The market as a mathematical object

Rui Vilela Mendes
UTL and GFM, Lisbon

The market

- Benefits
- Mobilization of savings
- Risk capital for new technologies

Pathologies

- Shift of creative effort from production of goods to financial techniques
- Market valuation more interesting than investment, enhanced by stockholders and administrator salary policies
Many markets. Teams in a modern trading room :
Merger arbitrage
Index arbitrage
Convertible bond arbitrage
Statistical arbitrage
Strong impact in the economy and human life Mathematical instruments as tools for trading Interesting process for mathematical modeling

The market as a mathematical object

- 1. Extracting an asymptotic stationary process
- 2. Market fluctuations and turbulence Is there a Gibbs measure ?

3. Chains with complete connections and variablelength Markov processes
4. Looking for structure. The geometry of the market
5. Modeling volatility

Geometric Brownian motion?
The induced volatility process
Fractional noise and the coupled process
6. Option pricing formulae and equations

1. Data analysis and stationarity

2. Comparison with hydrodynamic turbulence

- n-days return

$$
r(t, n)=\log p(t+n)-\log p(t)
$$

a) $\delta(n)=\max _{t}\{r(t, n)\}$ log-concave, asymptotically constant
b) $\left.S_{q}(n)=\left.\langle | r(t, n)\right|^{q}\right\rangle \sim n \chi(q)$ (in a limited range)

- c) $\chi(q)$ increasing concave function of q
d) $\chi(1)=1 / 3$ in hydrodynamics $\chi(1) \approx 1 / 2$ in finance
- $C(r(1), T)=<r(t+T, 1) r(t, 1)>$

Naturalness of Gibbs measures

- $p_{i}=$ probability of event X_{i}

1) Normalization :

$$
\Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=1
$$

2) Expectation value of known observables:

$$
\sum_{i} p_{i} F_{k}\left(X_{i}\right)=C_{k}
$$

- Maximum entropy principle :

$$
\mathrm{S}=-\Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \log \mathrm{p}_{\mathrm{i}}+\lambda_{0} \Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}+\Sigma_{\mathrm{k}} \lambda_{\mathrm{k}} \Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

$$
\partial S / \partial p_{i}=0 \quad \Rightarrow \quad-\log p_{i}-1+\lambda_{0}+\Sigma_{k} \lambda_{k} F_{k}\left(X_{i}\right)=0
$$

- Conclusion :

The more unbiased estimation compatible with the constraints is :

$$
\mathrm{p}_{\mathrm{i}}=\exp \left(-1+\lambda_{0}+\Sigma_{\mathrm{k}} \lambda_{\mathrm{k}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

with $\lambda_{0}, \lambda_{1}, \ldots$ obtained from the constraints

Is there a Gibbs measure for the price process ?

- Given a coding

$$
\mu\left(i_{1}, i_{2}, \ldots, i_{n}\right)=\exp \left(\Sigma_{0}^{n-1} \phi\left(\sigma^{k}\left(i_{1}, i_{2}, \ldots, i_{n}\right)\right)\right)
$$

$\phi=($ normalized $)$ potential

- Potential range (r)

$$
H_{k}=-\Sigma \mu\left(i_{1}, i_{2}, \ldots, i_{k}\right) \log \mu\left(i_{1}, i_{2}, \ldots, i_{k}\right)
$$

$H_{k}=k$-cylinders entropy
Range found when $H_{k}-H_{k-1}$ tends to a constant value

- For $\mathrm{k}>\mathrm{r}$
$\mu\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{k+1}\right)=\left(\mu\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right) \mu\left(\mathrm{i}_{2} \ldots, \mathrm{i}_{\mathrm{k}+1}\right)\right) / \mu\left(\mathrm{i}_{2}, \ldots, \mathrm{i}_{k}\right)$

IBM

BMW

Bayer

- A large number of errors in the estimation of the probabilities.
- Correspond to blocks with large returns (+ and -)
- Large deviations misrepresented by empirically constructed measure
\Rightarrow non-Gibbsian measure or
Gibbsian measure with long-range potential (but small statistics !)

