cocycles and the Oseledets theorem; f : M — M measure
preserving transformation of a Lebesgue space (M, B, it)). For any
measurable function g : M — GL (N, R) let

C(x,n)=g ("' (x) - g(x)

C(x,n+ k)= C(fk(x),n) C(x, k)
C:MxZ — GL(N,R) is called a cocycle (over f). Any cocycle
has this form. g is the generator of the cocycle.

o Theorem (Oseledets): If In. ||g (x)|| € L} (M, p)

X

(i) 3 a decomposition RN = @f( 1)E (x) invariant under C (x, n),

(ii) limp—co £ In IIC(M) = x (x) with xq (3) <+ < X (),

exists uniformly in v € E; (x) \ {0}.
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Lyapunov, conditional exponents and fluctuation moments

@ For the Lyapunov exponent the cocycle generator is
g1 (x) = Df (x) = exp (In (Df (x)))

e Conditional exponents: (Pecora, Carroll) In the Jacobian Df use

partial blocks

Existence under the same conditions as the Lyapunov exponents
(Phys. Lett. A248 (1998) 167 - 171)

o Definition: Lyapunov fluctuation moments X,(p) (x)
I€Cenmv]
G

Are the limits lim_.c0 £ In I = = X; (x) when the cocycle

generator is
8 (x) = exp (Infy (Df (x))) (1)



Fluctuation moments

Remark : Definition of the logarithm is understood in the framework of the
Oseledets-Pesin e—reduction theorem. For any & > 0 there is an invertible
map T (x) : M — GL(N,R) such that g (x) =T (f (x)) g (x) T (x)
has block form and in each block eXi(x)—¢ < g (x)v| < eXix)te

Then g (x) generates a cocycle C; (x, n) equivalent to C (x, n).

Iny in (1) is therefore computed without ambiguity in each block and

P () = tim L1 18 (X)) 8 () v]

P v

is an ergodic average of the p—moment of the local expansion rate.

Proposition

(p)

The Lyapunov fluctuation moments x;"’ (x) exist whenever

Int llgy (x)]| € L' (M, p)

Proof : A consequence of the Oseledets multiplicative ergodic theorem
0 5/28




Lyapunov characteristic fluctuation function

@ This cocycle construction provides a unified description of the
fluctuation ergodic parameters previously considered by several
authors (Crisanti, Fujisaka, Froeschle, Vanneste, Oliveira, ...)

@ Existence of the fluctuation moments depends on the integrability of

e (L ki (x)

Aj (x) the local expansion rate at x ; k; multiplicity of this rate.
o If the expansion rate variable fails to have moments for large p,

Definition
The Lyapunov characteristic fluctuation function C («) is defined as the
lim,_—co % In ”C(‘r ﬁ) Yl when the generator of the cocycle is

gu (x) = exp (exp (iaIn (Df (x))))

As before, existence of C (a) depends on integrability of In . ||gx (x)]| and,
because exp (i Iny (Df (x))) is bounded, this is always fulfilled.
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Correlations and other parameters

Although C («) contains complete information on the statistical properties
of the local fluctuation rate, a full ergodic characterization of the dynamics
should also contain information about correlations at different points. The
ergodic parameters obtained from the Hessian in a variational formulation

d N
Z ; (O ()] [ (i) = £ (x (t6-1))]

" af

LHy = gl = Oapdin — (1= 8w o1 S5 -
afb (x O (x(t)) AF7 (x

(]_ — (51 N) (SJ k—1 aX(lX(( ))) + 5j,k (]' - 5j’N) ax(ﬁ((fj))) ax(“((tj)))

k
iy = limy—co & TrHs g, = limp—eo & T2 ( ? ) (—1)% TrHE* (VW)

(PLA 155 (1991) 388), already contain some information on the
correlations, but a full study of this problem is far from complete.
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A tool: correlation cocycles

o Let f: M — M be a measure preserving transformation of a Lebesgue
space (M, B, u)). For a measurable function g : M — GL (N, R) let

G (xn) = g (FO7D (x), 2K (x)) g (4 () x)

Then
G (x,n+p) = G (£ (x) . n) Cic (x.p)

Ck: M xZ — GL(N,R) may be called a correlation cocycle (over f)

o IfIny ||g (F¥ (x) . x) || € L* (M, i) Oseledets’ theorem applies and
choosing appropriate functions g : M — GL (N, R) one obtains
correlation ergodic parameters.

