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Generalized ergodic parameters: A cocycle formulation

Motivation: Lyapunov exponents are global functions of the
invariant measure. However, the invariant measure itself contains
more information. Ergodic parameters are averages of local
�uctuating quantities. The quantities describing the �uctuations are
again ergodic parameters, etc. (Ruelle)
Cocycles and the Oseledets theorem; f : M ! M measure
preserving transformation of a Lebesgue space (M,B, µ)). For any
measurable function g : M ! GL (N,R) let

C (x , n) = g
�
f n�1 (x)

�
� � � g (x)

C (x , n+ k) = C
�
f k (x) , n

�
C (x , k)

C : M �Z ! GL (N,R) is called a cocycle (over f ). Any cocycle
has this form. g is the generator of the cocycle.
Theorem (Oseledets): If ln+ kg (x)k 2 L1 (M, µ)
(i) 9 a decomposition RN = �k (x )i=1 Ei (x) invariant under C (x , n),

(ii) limn!∞
1
n ln

kC (x ,n)vk
kvk = χi (x) with χ1 (x) < � � � < χk (x ) (x),

exists uniformly in v 2 Ei (x)�f0g.
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Lyapunov, conditional exponents and �uctuation moments

For the Lyapunov exponent the cocycle generator is

g1 (x) = Df (x) = exp (ln (Df (x)))

Conditional exponents: (Pecora, Carroll) In the Jacobian Df use
partial blocks

Existence under the same conditions as the Lyapunov exponents
(Phys. Lett. A248 (1998) 167 - 171)

De�nition: Lyapunov �uctuation moments χ
(p)
i (x)

Are the limits limn!∞
1
n ln

kC (x ,n)vk
kvk = χi (x) when the cocycle

generator is
gp (x) = exp (ln

p
+ (Df (x))) (1)
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Fluctuation moments

Remark : De�nition of the logarithm is understood in the framework of the
Oseledets-Pesin ε�reduction theorem. For any ε > 0 there is an invertible
map Γε (x) : M ! GL (N,R) such that gε (x) = Γ�1 (f (x)) g (x) Γ (x)
has block form and in each block eχi (x )�ε �

g iε (x) v � eχi (x )+ε

Then gε (x) generates a cocycle Cε (x , n) equivalent to C (x , n).
ln+ in (1) is therefore computed without ambiguity in each block and

χ
(p)
i (x) = lim

n!∞

1
n
ln

gp �f n�1 (x)� � � � gp (x) v
kvk

is an ergodic average of the p�moment of the local expansion rate.

Proposition

The Lyapunov �uctuation moments χ
(p)
i (x) exist whenever

ln+ kgp (x)k 2 L1 (M, µ)

Proof : A consequence of the Oseledets multiplicative ergodic theorem
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Lyapunov characteristic �uctuation function

This cocycle construction provides a uni�ed description of the
�uctuation ergodic parameters previously considered by several
authors (Crisanti, Fujisaka, Froeschle, Vanneste, Oliveira, ...)
Existence of the �uctuation moments depends on the integrability of

exp
�
∑ kiλ

p
i (x)

�
λi (x) the local expansion rate at x ; ki multiplicity of this rate.
If the expansion rate variable fails to have moments for large p,

De�nition
The Lyapunov characteristic �uctuation function C (α) is de�ned as the
limn!∞

1
n ln

kC (x ,n)vk
kvk when the generator of the cocycle is

gα (x) = exp (exp (iα ln+ (Df (x))))

As before, existence of C (α) depends on integrability of ln+ kgα (x)k and,
because exp (iα ln+ (Df (x))) is bounded, this is always ful�lled.
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Correlations and other parameters

Although C (α) contains complete information on the statistical properties
of the local �uctuation rate, a full ergodic characterization of the dynamics
should also contain information about correlations at di¤erent points. The
ergodic parameters obtained from the Hessian in a variational formulation

AN =
d

∑
α=1

N

∑
k�1

[xα (tk )� f α(x (tk�1))] [x
α (tk )� f α(x (tk�1))]

1
2HN =

1
2

∂2AN
∂x α(tj )∂x β(tk )

= δα,βδj ,k � (1� δk ,N ) δk ,j�1
∂f α(x (tk ))

∂x β(tk )
�

(1� δj ,N ) δj ,k�1
∂f β(x (tj ))

∂x α(tj )
+ δj ,k (1� δj ,N )

∂f γ(x (tj ))
∂x β(tj )

∂f γ(x (tj ))
∂x α(tj )