In any case requires an approach suited to deal with long-memory processes
3. Chains with complete connections (CCC) and variable-length Markov process
, i) $\lim _{m \rightarrow \infty} P\left(a_{0} \mid a_{-1} \ldots a_{-m}[\ldots]\right)$ exists
ii)

$$
\left|\left(\frac{P\left(a_{0} \mid a_{-1} \ldots a_{-m} b_{-m-1} \ldots\right)}{P\left(a_{0} \mid a_{-1} \ldots a_{-m} c_{-m-1} \ldots\right)}\right)-1\right| \leq \gamma_{m} \quad \lim _{m \rightarrow \infty} \gamma_{m}=0
$$

> CCC with summable decay

$>$ Numerical estimate of γ_{m}
$>$ A CCC - process with summable decay is the d-limit of its Markov approximations of order k

Partial conclusions

> Small statistics for large returns reconstruction.
$>$ Two components? Hidden Markov process?
$>$ Variable-length Markov ("perfect") simulation of the price process at the level of transaction costs

Next:
> Look for structure. Multi-asset arbitrage
> Volatility modeling for risk assessment

4. The geometry of the market

- Return for security k

$$
\begin{aligned}
& r_{t}(k)=\log p_{t}(k)-\log p_{t-1}(k) \\
& C_{k]}=(<r(k) r(l)>-<r(k)><r(l)>) /(N(k) N(l))
\end{aligned}
$$

Metric $\quad d_{k j}=\left(2-2 C_{k k}\right)^{1 / 2}$

- Compute center of mass and inertial tensor

$$
\begin{aligned}
& R=\Sigma m_{k} x(k) / \Sigma m_{k} \\
& y(k)=x(k)-R \\
& T_{i j}=\Sigma_{k} m_{k} y_{i}(k) y_{j}(k)
\end{aligned}
$$

\Rightarrow Find eigenvalues and eigenvectors (λ_{i}, e_{i})
\Rightarrow Find coordinates along the directions e_{i}

$$
z_{i}(k)=y(k) \cdot e_{i}
$$

Actual

Random

Time-permuted

Actual+(1-Random)

Set.

Jan.

- Small number of relevant dimensions even for >250 securities
- Systematic market factors
- Representative dimensions are not sectors
Simplification of market portfolio
Clustering and crisis

5. Modeling volatillity

- Rjsk assessment
- Option pricing
- Independent process ? (R F Engle)
- Volatility clustering
- Long-memory
+ Leverage

Geometric Brownian motion?

$+d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \quad ?$
Consequences:

$$
p\left(\ln \frac{S_{T}}{S_{t}}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}(T-t)}} \exp \left(-\frac{\left[\ln \frac{S_{T}}{S_{t}}-\left(\mu-\frac{\sigma^{2}}{2}\right)(T-t)\right]^{2}}{2 \sigma^{2}(T-t)}\right)
$$

(i) Price changes would be lognormal

$$
E\left|\frac{S(t+\Delta)-S(t)}{S(t)}-\mu \Delta\right| \approx \Delta^{H}
$$

(ii) Self-similar $\left(\operatorname{Law}\left(X_{a t}\right)=\operatorname{Law}\left(a^{H} X_{t}\right)\right)$ with Hurst coefficient $=1 / 2$

Geometric Brownian motion?

- Empirical tests :
- $P\left(r_{1}\right)$ is not lognormal
$r_{1}=\log (S(t+1) / S(t))$
Deviations from scalling

Alternatiives

* Use a different process for S_{E}

Truncated Lévy
Mixed diffusion - jump
Compound normal
Student t
Power exponential
Time-dependent GARCH

- Use

$$
\mathrm{dS}_{\mathrm{t}} / \mathrm{S}_{\mathrm{t}}-\mu \mathrm{dt}=\sigma_{\mathrm{t}} \mathrm{~d} \mathrm{~B}_{\mathrm{t}}
$$

to define a new process
$\sigma_{\mathrm{t}}=$ "Induced volatility"
$\sigma_{t}^{2} \approx \operatorname{var}\left(\log S_{t}\right) /\left(T_{0}-T_{1}\right)$
($\mu=0$)
(J. Toyli, M, Sysi-Aho, K Kaski, Quant, Finance 373-382)

What does the data suggest for σ_{t} ?