Example:

g (f" (x) ,x) — Df (ka) Df (x) — (Df (x))?



Dynamical Rényi entropy and fluctuations of the local

expansion rate

-1
o @ =partition of M; {(p,(")}: elements of partition ®, = ,.7\7/0 f= (D)

e Dynamical Rényi entropy of order «

K (&) = sup {nIme ] ia% In Z‘u (¢§n))a}

[

Related to what some authors (Fujisaka, Benzi-Paladini-Parisi-
Vulpiani, Grassberger-Procaccia) call generalized Lyapunov exponents
@ An easier to compute (not necessarily equivalent) definition :

Zn E (P(fo - infl)>a

fo+in—1

p(ip--- in,l) is the joint probability to be at the box iy at time 0, to be at
box i; at time 1, ---, and to be at box i,—_; at time n— 1, the sum being
over all different blocks of length n.
(Invariant measure absolutely continuous with respect to Lebesgue)
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Estimating Rényi entropies from the local expansion rate

Local expansion rate A (x) = [),~0 ehi(X) — If the system is in box iy
at time 0, it can go to A (ip) boxes in the next step, then to A (ip) A (1)
boxes, etc. (A (i) the average expansion rate in the box ix and y (ip) the

measure of the box iy)

# (i)
A ()

p(io e in—l) = A(io)

.11 # (i) '
Kg (#) = lim lim = —~In ), <A(io)"'1\(in2)>

,'0...,'”71
Considering average values and normalizing to obtain
2,’0...,'”71 p (io s I'nfl) =u (io) inx — 1 limit

R U T A ! o
KB(“):JI%JE“OOH,,'”<M'°) (A(io)~"/\("n—2)> >

10 / 28



Estimating Rényi entropies from the local expansion rate

In the lim, o

1 1 n—2 .
K (¢) = ell_rn) nl|_>moo T—an In <exp <(1 — ) ;;) In A (Ik)) >

(1 - zx) K () is the pressure function for the random variable
=1lyn—2 2In A (i). The Legendre transform

I(y) ZSgp{(l—w)y—(l—“)K(W)}

is the deviation function for the large deviations of the random variable
1yn—2 -
Yo = LizoIn A (ik)

{ ):InA i) yy+dy)}xexp(—n/(y))dy

0 11/ 28



Estimating Rényi entropies from the local expansion rate

Proposition

(i) The Legendre transform of the (box) dynamical Rényi entropy is the
deviation function for the local expansion rate.

(ii) If a weak correlation condition is verified, namely

<exp ((1_“>nZ:2InA (ik >>H (exp((1—a |nA(/k))>71 < ¢ e

k=0

o >0andy <1

1 - In (exp (1 —a) In A (i)))

Kg (a) = lim i ks (INA) (1 —a)**

where ks (In A) are the cumulants of the local expansion rate.

v
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Ergodic parameters, measures of complexity and

self-organization

o A (well-known) characterization of complexity
Excess entropy or effective measure complexity
pn(s1 -+ sp) the probability to find the block s; - - - s, of size n

=Y pn(s1---sn)logpa(si---sn)
{51

hs = limp—.o + H(n) being the Shannon entropy.
Excess entropy E (effort needed to construct a model of the system)

E= ;(iH(n) —hs>

Is a measure of the diversity of dynamical structures

0 13 / 28



Ergodic parameters, measures of complexity and

self-organization

Finite-time fluctuations in Lyapunov exponents, are a symptom of diversity
of dynamical structures. = A dynamical version of the excess entropy 7
Use the large deviation principle

Legendre transform / (y) of (1 —a) K (a) is the deviation function of the
random variable Y, = 1 Y"7"21n A (i) . Average value of Y} is an estimate
of %H (n). Therefore, a dynamical version of the excess entropy is