µ1 = limN!∞
1
NTrHN ; µp = limN!∞

1
N ∑p

k=0

�
p
k

�
(�1)k TrHp�kN

�
µ
(N )
1

�k
(PLA 155 (1991) 388), already contain some information on the
correlations, but a full study of this problem is far from complete.
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A tool: correlation cocycles

Let f : M ! M be a measure preserving transformation of a Lebesgue
space (M,B, µ)). For a measurable function g : M ! GL (N,R) let

Ck (x , n) = g
�
f (n�1)k (x) , f (n�2)k (x)

�
� � � g

�
f k (x) , x

�
Then

Ck (x , n+ p) = Ck
�
f pk (x) , n

�
Ck (x , p)

Ck : M �Z ! GL (N,R) may be called a correlation cocycle (over f )

If ln+
g �f k (x) , x� 2 L1 (M, µ) Oseledets�theorem applies and

choosing appropriate functions g : M ! GL (N,R) one obtains
correlation ergodic parameters.
Example:

g
�
f k (x) , x

�
= Df

�
f kx
�
Df (x)� (Df (x))2
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Dynamical Rényi entropy and �uctuations of the local
expansion rate

Φ =partition of M;
n

φ
(n)
i

o
= elements of partition Φn =

n�1
_
i=0
f �i (Φ)

Dynamical Rényi entropy of order α

K (α) = sup
Φ

(
lim
n!∞

1
1� α

1
n
ln∑

i
µ
�

φ
(n)
i

�α
)

Related to what some authors (Fujisaka, Benzi-Paladini-Parisi-
Vulpiani, Grassberger-Procaccia) call generalized Lyapunov exponents
An easier to compute (not necessarily equivalent) de�nition :

KB (α) = lim
ε!0

lim
n!∞

1
1� α

1
n
ln ∑
i0 ���in�1

(p (i0 � � � in�1))α

p (i0 � � � in�1) is the joint probability to be at the box i0 at time 0, to be at
box i1 at time 1, � � � , and to be at box in�1 at time n� 1, the sum being
over all di¤erent blocks of length n.
(Invariant measure absolutely continuous with respect to Lebesgue)
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Estimating Rényi entropies from the local expansion rate

Local expansion rate Λ (x) = ∏λi>0 e
λi (x ) =) If the system is in box i0

at time 0, it can go to Λ (i0) boxes in the next step, then to Λ (i0)Λ (i1)
boxes, etc. (Λ (ik ) the average expansion rate in the box ik and µ (i0) the
measure of the box i0)

p (i0 � � � in�1) =
µ (i0)

Λ (io ) � � �Λ (in�2)

KB (α) = lim
ε!0

lim
n!∞

1
1� α

1
n
ln ∑
i0 ���in�1

�
µ (i0)

Λ (io ) � � �Λ (in�2)

�α

Considering average values and normalizing to obtain
∑i0 ���in�1 p (i0 � � � in�1) = µ (i0) in α ! 1 limit

KB (α) = lim
ε!0

lim
n!∞

1
1� α

1
n
ln

*
µ (i0)

α
�

1
Λ (io ) � � �Λ (in�2)

�α�1
+

() 10 / 28



Estimating Rényi entropies from the local expansion rate

In the limn!∞

KB (α) = lim
ε!0

lim
n!∞

1
1� α

1
n
ln

*
exp

 
(1� α)

n�2
∑
k=0

lnΛ (ik )

!+

(1� α)K (α) is the pressure function for the random variable
Yn = 1

n ∑n�2
k=0 lnΛ (ik ). The Legendre transform

I (y) = sup
α
f(1� α) y � (1� α)K (α)g

is the deviation function for the large deviations of the random variable
Yn = 1

n ∑n�2
k=0 lnΛ (ik )

Pn

(
1
n

n�2
∑
k=0

lnΛ (ik ) 2 (y , y + dy)
)
� exp (�nI (y)) dy
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Estimating Rényi entropies from the local expansion rate

Proposition
(i)The Legendre transform of the (box) dynamical Rényi entropy is the
deviation function for the local expansion rate.
(ii) If a weak correlation condition is veri�ed, namely*
exp

 
(1� α)

n�2
∑
k=0

lnΛ (ik )

!+
n�2
∏
k=0

hexp ((1� α) lnΛ (ik ))i�1 � c1ec2n
γ

c2 > 0 and γ < 1

KB (α) = lim
ε!0

1
1� α

ln hexp ((1� α) lnΛ (i))i

KB (α) = lim
ε!0

∞

∑
s=1

ks (lnΛ) (1� α)s�1

where ks (lnΛ) are the cumulants of the local expansion rate.
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Ergodic parameters, measures of complexity and
self-organization

A (well-known) characterization of complexity
Excess entropy or e¤ective measure complexity
pN (s1 � � � sn) the probability to �nd the block s1 � � � sn of size n

H(n) = � ∑
fsi g
pn(s1 � � � sn) log pn(s1 � � � sn)

hs = limn!∞
1
nH(n) being the Shannon entropy.

