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Nature and stochastic processes

Mathematics is an interesting intellectual activity, but it is also a
powerful tool to model the natural world

Our knowledge of Nature can never be absolutely accurate, therefore
the theory of stochastic processes appears as the most natural tool.

What properties should the stochastic processes have to be suitable
tools to deal with natural (intelligible) phenomena?

Stationarity: is the idea that natural systems (after a steady drift is
subtracted) �uctuate around a mean value within a well de�ned and
stationary envelope of variability. It is this concept that allows natural
scientists to take an instrumental record and establish a probability
density function for various magnitudes and frequencies of events.
Without some regularity, the construction of intelligible models
becomes impossible.
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Nature and stochastic processes

Selfsimilarity: a characteristic of growing processes
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The generic nature of fractional processes

A process fX (t) , t � 0g is selfsimilar if for any a there is b such that

fX (at)g d
= fbX (t)g =

n
aHX (t)

o
b = aH , process H�selfsimilar (or H�ss) (H =Hurst exponent)
A process X (t) is stationary if

∑
j

θjX (tj + h)
d
= ∑

j
θjX (tj )

If X (t) is H-ss, then Y (t) = e�tHX (et ) is stationary. If Y (t) is
stationary, then X (t) = tHY (ln t) is H-ss
A process has stationary increments (si) if any distribution of

fX (t + h)� X (t) , t � 0g

is independent of t � 0
Increments may or may not be independent
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The generic nature of fractional processes

Theorem: If fX (t) , t � 0g is real-valued, H-ss with stationary
increments and E

h
X (1)2

i
< ∞, then

E [X (t)X (s)] =
1
2

n
t2H + s2H � jt � s j2H

o
E
h
X (1)2

i
The simplest such process is a Gaussian process called fractional
Brownian motion (fBm), BH (t), de�ned to have E [BH (t)] = 0.
fBm is the unique Gaussian H � ss process with stationary increments
The process

Yt = BH (t + 1)� BH (t)
called fractional Gaussian noise (fGn). Within the stationary
sequences, fractional Gaussian noise is the only Gaussian �xed point
of the renormalization group TN : Yt ! (TNY )t =

1
NH ∑t+N�1

i=t Yi
If H = 1

2 , fBm is Brownian motion (Bm). Bm is an isolated point
in whole class of fBm�s. fBm is the generic case. What is special
about Bm?
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Fractional Brownian motion

Long-range dependence: Let fX (t) , t � 0g be H � ss, si ,
0 < H < 1, E

h
X (1)2

i
< ∞ and de�ne

ξ (n) = X (n+ 1)� X (n)

r (n) = E [ξ (0) ξ (n)] =
1
2

n
(n+ 1)2H � 2n2H + (n� 1)2H

o
E
h
X (1)2

i
Then

r (n) �
n!∞

H (2H � 1) n2H�2E
h
X (1)2

i
, H 6= 1

2

r (n) = 0 H = 1
2

and

0 < H < 1
2 , ∑∞

n=0 jr (n)j < ∞
H = 1

2 , uncorrelated
1
2 < H < 1 , ∑∞

n=0 jr (n)j = ∞ , long-range dependence
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Fractional Brownian motion

If 0 < H < 1
2 , r (n) < 0 for n � 1 (negative correlation,

anti-persistent process),

If 12 < H < 1, r (n) > 0 for n � 1 (positive correlation, persistent
process).

In conclusion: What makes Brownian motion special is the
independence of increments. Therefore fractional Gaussian noise
with H = 1

2 may be appropriate as a coordinate system in in�nite
dimensions, but it is the generic case (H 6= 1

2 ) that is expected to be
more applicable as a model of natural phenomena.
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Fractional Brownian motion

H = 0.1 H = 0.5 H = 0.9
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Fractional Brownian motion. Sample path properties and
integral representation

fBm fBH (t)g has continuous version (P fX (t) = BH (t)g = 1) with
sample paths Hölder continuous of order β 2 [0,H) and a. s.
nowhere locally Hölder continuous of order γ > H. Sample paths of
fBm have nowhere bounded variation and are not di¤erentiable.
fBm for H 6= 1

