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What is emergence?

Some de�nitions:
F Emergent entities �arise�out of more fundamental entities and yet
are �novel�or �irreducible�with respect to them;
F Emergence is the way complex systems and patterns arise out of a
multiplicity of relatively simple interactions;
F Emergence is the arising of novel and coherent structures, patterns
and properties during the process of self-organization in complex
systems;
F Emergent properties are those which can only be distinguished by
observation of the complex system, not from the properties of its
parts;
F An emergent property is one that is not a property of any
component of that system, but is still a feature of the system as a
whole ("more is di¤erent");
F Emergence is the concept of some new phenomenon arising in a
system that was not in the system speci�cation to start with
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What is emergence?

F Emergence is not due to the failure of the microdescription as a
modeling e¤ort, since the emergent property still appears as the result
of a simulation constructed using the microdescription.
Summarizing:
- Novelty as compared with the microdynamics laws
- A property of a collective created by their interactions
- Properties that cannot be deduced from the microdynamics and
only become apparent when the system as a whole evolves.
Emergent behaviour is hard to predict because the number of
interactions between components of a system increases
combinatorially with the number of components
In practice, when a good set of emergent properties is identi�ed, they
become the intelligible set of variables that are used to deal with the
system. We no longer care about the agent dynamics. In this sense,
emergence is a kind of reduction, reduction of the immense set
of individual variables to a much smaller and manageable set.
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Emergence in physics: Examples and a mathematical
theory

Physics has been dealing with emergence since its very beginnings.
There, however, emergence appears under other names.

First example
Thermodynamics: a macroscopic description of systems of many
atoms (molecules) expressed in terms of collective variables such as
temperature, pressure, entropy, etc.

No individual atom "knows" its temperature or pressure, much less its
entropy. These are notions without any sense at the individual level.
Nevertheless the knowledge of these notions and their laws, rather
than the variables of the individual atoms, is what is behind the
construction of our cars and airplanes.

Why is it so? What are the reasons and requirements for this success
of the emergent variables? Is there a general rule?
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Emergence in physics: The free rigid body

Second example: The free rigid body
First step (reduction, projection): Neglect all interparticle motions
(Relative momenta = 0). Reduces from O(1024) to 6 variables
Euler angles θ, φ, and ψ, and their canonically conjugate momenta,
pθ, pφ, and pψ
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Emergence in physics: The free rigid body

Hamiltonian

H =
p2ψ
2I3
+
1
2I2

�
(pφ csc θ � pψ cot θ) cosψ� pθ sinψ

�2
+
1
2I1

�
(pφ csc θ � pψ cot θ) sinψ+ pθ cosψ

�2
,

I1, I2, and I3 are the three diagonal elements of the inertia tensor.

The three components of the angular momentum in the body frame

m1 = (pφ csc θ � pψ cot θ) sinψ+ pθ cosψ,

m2 = (pφ csc θ � pψ cot θ) cosψ� pθ sinψ,

m3 = pψ.
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Emergence in physics: The free rigid body

Verify the following relations

fm1,m2g = �m3
fm2,m3g = �m1
fm3,m1g = �m2.

The three components of the angular momentum in the body frame
constitute a closed Lie subalgebra under the operation of the
canonical Poisson bracket.
Adopt the m�s as generalized coordinates on a reduced phase space of
three dimensions. The Poisson tensor on this reduced phase space is
then given by Jαβ = �εαβγmγ, or:

J =

0@ 0 �m3 m2
m3 0 �m1
�m2 m1 0

1A ,
RVM (ICC) Emergence as reduction Arrábida, July 2009 7 / 30



Emergence in physics: The free rigid body

It is possible to perform reduction only if the Hamiltonian is
expressible in terms of the reduced coordinate set. Indeed, we have

H(m) =
m21
2I1
+
m22
2I2
+
m23
2I3

The equations of motion are given by ṁ = fm,Hg, or:

ṁ1 =

�
1
I3
� 1
I2

�
m2m3

ṁ2 =

�
1
I1
� 1
I3

�
m3m1

ṁ3 =

�
1
I2
� 1
I1

�
m1m2.

