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The equations

The 2D Euler equation�
∂v
∂t = �(v � r)v �rp
div v = 0

(Periodic boundary conditions)
Since div v = 0 there is a function ψ(x , t) such that

v = r?ψ = (�∂x2ψ, ∂x1ψ)

and the Euler equation becomes

∂t∆ψ=-r?ψ � r∆ψ

Solutions on the 2-dimensional torus T 2 = [0, 2π]� [0, 2π] subjected
to periodic boundary conditions

ψ(0, x2, t) = ψ(2π, x2, t), ψ(x1, 0, t) = ψ(x1, 2π, t)

Let ek (x) = 1
2π e

i k �x , k 2 Z2 be the eigenfunctions for �∆ with
eigenvalues k2 = k21 + k

2
2 . Are a complete set in L

2(T 2).
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The equations

Since ψ is a real function assume
R
T 2 ψdx = 0, then ω�k = ωk

ψ(x , t) = ∑
k2Z2

+

ωk (t)ek (x),

Z2
+ denotes the set fk 2 Z2 : k1 > 0, k2 2 Z or k1 = 0, k2 > 0g.

ψ = fωkgk2Z2
+
and introducing the operator

B(ω) = fBk (ω)gk2Z2
+
= ∑

k

Bk (ω)
∂

∂ωk

Bk (ω) =
1

2πk2 ∑
h 6=k

h,k2Z2
+

�
k? � h

�
h2ωhωk�h

where k? = (�k2, k1), the 2D Euler equation becomes the following
in�nite-dimensional ordinary di¤erential equations system

d
dtωk=Bk (ω) k 2 Z2

+
∂Bk
∂ωk

= 0

RVM (CMAF)
PSPDE - V, November 28 - 30, 2016 11

/ 30



The equations

The SOL equations (Two-�eld model)

∂L
∂t
= �rφ � r?L� g∂2 (L� φ) +D

�
r2L+ jrLj2

�
� σke

(Λ�φ) + S

∂4φ
∂t = �rφ � r?4φ� g∂2L+ ν42φ+ σk

h
1� e(Λ�φ)

i
,

Conservative component

∂L
∂t

= �rφ � r?L� g∂2 (L� φ)

∂4φ

∂t
= �rφ � r?4φ� g∂2L
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Two equations, two problems

2D Euler equation: Persistent large-scale structures
2-�eld SOL equation: Coherent structures travelling from the core
to the wall

Solutions ?
2D Euler equation: Stochastic stability of invariant measures
2-�eld SOL equation: Travelling wave solutions
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Stochastic stability of invariant measures

Physical measure (or SBR measure) and stochastically stable measure
are closely related notions.
M a state space, f : M ! M a smooth dynamical system and µ a
positive Borel measure on M such that

lim
n!∞

1
n

n�1
∑
j=0

ϕ
�
f j (x)

�
!
Z
M

ϕdµ

for a positive measure set A of initial points x and any continuous
function ϕ : M ! R. (Means that time averages are given by
µ�spatial averages, at least for a large set of initial states x).
For uniformly hyperbolic systems there is a complete theory
concerning existence and uniqueness of physical measures and partial
results for non-uniformly hyperbolic and partially hyperbolic systems.
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Stochastic stability of invariant measures

Consider the stochastic process fε obtained by adding a small random
noise to the deterministic system f . Under general conditions, there
exists a stationary probability measure µε such that, almost surely,

lim
n!∞

1
n

n�1
∑
j=0

ϕ
�
f j (x)

�
!
Z

ϕdµε

Stochastic stability of the measure means that µε converges to the
physical measure µ when the noise level ε goes to zero. (uniformly
hyperbolic maps, Lorenz and Hénon strange attractors and also
results for partially hyperbolic systems).
Existence and uniqueness of the invariant measure µε under general
conditions provides a powerful tool to obtain the physical measure of
f , by randomly perturbing it and letting the noise level ε ! 0.
That this might also be useful for in�nite-dimensional systems is the
source of inspiration for this work. It might contribute to the
understanding of the large-scale structures in geophysical phenomena.
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In�nitesimally invariant measures of PDE�s

φt the �ow of a partial di¤erential equation and φ�t the push-forward
semigroup acting on measures. A measure µ is invariant if

φ�t (µ) = µ

and in�nitesimally invariant ifZ
Bϕdµ = 0

B being the generator of the �ow φt . Equivalently B
�1 = 0.