2 is not a semimartingale

"Time" representation as a Wiener integral, BH (t)
d
= 1

Γ(H+ 1
2 )
��Z 0

�∞

�
(t � u)H�

1
2 � (�u)H�

1
2

�
dB (u) +

Z t

0
(t � u)H�

1
2 dB (u)

�
Other integral representations: �nite time, spectral, Paley-Wigner
Suggests similar "fractional" generalizations of other Lévy processes
(Dreceusefond and Savy - A.I.H. Poincaré PR 42 (2006) 343-372)
Lévy process: X (0) = 0, stoch. continuity at t � 0, s.i. increments,
sample paths right-continuous and left limits a. s.
Examples: linear drift, Bm, Poisson and compound Poisson, etc.
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An application: Fractional noise and market volatility

Geometric Brownian motion dSt
St
= µdt + σdB (t) by itself is a

bad mathematical model for the market
Conjecture:
1 - The log-price process log St belongs to a probability space
Ω
Ω

0
, the �rst one the Wiener space and the second, Ω

0
, is a

probability space to be empirically reconstructed. (ω 2 Ω ,
ω
0 2 Ω

0
and Ft and F

0
t the σ�algebras in Ω and Ω

0
generated by

the processes up to t)

log St
�

ω,ω
0
�

2 - For each �xed ω
0
, log St

�
�,ω0

�
is a square integrable

random variable in Ω. Then for each �xed ω
0
,

dSt
St

�
�,ω0

�
= µt

�
�,ω0

�
dt + σt

�
�,ω0

�
dB (t)

with µt

�
�,ω0

�
and σt

�
�,ω0

�
well-de�ned processes in Ω.
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Fractional noise and market volatility

If σt is an Ft�adapted processes, then

σ2t

�
�,ω0

�
= lim

ε!0
1
ε

n
E (log St+ε � log St )2

o
Because each set of market data corresponds to a particular
realization ω

0
, the σ2t process may be reconstructed from the data.

Compute
t/δ

∑
n=0

log σ (nδ) = βt + Rσ (t)

RVM (CMAF/IPFN) 12 / 43



Fractional noise and market volatility

The Rσ (t) process displays very accurate self-similar properties
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Fractional noise and market volatility

Conclusion: The fractional volatility model

dSt = µStdt + σtStdB (t)
log σt = β+ k

δ fBH (t)� BH (t � δ)g

δ is the observation time scale and H is in the range 0.8� 0.9
The volatility (at resolution δ)

σ (t) = θe
k
δ fBH (t)�BH (t�δ)g� 1

2 (
k
δ )

2
δ2H

The integral representation of fBm gives additional insight
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Fractional noise and market volatility

Experimentally one �nds in actual markets the following nonlinear
correlation of the returns

L (τ) =
D
jr (t + τ)j2 r (t)

E
�
D
jr (t + τ)j2

E
hr (t)i

This is called leverage or the leverage e¤ect and it is found that for
τ > 0, L (τ) starts from a negative value whose modulus constantly
decays to zero whereas for τ < 0 it has almost negligible values.

Use in the fractional volatility model, the representation

BH (t) = C
�Z 0

�∞

h
(t � s)H�

1
2 � (�s)H�

1
2

i
dBs +

Z t

0
(t � s)H�

1
2 dBs

�
Then,

dSt = µStdt + σtStdB (1) (t)

log σt = β+ k
0 R t
�∞ (t � s)

H� 3
2 dB (2) (s)
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Fractional noise and market volatility

B (1) (s) and B (2) (s) are Brownian processes. If B (1) (s) 6= B (2) (s) there
is no leverage e¤ect but if B (1) (s) = B (2) (s) one obtains a qualitatively
correct leverage.
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Fractional processes and di¤erential operators

The well-known heat equation is closely related to Brownian motion

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f (x)

u(t, x) = Ex f (Xt )

Ex being the expectation value, starting from x , of the Wiener
process dXt = dBt
What are the di¤erential equations related to fractional processes?