If the rigid body were not free (say, if it were in a gravitational �eld),
then a potential energy term would have been present in the
Hamiltonian, and that term would not have been expressible in terms
of the m�s. Thus, the reduction process would have failed.
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Emergence in physics: The free rigid body

The failure of the reduction process comes about because the
gravitational �eld breaks the SO(3) symmetry that makes the
reduction possible.
This example already shows what is behind the "emergence" of the
set of reduced variables
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Emergence in physics

First there is a projection from an immense space of variables to a
small subspace (submanifold)

Then one should check whether the reduction is consistent, that is,
whether there is a dynamical evolution de�ned purely inside the
submanifold. Chosen a point in the submanifold it should evolve there
and its evolution cannot make any reference to the larger set of
variables.

In conclusion: Projection into a submanifold and selfconsistent
evolution there. (Dynamical closure of the emergent variables)
And behind it all are invariances and invariance groups: Here the
invariance of the relative momenta and rotational invariance
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Emergence in physics: The Euler equation

Third example: The Euler equation for the �ow of an inviscid,
incompressible �uid.
In the Lagrangian for such a �uid each �uid particle is labelled by a
reference position, x0. The dynamical �eld variable is x(x0, t).

L = ∑
i

mi
2
ẋ2i (xi ,0, t) =

Z
d3x0

ρ

2
ẋ2(xi ,0, t),

ρ is the constant uniform mass density.
The canonical momentum �eld is then given by

p(x0, t) =
δL

δẋ(x0, t)
= ρẋ(x0, t),

where the δ�s denote functional di¤erentiation.
By the Legendre transformation, the system Hamiltonian is

H =
Z
d3x0

1
2ρ
p2(x0, t).
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Emergence in physics: The Euler equation

The canonical bracket of two functionals of x and p,

fA,Bg =
Z
d3x0

�
δA

δx(x0, t)
� δB

δp(x0, t)
� δA

δp(x0, t)
� δB

δx(x0, t)

�
.

Now suppose that the �uid particles are identical. In that case,
speci�cation of x(x0, t) is more information than is really necessary
Two con�gurations that di¤er only by swapping identical particles will
have di¤erent x(x0, t). For a �uid of identical particles, an Eulerian
description, wherein the �ow velocity is given as a function of spatial
position and time, say v(ξ, t), su¢ ces.
The reduction group is the group of identical particle
interchanges. The reduced phase space is the (smaller, though still
in�nite dimensional) space of all divergenceless vector �elds (divv = 0
stems from the fact that we are considering incompressible �ows)

v(ξ, t) =
1
ρ

Z
d3x0p(x0, t)δ(x(x0, t)� ξ),
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Emergence in physics: The Euler equation

One obtains a Poisson bracket of the Eulerian �eld with itself using
the canonical bracket.

fv(ξ, t), v(ξ0, t)g = 1
ρ

�
v(ξ0, t)δ0(ξ0 � ξ)� δ0(ξ � ξ0)v(ξ, t)

�
,

So, functionals of the Eulerian �eld variables constitute a closed Lie
subalgebra of the Lie algebra of all phase space functionals.
The Hamiltonian is expressed in terms of the reduced variables.

H =
ρ

2

Z
d3ξv2(ξ, t),

The Hamiltonian together with the bracket yields Euler�s �uid
equations.

∂v
∂t
+ v � rv = �1

ρ
rp.

the pressure being
r2p = �r � (v � rv),
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Emergence in physics

In conclusion:

New (reduced) variables appear by projection on a smaller manifold in
the full phase space of the system

The new variables are useful if their dynamics can be written in terms
of themselves without reference to the microvariables of the system
(Dynamical closure)
The emergence of the reduced variables is always associated to an
invariance property (invariance group)

What to do if the dynamics of the reduced variables is not closed?
Find new variables until a dynamically closed set is obtained.

Is there a general theory of the association of reduced variables and
symmetry groups?

