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1 Stochastic representations of solutions of
pde’s. Why?

(i) Connection between functional analysis and probability theory
(ii) An intuitive characterization of the equation solutions;
(iii) A calculation tool which may replace the need for very fine integration grids;
(iv) Intrinsic characterization of the fluctuations associated to the physical system.
The stochastic principle
- Kinetic and fluid equations are obtained from the full particle dynamics in the 6N-

dimensional phase-space by a chain of reductions.
- Along the way, information on the actual nature of fluctuations and turbulence may be

lost. An accurate model of turbulence may exist at some intermediate (mesoscopic) level,
but not in the final mean-field equation.

- A stochastic representation is a process for which the mean value is the solution of
the mean-field equation. The process itself contains more information. This does not mean
that the process is an accurate mesoscopic model of Nature, because we might be climbing
up a path different from the one that led us down from the particle dynamics.

- But, it is a surrogate mesoscopic model from which fluctuations are easily computed.
This is what we refer to as the stochastic principle. At the minimum, one might say that the
stochastic principle provides another closure procedure.



1.1 Stochastic representation of the solutions of linear equations
A very classical field (Courant, Friedrichs and Lewy in the 1920’s)

Example: Diffusion processes and elliptic operators
1

2
∆u (x)− λu (x) = −f (x)

u (x) = Ex
∞

0

e−λtf (Xt) dt

1.2 Stochastic representations for nonlinear equations
A developing field

McKean
Dynkin - Diffusion and branching, branching exit measures ∆u + uα = 0
LeJan and Sznitman plus Oregon school - Navier-Stokes



2 Poisson-Vlasov equation.Stochastic
representation and existence
Poisson-Vlasov equation in 3+1 space-time dimensions
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˜
ρB ξ1 = Fourier transform of ρB (x).



Rescaling the time
τ = γ (|ξ2|) t

γ (|ξ2|) a positive continuous function
γ (|ξ2|) = 1 if |ξ2| < 1
γ (|ξ2|) ≥ |ξ2| if |ξ2| ≥ 1
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Or, in integral form
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We obtain a stochastic representation for the following function

χ (ξ1, ξ2, τ ) = e
−λτF (ξ1, ξ2, τ )

h (ξ1)
with λ a constant and h (ξ1) a positive function to be specified later on.
The integral equation for χ (ξ1, ξ2, τ ) is

χ (ξ1, ξ2, τ ) = e−λτχ ξ1, ξ2 + τ
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with
|ξ1|−1 h ∗ h = d3ξ1 ξ1

−1
h ξ1 − ξ1 h ξ1

and

p ξ1, ξ1 =
ξ1
−1
h ξ1 − ξ1 h ξ1

|ξ1|−1 h ∗ h



Consider:
1) An exponential process with parameter λ (and a time shift in the second variable)
e−λτ is the survival probability during time τ ,
λe−λs is the decay probability in the interval (s, s + ds),
2) A branching process with probability density p ξ1, ξ1 d3ξ1

3) A Bernoulli process (probabilities 12,
1
2)

Stochastic interpretation of the Eq.(4)
- Starting at (ξ1, ξ2, τ ), a particle lives for an exponentially distributed time s up to time

τ − s.
- At its death a coin ls (probabilities 12,

1
2) is tossed.

- If ls = 0 two newparticles are born at time τ−swith Fouriermodes ξ1 − ξ1, ξ2 + s
ξ1

γ(|ξ2|)
and ξ1, 0 with probability density p ξ1, ξ1 .

- If ls = 1 only the ξ1 − ξ1, ξ2 + s
ξ1

γ(|ξ2|) particle is born and the process also samples

the background charge at ˜ρB ξ1 .
Each one of the newborn particles continues its backward-in-time evolution, following

the same death and birth laws. When one of the particles of this tree reaches time zero it
samples the initial condition.



1.
The processX (ξ1, ξ2, τ ), is obtained as the limit of the following iteration

X(k+1) (ξ1, ξ2, τ ) = χ ξ1, ξ2 + τ
ξ1

γ (|ξ2|)
, 0 1[s>τ ] + g2 ξ1, ξ1, s

×X(k) ξ1 − ξ1, ξ2 + s
ξ1

γ (|ξ2|)
, τ − s X(k) ξ1, 0, τ − s 1[s<τ ]1[ls=0]

+g1 ξ1, ξ1 X(k) ξ1, 0, τ − s 1[s<τ ]1[ls=1]



- At each branching point where two particles are born, the coupling constant is

g2 ξ1, ξ1, s = −eλ(τ−s)8πe
2

mλ
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h (ξ1)

→
ξ2 ·

ˆ
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- When only one particle is born and the process samples the background charge, the
coupling is

g1 ξ1, ξ1 =
8πe2

mλ

|ξ1|−1 h ∗ h (ξ1)

h (ξ1)

˜
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- When one particle reaches time zero and samples the initial condition the coupling is

g0 (ξ1, ξ2) =
F (ξ1, ξ2, 0)

h (ξ1)
The solution is the expectation value of a multiplicative functional that is the product

of all these couplings for each realization of the processX (ξ1, ξ2, τ )
χ (ξ1, ξ2, τ ) = E Π g0g0 · · · g1g1 · · · g2g2 · · ·



Convergence of the multiplicative functional hinges on the fulfilling of the following
conditions:

(A) F (ξ1,ξ2,0)
h(ξ1)

≤ 1
(B)

˜
ρB(ξ1)

(2π)3/2h(ξ1)
≤ 1

(C) |ξ1|−1 h ∗ h ≤ h (ξ1)
Condition (C) is satisfied, for example, for

h (ξ1) =
c

1 + |ξ1|2
2 and c ≤ 1

4π

Indeed computing 1
h(ξ1)

|ξ1|−1 h ∗ h one obtains

1

h (ξ1)
|ξ1|−1 h ∗ h = 4πc

∞

0

dr
r

(1 + r2)2

1 + |ξ1|2
2

1 + (|ξ1|− r)2 1 + (|ξ1| + r)2
This integral is bounded by a constant for all |ξ1|, therefore, choosing c sufficiently

small, condition (C) is satisfied.
Once h (ξ1) consistent with (C) is found, conditions (A) and (B) only put restrictions on

the initial conditions and the background charge. With the conditions (A) and (B), choosing
λ = 8πe2

m and c ≤ e−λτ 14π , the absolute value of all coupling constants is bounded by one.



The branching process, being identical to a Galton-Watson process, terminates with
probability one and the number of inputs to the functional is finite (with probability one).
With the bounds on the coupling constants, the multiplicative functional is bounded by one
in absolute value almost surely.

Once a stochastic representation is obtained for χ (ξ1, ξ2, τ ), one also has a stochastic
representation for the solution of the Fourier-transformed Poisson-Vlasov equation.

The results are summarized in:
Theorem - There is a stochastic representation for the Fourier-transformed solution

of the Poisson-Vlasov equation F (ξ1, ξ2, t) for any arbitrary finite value of the arguments,
provided the initial conditions at time zero and the background charge satisfy the bounded-
ness conditions (A) and (B).

Corollary - An existence result for (arbitrarily large) finite time.
Notice that existence by the stochastic representation method requires only bounded-

ness conditions on the initial conditions and background charge and not any strict smooth-
ness properties.