Fractional calculus
Riemann-Liouville (right-sided) fractional integral of order α
(α > 0) for a function f (t)

I α
a+ f (t) :=

1
Γ (α)

Z t

a
(t � τ)α�1 f (τ) dτ , α 2 R

is a natural generalization of a well known formula (Cauchy-Dirichlet),
that reduces the calculation of the n�fold primitive of a function f (t)
to a single integral of convolution type. Then,
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Fractional processes and di¤erential operators

Riemann-Liouville fractional derivative: Dα f (t) := Dm Im�α f (t)

Dα f (t) :=

(
dm
dtm

h
1

Γ(m�α)

R t
0

f (τ)
(t�τ)α+1�m

dτ
i
, m� 1 < α < m

dm
dtm f (t) , α = m

Caputo fractional derivative of order α : Dα
� f (t) := Im�α Dm f (t)

Dα
� f (t) :=

(
1

Γ(m�α)

R t
0

f (m)(τ)
(t�τ)α+1�m

dτ, m� 1 < α < m
dm
dtm f (t) , α = m

Riesz fractional derivative of order α

F fDα
0 f g (k) := � jk jα

^
f (k)

Riesz-Feller fractional derivative of order α and skewness θ

F fDα
0 f g (k) := �ψθ

α (k)
^
f (k)

ψθ
α (k) = jk j

α e i (signk )θπ/2, 0 < α � 2, jθj � min fα, 2� αg
�ψθ

α (k) is the log of the char. function of a Lévy stable distribution
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Fractional processes and di¤erential equations

The integral representation of fBm may be written as a fractional
integral �

I α1[a,b)
�
(s) =

1
Γ (α+ 1)

f(b� s)α
+ � (a� s)

α
+g

BH (t) =
Γ
�
H + 1

2

�
C (H)

Z
R

�
IH�

1
2 1[0,t)

�
(s) dB (s)

With di¤erent choices of α, β and θ in the space-time fractional
di¤usion equation

tDα
�u (t, x) =

1
2 x
Dβ

θ u (t, x)

a large class of symmetric and asymmetric Green�s functions are
obtained. They are a powerful tool to model complex natural
phenomena (see Mainardi, Luchko and Pagnini, Frac. Calc. Appl.
Anal. 2 (201) 153-192)
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Fractional di¤usion equation

fα = 2 , β = 1g (Standard di¤usion)

G 02,1(x , t) = t
�1/2 1

2
p

π
exp[�x2/(4t)]

5 4 3 2 1 0 1 2 3 4 5
103

102

101

100

α=2
β=1
θ=0
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Fractional di¤usion equation
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Fractional di¤usion equation
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Fractional di¤usion equation
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Fractional processes and di¤erential equations: A nonlinear
example

The fractional KPP equation

tDα
�u (t, x) =

1
2 xD

β
θ u (t, x) + u

2 (t, x)� u (t, x)

tDα
� is a Caputo derivative of order α

tDα
� f (t) =

(
1

Γ(m�β)

R t
0

f (m)(τ)dτ

(t�τ)α+1�m
m� 1 < α < m

dm
dtm f (t) α = m

xD
β
θ is a Riesz-Feller derivative de�ned through its Fourier symbol

F
n
xD

β
θ f (x)

o
(k) = �ψθ

β (k)F ff (x)g (k)

with ψθ
β (k) = jk j

β e i (signk )θπ/2.
Physically it describes a nonlinear di¤usion with growing mass with
memory e¤ects in time and long range correlations in space.
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Fractional processes and di¤erential equations: A nonlinear
example

The (stochastic) solution is

u(t, x) = Ex
�
u(0+, x + ξ1)u(0

+, x + ξ2) � � � u(0+, x + ξn)
�

the expectation being in relation to a branching and propagation process
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Fractional processes and di¤erential equations: A nonlinear
example

Branching process Bα

Eα,1 (�tα) = survival probability up to time t
(t � τ)α�1 Eα,α

�
� (t � τ)α� = prob. density for branching at time τ

It is fractional generalization of the Poisson process. It is this process
that later will be used to develop an in�nite-dimensional Poisson
calculus
Eα,ρ is the generalized Mittag-Le er function