- σ_{t} is not self similar

$$
E\left|\frac{\sigma(t+\Delta)-\sigma(t)}{\sigma(t)}\right| \neq \Delta^{H}
$$

- However $\mathrm{R}_{\sigma}(\mathrm{t})$ is
$\Sigma \log \sigma(n \delta)=\beta t+R_{\sigma}(t)$
$\mathrm{H} \approx 0.8-0.9$

What does the datite suggest for σ_{t} ?

- Recall:

If a process X_{t} has finite variance, stationary increments and is self-similar, then
$\operatorname{Cov}\left(X_{s, \mu} X_{t}\right)=\left(|s|^{2 H}+|t|{ }^{2 H}-|s-t|{ }^{2 H}\right) E\left(X_{1}{ }^{2}\right)$
The simplest such process is a zero-mean Gaussian process, Fractional Brownian motion BH_{t} with long-range dependence for $H>1 / 2$

- Conclusion :

$$
\log \sigma_{t}=\beta+(k / \delta)\left(B_{t}^{H}-B_{t-\delta}^{H}\right)
$$

σ_{t} modeled by a stochastic exponential of firactional noise

- Two coupled processes :

$$
\begin{aligned}
& d S_{t}=\mu S_{t} d t+\sigma_{t} S_{t} d B_{t} \\
& \log \sigma_{t}=\beta+(k / \delta)\left(B_{t}-B_{t-\delta}^{H}\right)
\end{aligned}
$$

6. Option pricing. "Risk-neutral approach"

Let the value $V\left(S_{t}, \sigma_{t}, t\right)$ of an option be the expected terminal value discounted at the risk-free rate
$V\left(S_{t}, \sigma_{t}, t\right)=e^{-r(T-t)} \int V\left(S_{T}, \sigma_{T}, T\right) p\left(S_{T} \mid S_{t}, \sigma_{t}\right) d S_{T}$

$$
V\left(S_{T}, \sigma_{T}, T\right)=\max [0, S-K]
$$

Use of the relation between conditional probabilities of related variables,
$p\left(S_{T} \mid S_{t}, \sigma_{t}\right)=\int p\left(S_{T} \mid S_{t},\langle\log \sigma\rangle\right) p\left(\langle\log \sigma\rangle \mid \log \sigma_{t}\right) d(\langle\log \sigma\rangle)$
$\langle\log \sigma\rangle$ being the random variable

$$
\langle\log \sigma\rangle=\frac{1}{T-t} \int_{t}^{T} \log \sigma_{s} d s
$$

Then
$V\left(S_{t}, \sigma_{t}, t\right)=\int C\left(S_{t}, e^{\langle\log \sigma\rangle}, t\right) p\left(\langle\log \sigma\rangle \mid \log \sigma_{t}\right) d(\langle\log \sigma\rangle)$ $C\left(S_{t}, e^{\langle\log \sigma\rangle}, t\right)=\int e^{-r(T-t)} V\left(S_{T}, \sigma_{T}, T\right) p\left(S_{T} \mid S_{t},\langle\log \sigma\rangle\right) d S_{T}$
$C\left(S_{t}, e^{(\log \sigma\rangle}, t\right)=$ Black-Scholes price for an option with average volatility $e^{\langle\log \sigma\rangle}$
$C\left(S_{t}, \sigma, t\right)=S_{t}(a+b) N(a, b)-K e^{-r(T-t)}(a-b) N(a,-b)$ with

$$
\begin{gathered}
a=\frac{1}{\sigma}\left(\frac{\log \frac{s}{K}}{\sqrt{T-t}}+r \sqrt{T-t}\right) \\
b=\frac{\sigma}{2} \sqrt{T-t} \\
N(a, b)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{\infty} d y e^{-\frac{y^{2}}{2}(a+b)^{2}}
\end{gathered}
$$