Let the generator B be a �rst or second order di¤erential operator on
a discrete set of coordinates ω = fωig,

B = ∑
i ,j
uij (ω)

∂2

∂ωi∂ωj
+∑

i
bi (ω)

∂

∂ωi
(1)

and consider a measure of the form

dµ = R (ω)∏
i
dωi
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In�nitesimally invariant measures of PDE�s

To obtain the invariance condition
R
(Bϕ)R (ω)∏i dωi = 0,

compute the adjoint of B obtaining

B� = � 1
R

(
∑
i

∂

∂ωi
(Rbi )�∑

i ,j

∂2

∂ωi∂ωj
(Ruij )

)

+∑
i

(
�bi +

1
R ∑

j

∂

∂ωj
[R (uij + uji )]

)
∂

∂ωi
+∑

i ,j
uij

∂2

∂ωi∂ωj

Therefore, to have B�1 = 0, the �rst term should vanish leading to

Theorem
A generator B of the form in Eq.(1), uij and bi being di¤erentiable
functions, has dµ = R (ω)∏i dωi as an in�nitesimally invariant measure
i¤

∑
i

∂

∂ωi
(Rbi )�∑

i ,j

∂2

∂ωi∂ωj
(Ruij ) = 0
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Invariant measures of the 2D Euler equation

With uij (ω) = 0, the invariance condition is simply

∑
i

∂

∂ωi
(RBi ) = 0

or

∑
i
Bi

∂

∂ωi
R = ∑

i

d
dt

ωi
∂

∂ωi
R =

d
dt
R = 0

In conclusion: any constant of motion of the Euler equation
generates an (in�nitesimally) invariant measure. Among them the
energy E = 1

2 ∑k k
2ω2

k and the enstrophy S =
1
2 ∑k k

4ω2
k

However, the Poisson structure of the Euler 2D equation being
degenerate, there is an in�nite set of Casimir invariants,

Cf =
Z
f (4ψ) d2x

f being an arbitrary di¤erentiable function. Therefore there are
in�nitely many invariant measures for the 2D Euler equation.
The enstrophy is the Casimir invariant for f (x) = x2.
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Stochastic stability of 2D Euler invariant measures

Consider the following in�nite dimensional Ornstein-Uhlenbeck
operator εQ

εQf (ω) = ε ∑
k

�
ak (ω)

∂

∂ωk
f (ω) + σk (ω)

∂2

∂ω2
k
f (ω)

�

Lf (ω) = εQf (ω) +∑
k

Bk (ω)
∂

∂ωk
f (ω)

is the in�nitesimal generator for a stochastically perturbed Euler �ow.

With W (t) = ∑k
1
jk jbk (t)ek a normalized brownian motion, bk (t)

being independent copies of a complex brownian motion, the
following perturbed Euler equation is obtained

Xk (t) = Xk (0) +
R t
0 fBk (X (s)) + εa (Xk (s))g ds

+
R t
0

p
2εσk (Xk (s))dbk (s), 8k 2 Z2

+
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Stochastic stability of 2D Euler invariant measures

Theorem
If dµ = R (ω)∏i dωi is an invariant measure for the unperturbed Euler
equation, then this is also an invariant measure for the perturbed equation
if ak (ω) and σk (ω) in satisfy

∑
k

��
ak � 2

∂σk
∂ωk

�
∂R

∂ωk
+ R

�
∂ak
∂ωk

� ∂2σk
∂ω2

k

�
� σk

∂2R
∂ω2

k

�
= 0

As an example, the Gaussian measure constructed from the enstrophy
dµS = e

� 1
2 ∑k k

4ω2
k ∏j dωj remains invariant if ak = �k2ωk and σk =

1
k 2

However, we are not only adding noise but also modifying the
deterministic part, actually adding noise to a Navier-Stokes equation

∂t∆ψ = �r?ψ � r∆ψ+ ε42ψ
∂v
∂t = �(v � r)v + ε4v �rp

These are NOT the stochastically stable measures of 2D Euler.
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Stochastic stability of 2D Euler invariant measures

Instead, consider noise perturbations without changing the deterministic
part (ak (ω) = 0). Use Galerkin approximations of arbitrary order N

BNk (ω) =
1

2πk2 ∑
0<jhj�N
0<jk�hj�N

�
k? � h

�
h2ωhωk�h

The equation for the density R (ω) of the invariant measure becomes

∑
k

BNk (ω)
∂

∂ωk
R � εσk

∂2

∂ω2
k
R = 0

Two cases are of physical interest, σk = 1 and σk =
1
k 2 . However, by the

change of variables zk = jk jωk and BN
0

k (ω) = jk jBNk (ω) the second
case becomes identical to the �rst one and we have to deal with

∑
k

BN
0

k (z)
∂

∂zk
R � ε

∂2

∂z2k
R = 0
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Stochastic stability of 2D Euler invariant measures

This is an elliptic regularization of a �rst order Hamilton-Jacobi equation
(ε = 0) which has at least as many solutions as the number of constants
of motion of the N�Galerkin approximation of the Euler equation. Hence,
existence and uniqueness of a stochastically-stable solution for R is
equivalent to the establishment of a viscosity solution for this
Hamilton-Jacobi problem, in its vanishing viscosity modality.
Associated to the uniformly elliptic equation there is a di¤usion process Xt
with di¤usion coe¢ cient

p
ε and drift BN

0
k (z). In each bounded domain D

of z�space (� RN ) the drift, being a quadratic polynomial, is uniformly
Lipschitz continuous. Therefore the Dirichlet problem has a unique
solution with stochastic representation