Eα,ρ (�z) = ∑∞
j=0

(�z )j
Γ(αj+ρ)

=
R ∞
0 e

�uzdF (u)

Propagation processes Πβ
α,1 and Πβ

α,α with Green�s functions

G β
α,1 (t, x) and G

β
α,α (t, x),

G β
α,ρ (t, x) =

1
2πEα,ρ (�tα)

Z ∞

0
dF (r) e�rt

α
Z ∞

�∞
dke�ikx e�

rtα
2 ψθ

β(�k )
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Fractional white noise analysis

(Elliott, Van der Hoek, Biagini, Hu, ?ksendal, Zhang)
Relate fBm to classical Brownian motion by an operator de�ned for
functions in S (R) and extended to L2 (R).

^
Mf (y) = jy j

1
2�H

^
f (y)

Mf (x) = CH
R

R

f (x�t)�f (x )
jt j

3
2 �H

dt , 0 < H < 1
2

Mf (x) = f (x) , H = 1
2

Mf (x) = CH
R

R

f (t)

jt�x j
3
2 �H
dt , 1

2 < H < 1

CH =
�
2Γ
�
H � 1

2

�
cos

�
π
2

�
H � 1

2

��	�1 fΓ (2H + 1) sin (πH)g
1
2

De�ne a space L2H (R) by

(f , g)L2H (R) = (Mf ,Mg)L2(R)

and a process
~
BH (t) :=

D
ω,M[0,t ] (�)

E
with M[0,t ] (x) = Mχ[0,t ] (x)
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Fractional white noise analysis

Computing

E

�
~
BH (s)

~
BH (t)

�
=
1
2

n
jtj2H + js j2H � jt � s j2H

o
one concludes that the continuous version of

~
BH (t) is fBm.

An orthonormal basis for L2H (R)�
ek (x) = M

�1ξk (x) , k = 1, 2, � � �
	

ξk (x) is an Hermite function
Hermite polynomials and Hermite function

hn (x) = (�1)n ex
2/2 d

n

dxn

�
e�x

2/2
�

ξk (x) = π�
1
4 ((n� 1)!)�

1
2 hn�1

�p
2x
�
e�

x2
2
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Fractional white noise analysis

Fractional White Noise

WH (t) =
∞

∑
k=1

Mξk (t) hω, ξk i
dBH (t)
dt

= WH (t)

The extension of Ito�s integral to the fractional case isZ
R
Y (t,ω) dBH (t) =

Z
R
Y (t,ω) �WH (t) d (t)

Directional derivative and fractional Malliavin derivative

D(H )γ F (ω) := lim
ε!0

1
ε
fF (ω+ εMγ)� F (ω)g

If there is Ψ : R ! (S)� such that

D(H )γ F (ω) =
Z

R
MΨ (t)Mγ (t) dt

D(H )t F :=
∂(H )

∂ω
F (t,ω) = Ψ (t)
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Fractional Poisson analysis

Poisson measure in R (or N) and characteristic function

π (A) = e�σ ∑
n2A

σn

n!
; Cπ (f ) = E

�
e if �

�
= eσ(e if �1)

For n�tuples of Poisson variables, Cπ (λ) = e∑ σk(e ifk�1)

Probability of no event Ψ (t) = e�σ satis�es d
dσ Ψ (σ) = �Ψ (σ)

Replacing d
dσ by the (Caputo) fractional derivative (0 < α � 1)

DαΨ (σ) =
1

Γ (1� α)

Z t

0

dΨ (τ) /dτ

(σ� τ)α = �Ψ (σ)

Ψ (σ) = Eα (�σα)

Eα (z) is the Mittag-Le er function, Eα (z) = ∑∞
n=o

zn
Γ(αn+1)

The fractional Poisson process has a probability of n events,
P (X = n) = σαn

n! E
(n)
α (�σα)

Cα (λ) = Eα

�
σα
�
e iλ � 1

��
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Fractional Poisson analysis

The in�nite-dimensional fractional Poisson measure

Cα (f ) = Eα

�Z �
e if (x ) � 1

�
dµ (x)

�
f 2 D and µ is a positive intensity measure on the underlying manifold M

Theorem
The functional Cα (f ) is the characteristic functional of a measure on
distribution space D0.

