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Stochastic solutions of partial di¤erential equations

Stochastic solution = a stochastic process which, started from a
particular point x in the domain, generates after time t a boundary
measure which, integrated over the initial condition at t = 0, provides
the solution at x and time t.

Example: the heat equation

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

the process is Brownian motion, dXt = dBt , and the solution

u(t, x) = Ex f (Xt )

The domain here is R� [0, t) and the expectation value is the inner
product hµt , f i of the initial condition f with the measure µt
generated by the Brownian motion at the t�boundary.
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Stochastic solutions of PDE�s

Using the heat kernel the solution would be

u (t, x) =
1

2
p

π

Z
R

1p
t
exp

 
� (x � y)

2

2t

!
f (y) dy

that is, Integration over the domain versus "integration" over paths.

Even for linear problems, the stochastic solution approach provides a
way to express exact solutions in a way that is not possible with
kernels and integral representations: Example

Lf (x) =
1
2

d

∑
i ,j=1

aij (x)∂ij f (x) +
d

∑
i=1
bi (x)∂i f (x)

(L+ v(x)) u(x) = �g(x) with u = 0 on ∂D

u(x) = Ex
hR τD
0 g(Xs )e

R s
0 v (Xr )drds

i
All these are classical results for linear pde�s.
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Stoch. solutions for nonlinear PDE�s. KPP eq. (McKean)

∂v
∂t
=
1
2

∂2v
∂x2

+ v2 � v v (0, x) = g (x)

G (t, x) = Green�s operator for heat equation ∂tv(t, x) = 1
2

∂2

∂x 2 v(t, x)

G (t, x) = e
1
2 t

∂2

∂x2

Write KPP in integral form

v (t, x) = e�tG (t, x) g (x) +
Z t

0
e�(t�s)G (t � s, x) v2 (s, x) ds

Denoting by (ξt ,Πx ) a Brownian motion starting from time zero and
coordinate x , the integral equation may be rewritten as

v (t, x) = Πx

�
e�tg (ξt ) +

Z t

0
e�(t�s)v2 (s, ξt�s ) ds

�
= Πx

�
e�tg (ξt ) +

Z t

0
e�sv2 (t � s, ξs ) ds

�
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The KPP equation

The stochastic solution process: a Brownian motion plus branching
process with exponential holding time T , P (T > t) = e�t . At each
branching point the particle splits into two, the new particles going
along independent Brownian paths. At time t > 0 one has n particles
located at x1 (t) , x2 (t) , � � � xn (t). The solution is obtained by

v (t, x) = E fg (x1(t)) g (x2(t)) � � � g (xn(t))g

An equivalent interpretation: a backwards-in-time process from time t
at x . When it reaches t = 0 samples the initial condition. Generates
a measure at the t = 0 boundary which is applied to g (x) = v (0, x).

v (t, x) = E fv (0, x1) v (0, x2) � � � v (0, xn)g
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Stochastic solutions: What are they good for?

Nonlinearity becomes branching.
New exact solutions
New numerical algorithms
Deterministic algorithms grow exponentially with the dimension d of
the space, roughly Nd ( LN the linear size of the grid). The stochastic
process only grows with the dimension d .
Provide localized solutions
Sample paths started from the same point are independent.
Likewise, paths starting from di¤erent points are independent from
each other. The stochastic algorithms are a natural choice for parallel
and distributed computation.
Stochastic algorithms handle equally well regular and complex
boundary conditions.
Domain decomposition using interpolation of localized stochastic
solutions and then, in each small domain, a deterministic code.
Avoids the communication time problem. Fully parallel.
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Stochastic solutions: Two construction methods

McKean�s method: a probabilistic version of the Picard series.
First the di¤erential equation is written as an integral equation and
rearranged in a such a way that the coe¢ cients of the successive
terms in the Picard iteration obey a normalization condition
Then the Picard iteration is interpreted as an evolution and branching
proces.
The stochastic solution is equivalent to importance sampling of a
normalized Picard series.