YES
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A mathematical theory: Symmetry reduction and
momentum maps (Marsden-Weinstein reduction)

G = Lie group, G = Lie algebra, G� = Lie algebra dual
hα, ηi : G� 
 G ! R α 2 G�, η 2 G
Hamiltonian system in the manifold (M,ω), with Hamiltonian
function H and symplectic form ω. An Hamiltonian vector �eld XH is
such that

ω (XH , �) = dH
Let the symmetry group G with action φg : G �M ! M generate
symplectic (canonical) transformations

φ�gω = ω

and that, associated to these symmetries, there is a momentum map.
It means that the vector �eld Xξ associated to each ξ in the Lie
algebra G is Hamiltonian with Hamiltonian function Jξ . Then the
momentum map J : M ! G� is de�ned by

hJ (x) , ξi = Jξ (x)
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Symmetry reduction and momentum maps

Let µ 2 G� be a value of J and denote by Gµ the isotropy group of µ
under the action of G on G�

Adjoint and coadjoint representations (of the Lie group)

Adg =
�
Rg�1Lg

�
�e Adg η = gηg�1 g 2 G , η 2 G


Ad�g α, η
�
= hα,Adg ηi g 2 G , η 2 G, α 2 G�

De�ne
πµ : J�1 (µ) ! J�1 (µ) /Gµ

iµ : J�1 (µ) ! M

Theorem : (Marsden, Weinstein) There is a unique symplectic
structure ωµ in Mµ =

J�1(µ)
Gµ

such that

π�µωµ = i�µ ω

Mµ =
J�1(µ)
Gµ

is the reduced phase space and the theorem means that,
when there is a symmetry, the symplectic structure may be
transported to the reduced phase-space.
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Symmetry reduction and momentum maps
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Symmetry reduction and momentum maps

Mathematical recipe for reduction in case G is not known
1) Start from a canonical system, (for example a particle description
of the whole system (qi , pi ))
2) Identify a set fzαg of desired reduced variables (for example a
velocity �eld u (q, t), distribution function f (x , v , t)) or some
collective variable that seems relevant or was revealed by simulation.
3) Compute the Poisson brackets of the reduced variables obtaining
the Poisson tensor Jαβ =

�
zα, zβ

	
.

4) Check that the zα�s form a closed subalgebra. If not, complete the
set. (probably a good recommendation for other �elds, as well)
5) Compute the Poisson bracket of arbitrary functions of the reduced
variables by

fF ,Gg = ∂F
∂zα

Jαβ ∂F
∂zβ

6) Write the equations of motion on the reduced variables
7) Or write the original Hamiltonian or Lagrangian in the reduced
variables and obtain from them the equations of motion.
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The central role of dynamical closure

In some philosophical discussions of emergence, the question of
causation, for example downwards causation, plays an important role.

The message from emergence in physical theories is that causation is
not really the most important issue. What is central is dynamical
closure, that is, the fact that once the emergent variables are chosen,
their dynamics may be rigourously determined without any further
reference to the underlying microsystem.

For example in economics, the set of global variables (unemployment,
gross national product, etc.) should be such that their evolution is
determined solely by themselves without any reference to the
microeconomic variables. If this is not the case, then either the set of
global variables is "bad" or it needs to be completed.

The same applies to the relation between neurological dynamics and
the dynamics of mental states.

Dynamical closure is central. What about completeness?
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Is reduction all there is about emergence?

The role and requirements for the collective (emergent) variables
seems well understood (at least in physics)

Is it really? Provisionally I will say yes, later I will say "no" or "maybe
not"

Are indeed all emergent variables (and notions) just projections of the
microscopic variables and dynamics?

Or, instead, are there macroscopic laws that are fundamental
statements about nature which do not follow from the lower level?

Einstein once said: "Subtle is the Lord, but malicious he is not"
I would like to paraphrase this sentence as applied to mathematics

"Mathematics is subtle, but malicious it also can be"
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Are there undecidable questions in complex systems?
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Are there undecidable questions in complex systems?

The Church-Turing thesis:
Everything that is calculable can be computed by a Turing machine
A Turing machine can do everything a real computer can do

Things real computers can do and Turing machines cannot
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Are there undecidable questions in complex systems?

Mathematics, by providing a consistent framework to derive logical
consequences of a set of principles, became a powerful tool to reason
about Nature. However, in mathematics, there are internal
statements that cannot be proven to be true or false. They are
undecidable questions.
Some undecidable questions (problems)
A problem = set of instances and their (yes-no) answers
The number of instances is at most countable when expressed by
strings of a �nite alphabet
The number of problems is uncountable

Instance 1 Instance 2 Instance 3 � � �
Problem 1 [yes] no yes � � �
Problem 2 no [no] no � � �
Problem 3 yes no [yes] � � �
� � � � � � � � � � � � � � �

=) Because the number of di¤erent Turing machines is countable,
there are undecidable problems
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Are there undecidable questions in complex systems?