Ee:Z{/O yPn(}/)dy_)/Imin}
with y; . being the value that minimizes / (y) and

_ e_"l()’)

o fooo e_"l()’)d_y

E. may be computed from the ergodic parameters that define the

fluctuations of the local expansion rate. (arXiv:1008.2664)
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Structure and self-organization

¢ Structure index

S:

diverges whenever a Lyapunov exponent approaches zero from above
(points where long time correlations develop)

+ Self-organization (partitions ¥, = R* x R™ %)

£mk) 50 Ai>0
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Structure and self-organization: An example

8
[T T4 a2 3o <0 €0 7o e &0 100 10

c = 0.495 c=0.51
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Structure and self-organization: An example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(Physica A 276 (2000) 550-571; 295 (2001) 537-561)
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Synchronization and clustering

@ Synchronization
(Classical mathematical example: the Kuramoto model)
A similar, discrete-time oscillators model

xi (t+1) = x (t) + wi + 755 L)Ly £ (6 — xi)

v
T [72 + (w— wo)z}
fu (xj — xi) = a (xj — x;) (mod .1)

p(w) =

@ Order parameter
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Synchronization and clustering

Syncret  (k=0.1) \
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Synchronization and clustering

@ The Lyapunov spectrum controls the dynamical self-organization of
the system

@ In this case

A = 0
A= log (1—ak (-2 (N —1) ti
i = log o N_1 Imes

N — 1 contracting directions for any k # 0
"One-dimensional" system!

@ = Strong dynamical correlations even before synchronization
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Synchronization and clustering

Syncret  (k=0.1)
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(Int. J. Bifurcation and Chaos 15 (2005) 1185-1213)
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Dynamical characterization of network topology

@ The small-world phase

B=0 B=1
Increasing randomness
1l 2" e G T
o o B
o o = - ]
o.s | ® L] 3
- ]
o -
o.s [ 4
r - ]
o.af . ) 3
. ]
0.2 - 4
*® Scaled Length . e a
©  Scaled Clustering * e e e
n‘.'oen1 0.001 0.01 0.1 1
B

@ Is there a small-world — random transition ?
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Dynamical characterization of network topology

@ Define a dynamical system on the network

X (1) = DM Wy fx(t)  [1on0, ifi=k
2v
f(x)=ax (mod 1) e = % if i # k and ke n,(i)
0 0 otherwise

@ and an order parameter using Lyapunov and conditional exponents

hg_ho . w1 . _ c
o= [+ =1 hﬁz{dzzﬂcﬁ}; hy= > 2,5())
}6 ﬁ i=1 zlﬁ>0 )Lﬁ>0
B, = 0.04 Cy~IB-BeaI? 5,=114 8,=093
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Dynamical characterization of network topology
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The mismatch between local and global dynamics defines the transition
(Phys. Lett. A319 (2003) 285-289)




Self-organized criticality

@ Most SOC models display:
- Unstable behavior of the local dynamics
- Extremal dynamics

@ Theorem
If the single-agent dynamics has positive Lyapunov exponents and the
global dynamics is extremal with finite range, then, in the N — oo
limit, the Lyapunov spectrum converges to 0

@ Proof: In the T — oo limit, used to compute the Lyapunov spectrum,
the tangent maps have only a nontrivial finite size block during an
average time of order (2r +1) &

@ With the Lyapunov spectrum converging to 0" there are no dynamical
scales. Thus in the N — oo limit the system is "tuned" to SOC

@ A sufficient condition for SOC




Self-organized criticality

o A "detuned" model
x (t+1)=T; (?) x (t) + (1 T (?)) f(xi (t))

f(x) = kx (mod.1)
oI} (?) is nearly zero if i corresponds to the minimum x value or to
one of its 2n, neighbors and is nearly one otherwise

@ For example
j=i+n, _4
— e T
n() =TT (1=
N %%k
j=i—ny, Yi—1€e 7

@ Is a "finite temperature" Bak-Sneppen model. Has scaling laws only
in the T — 0 limit
@ Computation of the Lyapunov spectrum illustrates the theorem
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Self-organized criticality
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(Physica D 214 (2006) 182)