Proof.
That Cα is continuous and Cα (0) = 1 follows easily from the properties of
the Mittag-Le er function. To check positivity, complete monotonicity of
Eα for 0 < α < 1 implies, by a simple extension of Pollard�s result that

Eα (�z) =
Z ∞

0
e�uzdFα (u)
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Fractional Poisson analysis

Proof.
for Re (z) � 0, Fα (u) being nondecreasing and bounded. Then in

∑
a,b

Cα (fa � fb) zazb = ∑
a,b

Z ∞

0
dFα (u) e

�u
R
M dµ(x )(1�e fa�fb )zazb

each one of the terms in the integrand is the characteristic function of a
Poisson measure which we already know to be positive. Therefore the
spectral integral is also positive. From the Bochner-Minlos it then follows
that Cα (f ) is the characteristic functional of a measure in the space D0 of
distributions in the underlying manifold M.

Introducing the fractional Poisson measure by the above approach yields a
probability measure on

�
D0
,Cα

�
D0
��

D0
being the dual of the test

function space D (M) of real-valued C∞�functions on M with compact
support.
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Fractional Poisson analysis

Next step: to �nd an appropriate support. Using analyticity of the
Mittag-Le er function one may rewrite

Cα (f ) =
∞

∑
n=0

E (n)α

�
�
R
dµ (x)

�
n!

�Z
e if (x )dµ (x)

�n
=

∞

∑
n=0

E (n)α

�
�
R
dµ (x)

�
n!

Z
e i (f (x1)+f (x2)+���+f (xn))dµ
n

For the Poisson case (α = 1) instead of E (n)α

�
�
R
dµ (x)

�
one has

exp
�
�
R
dµ (x)

�
for all n, the rest being the same. One concludes that

the main di¤erence in the α 6= 1 case is a di¤erent weight given to each
n�particle space, but that con�guration spaces are also the natural
support of the fractional Poisson measure.
The di¤erent weights, multiplying the n�particle spaces measure, are
physically signi�cant in that they have decays, for large volumes, smaller
than the corresponding exponential factor in the Poisson measure (see the
�gure for an illustration in the α = 1/2 case).
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Fractional Poisson analysis
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Fractional Poisson analysis

As in the (non-fractional) in�nite-dimensional Poisson analysis de�ne
the con�guration space ΓM over a non-compact Riemannian manifold
M as the set of all locally �nite subsets of M, that is

ΓM = fγ � M : jγ \K j < ∞ for all compact K � Mg
A similar de�nition applies for ΓΛ, Λ 2 B (M), B (M) being the
Borel algebra of M. In M one also de�nes a non-degenerate,
non-atomic, in�nite measure µ.
The topology of the con�guration space ΓM is the weakest topology
for which the mappings

γ ! hγ, f i =
Z
M
f (x) γ (x) dx = ∑

x2γ

f (x)

are continuous for all f 2 C0 (M). Notice that in the elements of the
con�guration space are identi�ed with the distribution

γ ! ∑
x2γ

δx
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Fractional Poisson analysis

There is a bijective mapping between the spaces Γ(n) of n�point
con�gurations and

v
Mn/Sn,

v
Mn being the set of non-coinciding

n�tuples f(x1, x2, � � � , xn) , xi 6= xj if i 6= jg and Sn the permutation
group over f1, 2, � � � , ng. De�ning the sym operation as

sym : (x1, x2, � � � , xn) 2
v
Mn ! fx1, x2, � � � , xng 2 Γ(n)

one sees that the measure µ in M induces a measure µ(n) in the
space Γ(n) of n�point con�gurations by

µ(n) := µ
n � sym�1

One now sees that the characteristic function Cα (f ) may be
interpreted as the characteristic function of the following probability
measure in the space ΓΛ = [∞

n=0Γ
(n)
Λ of n�particle con�gurations in

Λ

λΛ =
∞

∑
n=0

E (n)α

�
�
R

Λ dµ (x)
�

n!
µ(n)
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Fractional Poisson analysis

The corresponding measure λM in ΓM is obtained by a standard
projective limit reasoning.Therefore the characteristic functional
Cα (f ) in (??) de�nes measures both in D

0
(M) and in ΓM .