The method of superprocesses: constructs the boundary measures
of a measure-valued stochastic process and obtains the solutions of
the di¤erential equation by a scaling procedure (see the appendix).
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Superprocesses. Branching exit measures (Dynkin)

Superprocesses are scaling limits of in�nitely fast branching stochastic
processes generating a measure-valued process on the boundary

They are either models for evolving populations or tools to represent
the solutions of nonlinear partial di¤erential equations (PDE�s). The
�gure illustrates the superprocesses that represents the solution of

∂u
∂t
=
1
2

∂2u
∂x2
� uα

for α = 2. Likewise superprocesses with di¤erent branching schemes
may be constructed for 1 < α � 2. However, Dynkin�s
measure-valued superprocesses cannot handle α > 2, nor
interactions involving derivatives.
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A list of some results

Navier-Stokes
E. C. Waymire; Probability & incompressible Navier-Stokes equations:
An overview of some recent developments, Prob. Surveys 2 (2005)
1-32

Vlasov with and without magnetic �eld and
magnetohydrodynamics
RVM, F. Cipriano; Commun. Nonlin. Sci. and Num. Simul. 13
(2008) 221-226, 1736.
RVM; J. of Math. Phys. 51 (2010) 043101
E. Floriani, RVM; J. of Comp. Phys. 242 (2013) 777�789.

Fractional KPP
F. Cipriano, H. Ouerdiane, RVM; Fract. Calculus Appl. Anal. 12
(2009) 47�56.

Extension of superprocesses to ultradistributions
RVM; Stochastics 89 (2017) 896-909.
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Stochastic solutions as generators of regular structures

Three STEPS:
1 - Nonlinear PDE  ! Propagation (di¤usion) (linear part) �
Branching process (nonlinearity=branching)
2 - The process generates a basis of regular structures (polynomials of
the t = 0 condition and its derivatives at random points in the
domain) to represent the solution at (t, x).
3 - Computation of functionals in the basis, averages, etc.
Convergence checks for existence of the functionals, for example
j∂nf (0, x)j � 1
If the regularity index of most terms in the equation is su¢ ciently
positive, this method is identical to importance sampling of the
Picard iteration.
However if some terms have negative regularity, for example
space-time white noise (� d2 � 1� ε) the Picard iteration does not
make sense (except with molli�cation and renormalization, whenever
possible).
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Stochastic solutions as generators of regular structures

Nevertheless the di¤usion + branching process may still be well
de�ned (Ill de�ned multiplication becomes branching) - STEP 1.
It also generates a basis of regular structures, for example
polynomials of white noise at di¤erent space-time points (with
probability one) with coe¢ cients given by the function and its
derivatives at t = 0 - STEP 2.
It is only STEP 3 that one has to worry about.
Singular partial di¤erential equations are pde�s which are singular
in the sense that nonlinear functions of the driving terms, or of the
solution itself, are ill-de�ned. Even the question of what means to be
a solution is a non-trivial matter. An example

∂th = ∂2xh+ λ (∂xh)
2 + ξ,

Kardar-Parisi-Zhang (KPZ), ξ being a space-time white noise.
If the solution has the same regularity structure as Brownian motion,
in a Picard solution, the nonlinear term has powers of the white noise,
that is, products of distributions at the same spacetime points.
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Stochastic solutions for singular PDE�s. The KPZ example

KPZ, having been studied before by several methods, is a good
testing ground for this approach.
KPZ: Two approaches:
1- The (rescaled) Cole-Hopf transformation

Z = e�teλh; h =
1
λ
(t + logZ ) , (1)

leads to
∂tZ = ∂2xZ � Z + λZξ. (2)

The last term still involves two distribution-valued entities.
The �rst step is to rewrite it as an integral equation,

Z (t, x) = e�tet∂
2
xZ (0, x) +

Z t

0
e�(t�s)e(t�s)∂

2
xZ (s, x) λξ (s, x)

= e�tet∂
2
xZ (0, x) +

Z t

0
e�ses∂

2
xZ (t � s, x) λξ (t � s, x) ,
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Stochastic solutions for singular PDE�s. KPZ equation

Z (t, x) being distribution-valued, the integrals involve a product of
distributions and, when interpreted as usual equalities, would be
meaningless. However they become well-de�ned when interpreted as a
symbolic de�nition of an iterated stochastic process.
The product Z (s, x) ξ (s, x) simply means that the Z�process
samples the driving term at a branching point. This case is the
simplest instance of a branching. A term Z 3 (s, x), for example, would
mean a branching at (s, x) of the process into three similar processes.
It is in this sense that, as stated before, unde�ned multiplications
of distributions are traded o¤ by well de�ned branchings.
Noticing that et∂

2
x is the evolution operator for a di¤usion process Xt

and that e�t +
R t
0 e
�sds = 1, the second equation may be written as

an expectation value over a branching and di¤usion process which
starts at (t, x) and evolves backwards in time to t = 0.

