Complex Systems 6 (1992) 21-30

Vector Fields and Neural Networks

R. Vilela Mendes
Theoretical Division, CERN, CH-1211, Geneva 23, Switzerland
and
Centro de Fisica da Matéria Condensada, Av. Gama Pinto,
2-1699 Lisboa Codex, Portugal

J. Taborda Duarte
Laboratdério Nacional de Engenharia e Tecnologia Industrial,
Az. dos Lameiros, Estr. do Pago do Lumiar, 1600 Lisboa, Portugal

Abstract. We consider neural network models described by systems
of (continuous time) differential equations. The dynamical nature of
each model is identified, symmetric networks being related to gradient
vector fields and asymmetric networks decomposed into their gradi-
ent and Hamiltonian components. From this identification follows, in
particular, a simple characterization of structural stability for sym-
metric networks and a limit cycle analysis of asymmetric networks as
generators of coherent temporal patterns.

1. Introduction

Although the signals sent by neurons along their axons are sharp spikes,
the relevant information is probably not contained in the spikes themselves
but in the firing rate, which depends on the magnitude of the membrane
potential. This in turn results from the integrated effect of the firing rates
of the presynaptic neurons. In this sense a continuous time model with
continuous state variables might be closer to an actual neural system than a
binary discrete time model, at least for certain areas of the brain. It should
be pointed out, however, that the recent neurophysiological observations of
extremely low firing rates [1] sheds some doubt on the usefulness of the firing
rate as the relevant neural variable.

Because of the convenience of electronic implementation, there is a bias
toward binary systems in neural network simulations. However, by smooth-
ing the energy surfaces and eliminating shallow local minima, the use of
continuous degrees of freedom improves in general the speed of convergence
to near-optimal solutions in associative memory, optimization (annealing)
problems, and supervised learning. As pointed out by Hopfield and Tank [2],
analog parallel dynamics, as opposed to digital sequential dynamics, allows
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all the elements of the network to cooperate simultaneously in the computed
decision. Also, during the computation, intermediate values of the variables
are explored, which in a logical sense would correspond to the use of proposi-
tions that are neither wholly true nor wholly false. That is, there is a logical
broadening of the nature of the computing process. In this sense the brain
mode of operation, in which neurons react to the average of a sequence of
spikes, may be close to ideal because it benefits from the features of con-
tinuous parallel computation and, at the same time, the spikes provide the
amount of fluctuation, which allows for evasion from shallow local minima.

A number of authors [2, 3] were thus led to use continuous variables to
describe neural networks and bring the techniques of non-linear differential
equations to the formulation of their dynamical problems. In this paper
we somehow pursue this trend in the sense that, starting from a general
system that contains many of the proposed models as particular cases, we
characterize a network’s behavior by identifying its nature as a dynamical
system.

It is a simple matter to check the relation between neural networks with
symmetric synaptic strengths and gradient dynamical systems. We extend
this analysis to non-symmetric networks exhibiting a decomposition into gra-
dient and Hamiltonian components.

The identication of the dynamical classes, where the neural network mod-
els fit, provides a methodology for a systematic application of the results of
the general theory of dynamical systems to this field. In particular, results
concerning structural stability as well as perturbation and averaging tech-
niques seem to be promising.

Although the emphasis is, as stated, on analog neural networks, most of
the results and dynamical analysis also apply to the equations for the mean
local magnetization [4] of discrete neurons.

2. Gradient fields and Lyapunov functions

Cohen and Grossberg realized in 1983 [5] that many models of content ad-
dressable memories (CAM), as well as other systems, can be written in the

form
dml a;(z%) { Z ci;d; } (2.1a)

and if

o= (2.10)
and

a;(z%)di(z*) > 0 (2.1¢)

there is a Lyapunov function

V=-— z / BEN(ENE + 1 3 cudy (o) h(a”) (2.2)
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that is, dV/dt < 0 along the orbits.

The dynamical evolution toward the stationary points of the Lyapunov
function defines the memory states learned by or built into the network, as
well as their basins of attraction. This Lyapunov function has since been
used and rediscovered in the context of several models.

The dynamical behavior of CAM models of this type is closely related to
the behavior of a gradient field. Assuming differentiability of the functions
involved in (2.1a), one easily finds that the dynamical system (2.1) is dif-
ferentiably equivalent to a gradient system. That is, there is a differentiable
change of coordinates y* = y*(x) such that the system reduces to

dy oV

—_—=—— 2.3

dt oy (2.3)
In fact, from (2.1) and (2.2) one obtains

de*  az*) OV (2.4)

dt —  di(z) Oz
and the change of coordinates leading to (2.3) is
[ (59)"
') = > ag' 2.5
v = [ (S ae @25)

where in (2.1¢) we now require strict positivity.
Alternatively, from (2.4) we could state that z* itself is a gradient vector
field in the metric

G ai(z’) ij

The Lyapunov function of the Cohen-Grossberg model is of a special
type because not all vector fields with Lyapunov functions are necessarily
equivalent to gradient fields. On the other hand, it is clear that other models
exist that are differentiably equivalent to gradient fields and are not of the
Cohen-Grossberg type. In general, given an arbitrary function V(z) of n
coordinates and a set of n functions y* = %'(z), 4+ = 1,...,n with non-
vanishing Jacobian (9y/0z), there is a dynamical system

. 1T
dzt ay\ oy 1%

- _ i 4 adt 4 e 2.7
dt ; { (6:1:) <8m n oxk &7
having V(z) as its Lyapunov function.