The halting problem:
Is there a Turing machine that given any Turing machine and its
input can decide whether it halts or not?

Suppose there is one, TH . Enumerate all Turing machines and their
(stop-nostop) results for all instances. Now, each element of the
following matrix is an instance of TH

Input 1 Input 2 Input 3 � � �
Turing machine 1 [stop] nostop stop � � �
Turing machine 2 nostop [nostop] nostop � � �
Turing machine 3 stop nostop [stop] � � �

� � � � � � � � � � � � � � �
By taking the diagonal elements and �ipping them one obtains a new
(di¤erent) Turing machine not in the domain of TH
Therefore no such TH can exist.
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Are there undecidable questions in complex systems?

Undecidability and incompleteness of formal systems
Formal system = Axioms+rules =) proof of statements
A proof implies the existence of an algorithm to �nd it
=) For any formal system powerful enough to represent Turing
machines, there must be statements representable in the formal
system for which there is no proof (yes or no) in the formal system.
Example: The number of valid proofs in a formal system is countable.
Construct the following procedure
Procedure INCOM

i=1
while (TRUE)

if the i-th valid proof shows that INCOM does not terminate
then terminate
i=i+1

If the procedure terminates is because there is a formal proof showing
that it does not terminate. Therefore it cannot terminate. But we
know that it does not terminate. However there is no formal proof.
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Are there undecidable questions in complex systems?

And here is the malicious face of mathematics. On the one hand it
gives the tools to formulate and solve the problems. On the other
hand it says that some problems cannot be solved.
What does it all have to do with physical complex systems?
Several people have shown that some complex systems can represent
universal Turing machines.
Two examples:
Particles and mirrors (Moore, Phys. Rev. Lett. 64 (1990) 2354)
Piecewise linear maps of the plane
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Are there undecidable questions in complex systems?

Generalized shift map

Φ : a! σF (a) (a� G (a))

The conclusion is that this map, which can be implemented with
particles and mirrors (billiards), can act like a Turing machine.
Being an universal Turing machine there should be undecidable
questions about it.
The construction is nice. The conclusion a bit hasty.
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Are there undecidable questions in complex systems?

Gu et al. (Physica D 238 (2009) 835-839) came closer to a more
complete statement with their construction of an arbitrary number of
di¤erent Turing machines in tesselated in�nite Ising networks.

H = ∑ cx ,ySxSy +∑MxSx

If there are undecidable questions about complex systems, then
perhaps there are also emergent variables (statements) that cannot be
obtained from the microdynamics.
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The role of in�nity

Independently of whether there are undecidability questions about
complex physical systems, there is one thing that emerges from the
previous discussion about undecidability
Irreducible emergent properties are associated to in�nite number of
degrees of freedom or N ! ∞ limit (thermodynamics, phase
transitions, velocity �elds, etc.)
Even if (at least) some emergent variables can be obtained by
reduction, in fact they are only precisely de�ned in the in�nite limit:
Thermodynamic variables, phase transitions, velocity �elds, etc. In
this sense they are proxys of something that only exists in the realm
of in�nity.
Therefore what the mathematical mechanism does is to approximate
something that "exists" outside of the �nitary framework that we
start with. In this sense the emergent variables might be considered
as novel entities, not as simple reductions but as shadows of entities
of the in�nite universe.
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The role of in�nity

And in the in�nite limit, emergent variables are complete, in the
sense that they are all that can be said about the system
But what kind of in�nity are we speaking about? A simple one in fact.
In mathematics the notion of in�nity appears in several forms. Here
we are concerned with cardinal in�nity. And with the �rst in an
in�nite chain of in�nitary transitions

Continuous hypothesis

The undecidability-incompleteness problems that we have been
speaking about lie at the boundary of two cardinalities aleph0 and C .
What about other mathematical phenomena (and emergent
properties) at the other boundaries in the chain of cardinal numbers?
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