R (z)jD = Ez ff (X (τ))g
f being the boundary condition at ∂D and τ the �rst exit time from D
For the unbounded z�space we may consider a sequence of nesting open
domains fDng, with boundary functions fn j∂Dn . Then in each DnnDn�1
domain one has a unique solution.
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Stochastic stability of 2D Euler invariant measures

For a bounded smooth boundary condition the solution Rε is bounded and
continuous on compact subsets of D. Then, when ε ! 0 Rε converges
locally uniformly to a function R. This function is not necessarily a
classical solution of ∑k B

N 0
k (z) ∂

∂zk
R = 0, but a standard construction

shows that it is a viscosity solution, in the sense that, given a C∞ function
g , if R � g has a local maximum at a point z0 then
∑k B

N
k (z0)

∂
∂zk
g (z0) � 0 and if it is a local minimum

∑k B
N
k (z0)

∂
∂zk
g (z0) � 0. Hence

Theorem
For each choice of boundary conditions in z� space and noise level (ε),
one has a unique invariant measure density Rε (z), solution of (??).
Furthermore, in the ε ! 0 limit, Rε converges to a viscosity solution of
∑k B

N 0
k (z) ∂

∂zk
R = 0.
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Stochastic stability of 2D Euler invariant measures

So far we have dealt with N-dimensional Galerkin approximations of the
2D Euler equation. When N ! ∞ several modi�cations are needed. It
makes no sense to de�ne R (ω) as a density of the non-existent �at
measure in in�nite dimensions. Instead, R (ω) should be de�ned as the
Radon-Nykodim derivative for some other measure, for example the
Gaussian enstrophy measure. Then the equation for the density R (ω)
would be

∑
k

�
Bk (ω)

∂

∂ωk
� k4ωkBk (ω)

�
R (ω) = 0

an Hamilton-Jacobi equation in in�nite dimensions. Such equations have
been extensively studied and given the appropriate boundary condition, for
example R (ω)! 1 when jωj ! ∞, the construction of the density as a
limiting viscosity solution of

∑
k

�
Bk (ω)

∂

∂ωk
� k4ωkBk (ω)� ε

∂2

∂ω2
k

�
R (ω) = 0

would follow similar steps as in the �nite dimensional case.
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Travelling wave solutions of the SOL equations

With the transformation

L (x1, x2, t) = eL (x1, x2, t)� gx1
φ (x1, x2, t) = eφ (x1, x2, t)� gx1

becomes

∂eL
∂t

= �reφ � r?eL
∂4eφ

∂t
= �reφ � r?4eφ� g∂2eL+ g∂24eφ.

Look for travelling-wave solutions to this system

eL (x1, x2, t) = eL (x1 � v1t, x2 � v2t)eφ (x1, x2, t) = eφ (x1 � v1t, x2 � v2t)
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Travelling wave solutions of the SOL equations

Several classes of travelling wave solutions were constructed:

L (x1, x2, t) = α [φ (x1, x2, t)� v2 (x1 � v1t) + v1 (x2 � v2t)]
+ (α� 1) g̃ x1

φ (x1, x2, t) =
�
v2 + g̃ +

αg
k2

�
(x1 � v1t)� v1 (x2 � v2t)� g̃ x1

+A cos [k1 (x1 � v1t) + k2 (x2 � v2t)]
+ B sin [k1 (x1 � v1t) + k2 (x2 � v2t)]
+C0 + C1 cos [k (x1 � v1t)]
+C2 sin [k (x1 � v1t)] .
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Travelling wave solutions of the SOL equations

L (x1, x2, t) = α [φ (x1, x2, t)� v2 (x1 � v1t) + v1 (x2 � v2t)]
+ (α� 1) g̃ x1

φ (x1, x2, t) =
�
v2 + g̃ �

αg
k2

�
(x1 � v1t)� v1 (x2 � v2t)� g̃ x1

+Ae [k1(x1�v1t)+k2(x2�v2t)] + C0
+C1ek (x1�v1t)+ C2e�k (x1�v1t)

L (x1, x2, t) = �γAe�γ[(x1�v1t)2+(x2�v2t)2 ]/2

�
n
2� γ

h
(x1 � v1t)2 + (x2 � v2t)2

io
� gx1

φ (x1, x2, t) = Ae�γ[(x1�v1t)2+(x2�v2t)2 ]/2 + v2 (x1 � v1t)
�v1 (x2 � v2t)� gx1
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Travelling wave solutions of the SOL equations
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