Excess entropy E (e¤ort needed to construct a model of the system)

E = ∑
n

�
1
n
H (n)� hs

�
Is a measure of the diversity of dynamical structures
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Ergodic parameters, measures of complexity and
self-organization

Finite-time �uctuations in Lyapunov exponents, are a symptom of diversity
of dynamical structures. ) A dynamical version of the excess entropy ?
Use the large deviation principle
Legendre transform I (y) of (1� α)K (α) is the deviation function of the
random variable Yn = 1

n ∑n�2
k=0 lnΛ (ik ) . Average value of Yn is an estimate

of 1nH (n). Therefore, a dynamical version of the excess entropy is

Ee = ∑
n

�Z ∞

0
yPn (y) dy � yImin

�
with yImin being the value that minimizes I (y) and

Pn (y) =
e�nI (y )R ∞

0 e
�nI (y )dy

Ee may be computed from the ergodic parameters that de�ne the
�uctuations of the local expansion rate. (arXiv:1008.2664)
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Structure and self-organization
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Structure and self-organization: An example

xi (t + 1) = (1� c) f (xi (t)) +
c

N � 1 ∑
k 6=i
f (xk (t))

f (x) = 2x (mod .1)

c = 0.495 c = 0.51
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Structure and self-organization: An example

(Physica A 276 (2000) 550-571; 295 (2001) 537-561)
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Synchronization and clustering

Synchronization
(Classical mathematical example: the Kuramoto model)
A similar, discrete-time oscillators model

xi (t + 1) = xi (t) +ωi +
k

N�1 ∑N
j=1 fα (xj � xi )

p (ω) =
γ

π
h
γ2 + (ω�ω0)

2
i

fα (xj � xi ) = α (xj � xi ) (mod .1)

Order parameter

r (t) =

����� 1N N

∑
j=1
e i2πxj (t)

�����
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Synchronization and clustering
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Synchronization and clustering
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Synchronization and clustering

The Lyapunov spectrum controls the dynamical self-organization of
the system

In this case

λ1 = 0

λi = log
�
1� αk

�
N

N � 1

��
(N � 1) times

N � 1 contracting directions for any k 6= 0
"One-dimensional" system!

) Strong dynamical correlations even before synchronization
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Synchronization and clustering

(Int. J. Bifurcation and Chaos 15 (2005) 1185-1213)
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Dynamical characterization of network topology

The small-world phase

Is there a small-world � random transition ?
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Dynamical characterization of network topology

De�ne a dynamical system on the network

and an order parameter using Lyapunov and conditional exponents
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Dynamical characterization of network topology

The mismatch between local and global dynamics de�nes the transition
(Phys. Lett. A319 (2003) 285-289)
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Self-organized criticality

Most SOC models display:
- Unstable behavior of the local dynamics
- Extremal dynamics

Theorem
If the single-agent dynamics has positive Lyapunov exponents and the
global dynamics is extremal with �nite range, then, in the N ! ∞
limit, the Lyapunov spectrum converges to 0+

Proof: In the T ! ∞ limit, used to compute the Lyapunov spectrum,
the tangent maps have only a nontrivial �nite size block during an
average time of order (2r + 1) TN
With the Lyapunov spectrum converging to 0+ there are no dynamical
scales. Thus in the N ! ∞ limit the system is "tuned" to SOC

A su¢ cient condition for SOC
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Self-organized criticality

A "detuned" model

xi (t + 1) = Γi
�!
x
�
xi (t) +

�
1� Γi

�!
x
��
f (xi (t))

f (x) = kx (mod .1)

Γi
�!
x
�
is nearly zero if i corresponds to the minimum x value or to

one of its 2nv neighbors and is nearly one otherwise

For example

Γi
�!
x
�
=

j=i+nv

∏
j=i�nv

 
1� e�

xj
T

∑N
k=1 e

� xk
T

!

Is a "�nite temperature" Bak-Sneppen model. Has scaling laws only
in the T ! 0 limit

Computation of the Lyapunov spectrum illustrates the theorem
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Self-organized criticality

(Physica D 214 (2006) 182)
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