Z (t, x) = E(t ,x )

�
e�tZ (0,Xt ) +

Z t

0
dse�sZ (t � s,Xs ) λξ (t � s,Xs )

�
.
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Stochastic solutions for singular PDE�s. KPZ equation

pt = e�t is the surviving probability from time t to time zero and ρs = e
�s

is the probability density for branching between s and s + ds. Between
branchings the process propagates as a pure di¤usion process and at each
branching point there is a sampling of the white noise at that space-time
point, as well as the creation of a new propagation path for the process.
A typical sample path
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Stochastic solutions for singular PDE�s. KPZ equation

The contribution of a sample path with n branchings is

Fn = λnξ (t � s1,Xs ) ξ (t � s1 � s2,Xs1+s2) � � �
� � � ξ (t � s1 � s2 � � � � sn,Xs1+s2 ���+sn ) � � �Z (0,Xt )

The stochastic construction involves two distinct probability spaces,
Ω and Ω0, the �rst being the auxiliary probability space of the
Brownian motion Xt used to compute the expectation E(t ,x ) and the
second the probability space of the driving white noise.

The expectation value (in Ω) is over the branching and di¤usion
process, for a particular �xed realization of the white noise
fξ (t, x) , t 2 [0, t]g in Ω0.
Because the driving term is a white noise, Z (t, x) is also a random
variable in Ω0. If one lets the ξ white noise realization change at each
branching one would obtain a process Z 0(t, x) in Ω
Ω0. Functionals
of the solution are partial averages over Ω.
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Stochastic solutions for singular PDE�s. KPZ equation

So far one has avoided the product of distributions arising from the
last term by trading o¤ products by branchings. Then, to compute
the Fn functional of each sample path, one deals with the product of
n white noises which, with probability one, are de�ned at di¤erent
space-time points. Therefore one deals with products of n
independent Gaussian variables, which are well-de�ned random
variables with distribution given by Meijer G-function. Hence, with
probability one, the Z 0 process and the F 0ns are well-de�ned.

A con�guration space of non-overlapping Gaussian processes?

Proposition
The Fn functionals over the branching, di¤usion and white noise sample
paths generate a well-de�ned process Z 0 in Ω
Ω0. A partial expectation
over Ω, when it exists, is the Ω0�process solution of Eq.(2). The process
solution of the KPZ equation is obtained from the second equation in (1).
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Stochastic solutions for singular PDE�s. KPZ equation

A set of regular structures (the F 0ns) is found to expand the solution.
Something else may be needed, when taking averages over the F 0ns
For a single realization of the ξ noise, expectation values over the
branching are performed explicitly summing all possible sample paths
of the process, noticing that in each case the composition of the
branching probability e�se�s1 � � � e�(t�∑ si ) is e�t . The result is

Z (t, x) = E(t ,x )

�
e�tZ (0,Xt )

�
1+ λ

Z t

0
dB (t � s,Xs )

+λ2
Z t

0

Z s

0
dB (t � s,Xs ) dB

�
t � s � s 0,Xs+s 0

�
+ � � �

��
= E(t ,x )

n
e�tZ (0,Xt ) eλ

R t
0 dB (t�s ,Xs )

o
,

B (t, x) being the Brownian motion for which the white noise ξ (t, x)
is the distributional derivative. Finallybh (t, x) = 1

λ
logE(t ,x )

n
eλh(0,Xt )eλ

R t
0 dB (t�s ,Xs )

o
,
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Stochastic solutions for singular PDE�s. KPZ equation

However this is only a formal expression until one de�nes what is the
meaning of eλ

R t
0 dB (t�s ,Xs ), that is, what is the signature of B (t)

If our choice is Itô integration, Itô formula for bht = logWt would
imply

∂tbh = ∂2xbh+ λ
�

∂xbh�2 + ξ � C

that is, bh (t, x) is not the solution of the KPZ equation but of a
renormalized KPZ equation with an in�nite renormalization constant
C . Solution of the original equation would require the choice of a
rough path de�nition for the B (t) signature not containing the 2nd
derivative term of the Itô formula.