To compute the conditional probability $p\left(\langle\log \sigma\rangle \mid \log \sigma_{t}\right)$

$$
\begin{aligned}
\langle\log \sigma\rangle & =\log \sigma_{t}+\frac{1}{T-t} \int_{t}^{T} \frac{k}{\delta} d s \int_{t}^{s}\left(d B_{H}(\tau)-d B_{H}(\tau-\delta)\right) \\
& E\left\{\langle\log \sigma\rangle \mid \log \sigma_{t}\right\}=\log \sigma_{t} \\
\alpha^{2} & =E\left\{\left(\langle\log \sigma\rangle-\log \sigma_{t}\right)^{2}\right\} \\
& =\frac{k^{2}}{\delta^{2}(T-t)}\left\{\frac{1}{2(T-t)} I_{1}+I_{2}\right\}+k^{2} \delta^{2 H-2}
\end{aligned}
$$

with

$$
\begin{aligned}
I_{1} & =\frac{2}{(2 H+1)(2 H+2)}\left\{\begin{array}{c}
(T-t+\delta)^{2 H+2}+(T-t-\delta)^{2 H+2} \\
-2(T-t)^{2 H+2}-2 \delta^{2 H+2}
\end{array}\right\} \\
I_{2}= & \frac{1}{2 H+1} \\
& \left\{2(T-t)^{2 H+1}-(T-t+\delta)^{2 H+1}-(T-t-\delta)^{2 H+1}\right\}
\end{aligned}
$$

Finally
$p\left(\langle\log \sigma\rangle \mid \log \sigma_{t}\right)=\frac{1}{\sqrt{2 \pi} \alpha} \exp \left\{\frac{-\left(\langle\log \sigma\rangle-\log \sigma_{t}\right)^{2}}{2 \alpha^{2}}\right\}$ one obtains

$$
\begin{aligned}
V\left(S_{t}, \sigma_{t}, t\right)= & S_{t}[a M(\alpha, a, b)+b M(\alpha, b, a)] \\
& -K e^{-r(T-t)}[a M(\alpha, a,-b)-b M(\alpha,-b, a)]
\end{aligned}
$$

$$
\begin{aligned}
M(\alpha, a, b) & =\frac{1}{2 \pi \alpha} \int_{-1}^{\infty} d y \int_{0}^{\infty} d x e^{-\frac{\log ^{2} x}{2 a^{2}}} e^{-\frac{y^{2}}{2}\left(a x+\frac{b}{x}\right)^{2}} \\
& =\frac{1}{4 \alpha} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} d x \frac{e^{-\frac{\log ^{2} x}{2 a^{2}}}}{a x+\frac{b}{x}} \operatorname{erfc}\left(-\frac{a x}{\sqrt{2}}-\frac{b}{\sqrt{2} x}\right)
\end{aligned}
$$

The option pricing equation

Form a portfolio

$$
\Pi(t)=V(S, \sigma, t)-\Delta(S, \sigma, t) S_{t}
$$

Choosing $\Delta(S, \sigma, t)=\frac{\partial V}{\partial S}$ we obtain

$$
\begin{aligned}
d \Pi(t)= & \left\{\frac{\partial V}{\partial t}+\frac{1}{2} \frac{\partial^{2} V}{\partial S^{2}} \sigma^{2} S^{2}\right\} d t \\
& +\sigma \frac{\partial V}{\partial \sigma} \frac{k}{\delta}\left(d B_{H}(t)-d B_{H}(t-\delta)\right) \\
& +\left(\sigma^{2} \frac{\partial^{2} V}{\partial \sigma^{2}}+\sigma \frac{\partial V}{\partial \sigma}\right) H \frac{k^{2}}{\delta^{2}} \delta^{2 H-1} d t
\end{aligned}
$$

The fractional Itô formula
if $X_{t}=\left(X_{t}^{(1)}, X_{t}^{(2)}, \cdots, X_{t}^{(n)}\right)$
with $d X_{t}^{(i)}=c_{i}(t, \omega) d B_{H}^{(i)}(t)$, then
$d f\left(t, X_{t}\right)=\frac{\partial f}{\partial t} d t+\sum_{i} \frac{\partial f}{\partial X^{(i)}} d X_{t}^{(i)}+\sum_{i} \frac{\partial^{2} f}{\partial X^{(i) 2}} c_{i}(t, \omega) D_{i, t}^{\phi}\left(X_{t}\right)$
$D_{i, t}^{\phi}\left(X_{t}\right)$ is the $\phi-$ Malliavin derivative corresponding to the $X_{t}^{(i)}$-process

$$
\begin{aligned}
D_{i, f}^{\phi} X_{t}\left(\omega_{i}\right)= & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{X\left(\omega_{i}+\varepsilon \int_{0}^{\bullet} d s \int_{0}^{\infty} \phi(s, u) f(u) d u\right)\right. \\
& \left.-X\left(\omega_{i}\right)\right\} \\
= & \int_{0}^{\infty} D_{i, u}^{\phi}\left(X_{t}\right) f(u) d u
\end{aligned}
$$