The relation between general CAM models and gradient fields is not of
purely academic interest. The differential equivalence of Cohen-Grossberg
symmetric models to gradient vector fields means that a complete charac-

terization of these models may be obtained as a straightforward application
of the known properties of gradient fields [6]. For example, for a dynamical
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system to be an adequate model for a neural system it should be robust, in
the sense that small changes in the parameters should result only in small
changes in the qualitative behavior of the solutions. This corresponds to
the notion of structural stability, which requires that our system possess a
C'-neighborhood of systems topologically equivalent to the original one by
homeomorphisms close to the identity.

A necessary condition for structural stability of gradient vector fields is
the non-degeneracy of the critical points of V', namely

2
% # 0 at the points where -g% =0.

In a gradient flow, all orbits approach the critical points as t — oo. If
the critical points are non-degenerate, then the gradient flow satisfies the
conditions defining a Morse-Smale field, except perhaps the transversality
conditions for stable and unstable manifolds of the critical points. However,
because Morse-Smale fields are open and dense in the set of gradient vector
fields, any gradient flow with non-degenerate critical points may always be
Cl-approximated by a (structurally stable) Morse-Smale gradient field.

det

3. Hamiltonian components and coherent temporal patterns

Synaptic connections in biological neural networks are seldom symmetric.
Quite often only one of ¢;; or ¢j; is nonzero. It is therefore important to
identify the nature of the dynamical systems that are implemented by asym-
metric neural networks. Because of its generality we use once again the
Cohen-Grossberg form (2.1), but now the ¢;;’s are not required to be sym-
metric. We consider the dynamical system to have an even number n of
variables. Otherwise it is trivially embedded into a system of dimension
n + 1. Define

iy = 9 4
ZS) = 3le + Cji) B = %(Cz'j - Gji) (3.1)
Z/ i (€9)di(€9)dE + = Z c 4 (27)dy (F) (3.2)
],k_

and

" d; f
H= Z [ = ( (3.3)
Then we have the followmg.

Theorem 1. If a;(z*)/d;(z*) > 0V z,i and the matrix c( ) has an inverse,
then the vector field &' in equation (2.1a) decomposes mto gradient and
Hamiltonian components, & = %) 4+ 1) where

i(G) _ a;(z') OV S) _ Z 8V ®)
T di(zt) oxi

(3.4a)

z
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and
g (z) = Z;E i(su and w;; = —a;(z")! (C(A)_l)ij a;(z) 7,
where w;;I’* = §F are the components of the Riemanian metric and the

symplectic form.

Proof. The decomposition follows by direct calculation from (2.1a), (3.2),
and (3.3). The conditions on a;(z"), d;(z"), and cz(-;-\) insure that g is a well-
défined metric and w is non-degenerate. Indeed let v be a vector such that
>, v'w;; = 0. Then

0= giaq () »w__ v
;jvw]a](:r: )C]k ak(a:k)

would imply v* = 0V k. That w is a closed form follows from the fact that
w;j depends only on z* and z7. B

The identification in the Cohen-Grossberg model of just one gradient
and one Hamiltonian component with explicitly known potential and Hamil-
tonian functions is a considerable simplification over a generic dynamical
system. We recall that in the general case, although such a decomposition
is possible locally [7], explicit functions are not easy to obtain unless one
allows for one gradient and n — 1 Hamiltonian components. Notice that the
decomposition of the vector field does not decouple the dynamical evolution
of the components. In fact, as seen below, it is the interplay of the dissipa-
tive (gradient) and the Hamiltonian components that leads to the limit cycle
behavior.

In light of the non-negligible fact that actual neural connections are asym-
metric, the main motivation for studying non-symmetric networks is the
potential for understanding the emergence of coherent temporal behavior.
Whereas in CAM symmetric networks the memories that are recalled are the
minima of the Lyapunov function, in the asymmetric networks the memo-
ries might be stable oscillations or non-periodic temporal sequences. In both
cases these patterns might be used to process temporal information.

It is clear that the behavior of an asymmetric network will depend on
the relative size of the gradient and the Hamiltonian components. If for
example the Hamiltonian component is very small, then the dynamics will
be determined primarily by the gradient part, the trajectories flowing to the
neighborhood of the minima of V. We will be mostly concerned, however,
with the cases where H is sufficiently large to determine stable persistent
motions in some regions of phase space.