In conclusion: The stochastic solution technique provides a way to
generate a set of regular structures to expand the solution, but
then, when performing resummations, further assumptions are needed
in the sense of rough path theory.
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2 - KPZ - Direct construction

A set of regular expansion structures may also be obtained directly from
the KPZ equation without the Cole-Hopf transformation.
Because there is no natural branching clock, add and subtract a linear term

∂th (t, x) = ∂2xh (t, x)� µh (t, x) + λ (∂xh)
2 + µh (t, x)� ξ (t, x) ,

which allows to write the integral equation as h (t, x) =

e�tµet∂
2
x h (0, x)+

Z t

0
dse�µses∂

2
x

n
λ (∂xh (t � s, x))2 + µh (t � s, x)� ξ (t � s, x)

o
.

The solution will then be an expectation value of a di¤usion and branching
process, denoted DB1

h (t, x) = EDB1
�
e�tµh (0,Xt ) + γ

Z t

0
dsµe�µs

�
λ

η
(∂Xsh (t � s,Xs ))

2

+
µ

η
h (t � s,Xs )�

1
η

ξ (t � s,Xs )
��
, (3)

with γ = λ+µ+1
µ ; η = λ+ µ+ 1
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KPZ - Direct construction

The DB1�process starts from (t, x) and di¤uses backwards-in-time either
to time zero with probability e�tµ or to a branching point at time s with
probability dsµe�µs . At the branching point, with probability 1

η the

process samples the white noise, with probability µ
η the process proceeds

undisturbed and with probability λ
η two new DB1�processes are started

from (t � s,Xs ) and a derivative label ∂Xs is assigned to the branching
point. In the subsequent processes both h (t � s,Xs ) and the label ∂Xs are
transported by the processes

es∂
2
x ∂xh (t � s, x) = es∂

2
x ∂x e�s∂

2
x es∂

2
x h (t � s, x) .

Because the propagation process here is a simple di¤usion, the transport
of the labels is very straightforward and at the �nal step, when the
processes reach time zero, the derivative is applied at the same point as
the point reached by the processes. To use this method of labelled
branching trees allows for a simple construction of stochastic solutions for
equations involving derivatives or even nonpolynomial interactions.
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KPZ - Direct construction

A sample path of the DB1�process.

The expansion struture generated by this sample path is

�γ4∂2h
�
0,X (3)t

�
∂3h

�
0,X (5)t

�
∂3h

�
0,X (6)t

�
ξ
�
t � s 00,X (2)s 00

�
.
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KPZ - Direct construction

At each branching point there is a coupling constant γ. When more than
one white noise contribution appears in the multiplicative functional, with
probability one they sample the white noises at di¤erent space-time points.
One has a well-de�ned product of independent Gaussian random variables.
As before one deals with two probability spaces Ω and Ω0. The
expectation value in Eq.(3) is an expectation value over the DB1�process
for each �xed realization of the white noise process, hence an expectation
in Ω. When a di¤erent realization of the white noise is sampled whenever
it appear in the branching tree one obtains a DB10� process in Ω
Ω0.

Proposition
The partial expectation (in Ω) of the multiplicative functional of the
DB10�process in Ω
Ω0(di¤usion, branching and independent white
noises at each branching) generates a solution of the KPZ equation

Similar results for
∂tΦ = 4Φ�Φ3 + ξ
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Stochastic solutions and rough paths

Stochastic solution = An integral equation h (t, x) = e�tµet∂
2
x h (0, x) +R t

0 dse
�µses∂

2
x

n
λ (∂xh (t � s, x))2 + µh (t � s, x)� ξ (t � s, x)

o
interpreted as de�ning a stochastic process

h (t, x) = E

�
e�tµh (0,Xt ) + γ

Z t

0
dsµe�µs

�
λ

η
(∂Xsh (t � s,Xs ))