and $\phi(s, u)$ the kernel

$$
\phi(s, u)=H_{i}\left(2 H_{i}-1\right)|s-u|^{2 H_{i}-2}
$$

Dealing with the stochastic term
$\sigma \frac{\partial V}{\partial \sigma} \frac{k}{\delta}\left(d B_{H}(t)-d B_{H}(t-\delta)\right)$
Volatility is not a tradable security.
Cannot be eliminated by a portfolio choice.
Instead, equate the deterministic term in $d \Pi(t)$ to

$$
\left(r \Pi(t)+\nu \frac{k}{\delta} \sigma \frac{\partial V}{\partial \sigma}\right) d t
$$

The second term is a measure of the market price of volatility risk

Option pricing equation

$$
\begin{aligned}
\frac{\partial V}{\partial t}+r S \frac{\partial V}{\partial S}+ & \frac{\sigma^{2} S^{2}}{2} \frac{\partial^{2} V}{\partial S^{2}}+\frac{k}{\delta}\left(k H \delta^{2 H-2}-\nu\right) \sigma \frac{\partial V}{\partial \sigma} \\
& +H k^{2} \delta^{2 H-3} \sigma^{2} \frac{\partial^{2} V}{\partial \sigma^{2}}=r V
\end{aligned}
$$

Solutions
$x=\log \frac{S}{K}$
$V(t, x, \sigma)=\iint d \phi d \rho F(\phi, \rho, \sigma) e^{i(\phi t+\rho x)}$
we obtain
$H k^{2} \delta^{2 H-3} \sigma^{2} \frac{\partial^{2} F}{\partial \sigma^{2}}+\frac{k}{\delta}\left(k H \delta^{2 H-2}-\nu\right) \sigma_{\partial \sigma}^{\partial \sigma}$
$+\left(i\left(\phi+\rho r-\frac{\sigma^{2} \rho}{2}\right)-\frac{\sigma^{2} \rho^{2}}{2}-r\right) F=0$
Define new constants
$\chi(\rho)=\frac{\nu}{2 H k \delta^{2 H-2}}$
$\xi^{2}(\rho, \phi)=\chi^{2}(\rho)-\frac{r-i(\phi+\rho r)}{H k^{2} \delta^{H-3}}$
$\zeta^{2}(\rho)=-\frac{i \rho+\rho^{2}}{2 H k^{2} \delta^{H H-3}}$
and
$F(\sigma)=\sigma^{\chi} Z_{\xi}(\zeta \sigma)$
The solution of is
$V(t, x, \sigma)=\iint d \rho d \phi e^{i(\phi t+\rho x)} \sigma^{\chi(\rho)} Z_{\xi(\rho, \phi)}(\zeta(\rho) \sigma)$
$Z_{\xi}(\zeta \sigma)$ being a Bessel function.
Linear combination $Z_{\xi}(\zeta \sigma)=c_{1} J_{\xi}(\zeta \sigma)+c_{2} N_{\xi}(\zeta \sigma)$
Coefficients c_{1} and c_{2} fixed by the boundary conditions,
(call options) $V(T, x, \sigma)=\max (x, 0)$

References

- "A process-reconstruction analysis of market fluctuations" Int. J. Theor. Applied Finance 5 (2002) 797-821 (R V M, R. Lima, T. Araújo)
- "Reconstructing an economic space from a market metric" Physica A323 (2003) 635-650
(R V M, T. Araújo, F. Louçã)
- "Fractional volatility and option pricing" Quantitative Finance (submitted) (R V M, M. J. Oliveira)
- "Relative entropy and identification of Gibbs measures in dynamical systems", J. Stat Phys. 90 (1998) 697-725, (J. R. Chazottes, E. Floriani, R. Lima)
- "Dependence with complete connections and its applications" Cambridge Univ. Press, 1990, (M. Iosifescu, S. Grigorescu)
- http://www.ime.usp.br/~pablo
- "Selfsimilar processes", Princeton Univ. Press 2002, (P. Embrechts, M. Maejima)

The end