To proceed with the construction of the in�nite-dimensional fractional
Poisson analysis it is convenient to de�ne an orthogonal basis. It is well
known that the Charlier polynomials Cn (x) de�ned by the generating
function

eπ (λ, x) =
∞

∑
n=0

λn

n!
Cn (x)

form an orthogonal basis for the (one-dimensional) Poisson measure π

(Cm ,Cn)L2(π) = n!σnδm,n

Let gα (x) be the function

gα (x) =
∞

∑
n=0

e�
σ
2

E
(n) 12
α (�σα)

σ
n
2 (1�α) sinπ (x � n)

π (x � n)
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Fractional Poisson analysis

Then the set
n
F (α)n (x) = gα (x)Cn (x)

o
is an orthogonal set for the

fractional Poisson measure πα (σ)�
F (α)m ,F (α)n

�
L2(πα)

= n!σnδm,n

Extending this procedure to in�nite dimensions develop the fractional
Poisson analysis by reducing it to the usual Poisson analysis, etc.
A more direct approach. Consider the exponential

exp (hω, ln (1+ ϕ)i)

with ω 2 D0, ϕ 2 U , U a neighborhood of zero in the complexi�ed DC.
Standard arguments imply the existence of a decomposition

exp (hω, ln (1+ ϕ)i) =
∞

∑
n=0

1
n!


C µ,α
n (ω) , ϕ
n

�
the kernel C µ,α

n (ω) being a unique distribution in D0
^

n. We now prove:
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Fractional Poisson analysis

Proposition

Restricted to functions ϕ such that hϕiµ =
R

ϕdµ = 0, the kernels

C µ,α
n (ω) are an orthogonal set with orthogonality relation

�D
C µ,α
n , ϕ(n)

E D
C µ,α
m , φ(m)

E�
L2(πα

µ)
= δn,m

(n!)2

Γ (αn+ 1)

�
ϕ(n), φ(m)

�
L2(µ
n)

(1)
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Fractional Poisson analysis

Proof.

Z
exp (hω, ln (1+ z1ϕ) + ln (1+ z2φ)i) dπα

µ (ω)

= Eα

�Z
M
(z1ϕ+ z2φ+ z1z2ϕφ) dµ

�
=

∞

∑
n=0

zn1 z
n
2

Γ (αn+ 1)

�
ϕ(n), φ(n)

�
L2(µ
n)

Comparing withZ
exp (hω, ln (1+ z1ϕ) + ln (1+ z2φ)i) dπα

µ

=
∞

∑
n,m=0

zn1 z
m
2

n!m!

Z
D0

D
C µ,α
n (ω) , ϕ(n)

E D
C µ,α
m (ω) , φ(m)

E
dπα

µ (ω)

one obtains (1).
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Fractional Poisson analysis

Now for arbitrary functions we de�ne the kernels
v
C

µ,α

m by�v
C

µ,α

n (ω) , ϕ(n)
�

:=
�
C µ,α
n (ω) ,

�
ϕ� hϕiµ

�(n)�
These new kernels are also orthogonal with orthogonality relation��v

C
µ,α

n , ϕ(n)
��v

C
µ,α

m , φ(m)
��

L2(πα
µ)

= δn,m (n!)2

Γ(αn+1)

�
(ϕ� hϕi)(n) , (φ� hφi)(n)

�
L2(µ
n)

With these
v
C

µ,α

n kernels one may write a chaos expansion for distributions
F in the fractional Poisson space

F =
∞

∑
n=0

�v
C

µ,α

n , f (n)
�

establish the isomorphism with Fock space and from it construct creation
and annihilation operator, di¤erential operators, etc., etc.
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