2

+
µ

η
h (t � s,Xs )�

1
η

ξ (t � s,Xs )
��
,

generating a set of regular structures to expand the solution versus a
(formal) solution in terms of iterated integrals

h (t, x) = h (0, x) +
Z t

0
ds1
n

∂2xh (s1, x) + λ (∂xh)
2 (s1, x) + ξ (s1, x)

o
R t
0 ds1

�R s1
0 ds2 (∂xh)

2 (s2, x)
�2
;
R t
0 ds1

R s1
0 dB (s2, x) (∂xh)

2 (s2, x)
2; etc.

With h of the same regularity as B these integrals are not de�ned as Young
integrals ) Itô Calculus (Semimartingale noises) or Rough path theory
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Stochastic solutions and rough paths

Rough path methods generate enhanced paths (X ,X) to de�ne
solutions for each noise realization. In the stochastic solution method
the solution is expanded into structures associated to a (labelled)
tree process. Even if a particular realization is chosen for the noise,
there still is a probabilistic element in the choice of the bifurcation
paths. The solution expansion structure is well de�ned if, with
probability one, each one of its paths is well de�ned.
- Stochastic solutions and singular partial di¤erential equations;
Commun. Nonlinear Sci. Num. Simul. 125 (2023) 107406 +
references therein

For comparison with the rough path approach:
- P. Friz, M. Hairer; A course on rough paths, with an introduction to
regularity structures, Springer 2014.
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Appendix

# Superprocesses as branching exit measures
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Superprocesses: Branching exit measures (Dynkin, etc.)

(E ,B) a measurable space, M+ (E ) the space of �nite measures in E
and

�
Xt ,P0 ,µ

�
a branching stochastic process with values in M+ (E )

and transition probability P0,µ starting from time 0 and measure µ.
The process satis�es a branching property if given µ = µ1 + µ2

P0,µ = P0,µ1 � P0,µ2
that is, after the branching,

�
X 1t ,P0,µ1

�
and

�
X 2t ,P0 ,µ2

�
are

independent and X 1t + X
2
t has the same law as

�
Xt ,Pr0,µ

�
.

For the transition operator Vt operating on functions on E this is

Vt f (µ1 + µ2) = Vt f (µ1) + Vt f (µ2)

where e�hVt f ,µi $ P0,µe�hf ,Xt i or

Vt f (µ) = � logP0,µe�hf ,Xt i

Vt is the log-Laplace semigroup associated to Xt . If µ0 = δx

Vt f (x) = � logP0,x e�hf ,Xt i
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Superprocesses: Branching exit measures

In S = [0,∞)� E consider a set Q � S and the associated branching
exit process

�
XQ ,Pµ

�
composed of a propagating Markov process in

E , ξ = (ξt ,Π0,x ), a set of probabilities pn(t, x) describing the
branching and a parameter k de�ning the lifetime.

u (x) = VQ f (x) = � logP0,x e�hf ,XQ i (4)

hf ,XQ i is the integral of the function f on the (space-time) boundary
with the boundary exit measure generated by the process.
This branching exit process is called a (ξ,ψ)�superprocess if

u + GQψ (u) = KQ f (5)

GQ and KQ are the Green and the Poisson operators,

GQ f (r , x) = Π0,x

Z τ

0
f (s, ξs ) ds

KQ f (x) = Π0,x1τ<∞f (ξτ)

ψ (u) means ψ (0, x ; u (0, x)) and τ is the exit time from Q.
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Superprocesses: The construction

Let ϕ (s, x ; z) be the o¤spring generating function at time s and point x

ϕ (s, x ; z) = c
∞

∑
0
pn(s, x)zn

where ∑n pn = 1 and c denotes the branching intensity.

P0,x e�hf ,XQ i $ (6)

e�w (0,x ) = Π0,x

�
e�kτe�f (τ,ξτ) +

Z τ

0
dske�ks ϕ

�
s, ξs ; e

�w (τ�s ,ξs )
��

The measure-valued process starts from δx at time 0, τ is the �rst exit
time from Q and f (τ, ξτ) the value of a function in the boundary ∂Q.
Using

R τ
0 ke

�ksds = 1� e�kτ and the Markov property
Π0,x1s<τΠs ,ξs = Π0,x1s<τ, Eq.(6) for e�w (0,x ) is converted into

e�w (0,x ) = Π0,x

�
e�f (τ,ξτ) + k

Z τ

0
ds
h

ϕ
�
s, ξs ; e

�w (τ�s ,ξs )
�
� e�w (τ�s ,ξs )

i�
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Superprocesses: The limiting procedure

Replace w (0, x) by βwβ (0, x) and f by βf . β may be interpreted as the
mass of the particles and when the measure-valued process XQ ! βXQ
then Pµ ! P µ

β
.

e�βw (0,x ) = Π0,x

h
e�βf (τ,ξτ)

+kβ

Z τ

0
ds
h

ϕβ

�
s, ξs ; e

�βw (τ�s ,ξs )
�
� e�βw (τ�s ,ξs )

i�
De�ning

uβ =
�
1� e�βwβ

�
/β ; fβ =

�
1� e�βf

�
/β

ψβ

�
r , x ; uβ

�
=
kβ

β

�
ϕ
�
r , x ; 1� βuβ

�
� 1+ βuβ

�
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Superprocesses: The limiting procedure

One obtains

uβ (0, x) +Π0,x

Z τ

0
dsψβ

�
s, ξs ; uβ

�
= Π0,x fβ (τ, ξτ)

that is
uβ + GQψβ

�
uβ

�
= KQ fβ (7)

When β! 0, fβ ! f and if ψβ goes to a well de�ned limit ψ then uβ

tends to a limit u, solution of (5) associated to a superprocess. Also in the
β! 0 limit

uβ ! wβ = � logP0,x e�hf ,XQ i

If to obtain with (7) the equation we want, the limiting choice is β! 0
and kβ ! ∞, the superprocess corresponds to a cloud of particles for
which both the mass and the lifetime tend to zero.
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Superprocesses and nonlinear heat equation

The KPP equation may also be interpreted as a superprocess with β! 1
and kβ ! 1. However, the main interest of superprocesses is that with the
β! 0, kβ ! ∞ limit stochastic solutions are constructed for other
equations, in particular equations without the Poisson clock which is
present in the KPP equation. For example for

∂u
∂t
=
1
2

∂2u
∂x2
� u2 one has ψ (0, x ; u) = u2

ψβ

�
0, x ; uβ

�
=

kβ

β

 
βuβ � 1+

2

∑
n=0

p0 + p1
�
1� βuβ

�
+ p2

�
1� βuβ

�2!
= u2β

leads to p1 = 0; p0 = p2 = 1
2 ; kβ =

2
β . In this case, β! 0, the solution is

given by (4) and the superprocess a scaling limit (n! ∞ in the �gure).
Mass and lifetime of the particles tend to zero and at each branching they
either die without o¤spring or have two children.
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Superprocesses for more general interactions

The construction may be generalized for interactions uα with 1 < α � 2.
With z = 1� βuβ one has

ϕ (0, x ; z) = ∑
n
pnzn = z +

β

kβ
uα

β = z +
β

kβ

(1� z)α

βα = z +
1

kββα�1

�
�
1� αz +

α (α� 1)
2

z2 � α (α� 1) (α� 2)
3!

z3 + � � �
�

Choosing kβ =
α

βα�1 the terms in z cancel and for 1 < α � 2 the
coe¢ cients of all the remaining z powers are positive and may be
interpreted as branching probabilities. It would not be so for α > 2.

p0 =
1
α
; p1 = 0; � � � pn =

(�1)n

α

�
α
n

�
n � 2

with ∑n pn = 1. With this choice of branching probabilities, kβ =
α

βα�1 and

β! 0 one obtains a superprocess which provides a solution to the
equation ∂u

∂t =
1
2

∂2u
∂x 2 � u

α for 1 < α � 2.
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Superprocesses for more general interactions

For a generalization to superprocesses on signed measures and
ultradistributions, which allows for the construction of stochastic solutions
of much more general equations refer to:
# Superprocesses on ultradistributions; Stochastics 89 (2017) 896-909.
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