When in a non-conservative system persistent motions are found in some
“subspace of the whole phase space, it means that dissipation and regeneration



26 R. Vilela Mendes and J. Taborda Duarte

effects compensate each other in such a way that a kind of “local energy”
or constant of motion is preserved along some orbits. A well known case [8]
is the creation of limit cycles in the plane from closed orbits of perturbed
Hamiltonian systems. The necessary condition for the existence of the cycle
is the vanishing of the variation of the monodromy

() = ]f (Bdz — Ady) =0 (3.5)
with

. OH . OH

:c—a—y+eA($,y,e) y——a—x-i—eB(ac,y,e)

In reference [9] this idea has been generalized by introducing the notions
of “constant of motion” and “arc of vector fields with constants of motion.”
We recall these definitions:

Let (M, X) be a differentiable dynamical system, where M is a manifold
and X a smooth vector field. A “constant of motion” of (M,X) is any
differentiable function ¢ : M — R such that for some solution (orbit) v of
X we have ¢ oy = constant. Notice the qualification some rather than all,
which would have been the case had ¢ been a first integral.

A family of vector fields € — X, € € [—a,d] is called an “arc of vector
fields with constants of motion” if

1. Each X has a constant of motion ¢, over a periodic solution 7,.

2. The constant of motion ¢, of X, is a first integral in a neighborhood
of 7,.

3. The maps € — X, € — 7., and € — ¢, are Cl-differentiable.

The main result of reference [9] is a generalization of equation (3.5), stating
a necessary condition for the existence of the arcs, namely for local persistent
dynamics with a constant of motion. This is

T (dX,
/o Z( de
where T, is the period of the orbit of X,,.

Because of condition 2, the point € = 0 in the arc where the derivative is
computed is a point where the corresponding vector field has a first integral.
Therefore, although the result (3.6) is very general, in practice it is useful
mostly when X, is a Hamiltonian field because then at least one first integral,

the energy, is known.
Applying (3.6) to the system (2.1a), and defining the arc as

_) @) aa=o 9

X, = €z(® @ (3.7)
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with #(®) and 2™ as in Theorem 1 and the constant of motion ¢, being H
itself, one obtains

a; 5
[T (Gras )
_o_/ Zd ){b Zc@’d(ﬁ)} dt

the integration being taken along a closed orbit of H.

Example 1. As a first example consider a network with two groups of
neurons, which we denote by the coordinates {z} and {y}, connected in such
a way that inside both groups the synaptic strengths are symmetric, whereas
between groups they are antisymmetric. That is, {z} is excitatory to {y},
and {y} is inhibitory to {z}.

Assume the self-regulation functions b; of the neurons to be

b(z) = prz — fsz® 1, P >0 (3.9a)
b(y) = Bay — Bey®  PaPs >0 (3.95)

where (31, f; and 33, 0 are auto-excitation and self-saturation coefficients,
respectively.

For simplicity, let a;(z) = a;(y) = 1, d(z) = z, d(y) = y, and the
synaptic strengths between the {z} and {y} groups have constant amplitude
(c¥?) = —c@) = ¢). The symmetric strengths ¢®® and c¢®¥) inside the
groups {z} and {y} are left to be adjusted by some learning process. Then
the potential function V) of the gradient component is

V(S)_Z_é( )2 4 53( iy g L ZC(")

(3.10a)
+Z ﬂ4 i ,36 i 44 - Z(zy)yy

and the Hamiltonian is
1 i 1 i
H= : >+ 3 Z(y )2 (3.100)

Notice however that, whereas the metric is trivial (¢ = 6%), the inverse of
the symplectic form connects each z* with all %’s, and conversely.

The equation of motion corresponding to the Hamiltonian H, namely the
dynamics in the limit € = 0 in (3.7), is

ziz—cZyﬁ (3.11a)

7 :ch'j (3.110)
k
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From (3.11) one concludes that the Hamiltonian orbits are parametrized by

z! = Acoswt (3.12a)
Y. = Bsinwt (3.120)

with w? = 2N, N, and B = A,/N,/N,, with N, and N, being the number
of neurons in the groups.
Using equation (3.8) one then obtains

ﬂ1+ﬂ4—(1/N)Zu & — (1N Ty &)
3(Bs + (Nz/Ny)Pe)

as the approximate amplitude of the limit cycle. One sees that the frequency
of the persistent oscillation is determined by asymmetric synaptic strengths,
whereas its amplitude is regulated by the symmetric strengths inside the {z}
and {y} groups.

We want to point out that equation (3.8) gives only an approximate
estimate of the limit cycle, whenever it exists. However, as shown in reference
[9] by numerical simulation, in most cases equation (3.8) provides a good
qualitative estimate of the persistent motions even for large values of the
deformation parameter.

AZ

(3.13)

Example 2. For the second example we take neurons with self-regulation
functions b; of the form

b(z) = —prz + Pz’ — fsz® 1, P, >0 (3.14a)
b(y) = —Pay + Bsy° — Py Pa,Bs, 06 > 0 (3.14b)

and consider several groups of {z} and {y} neurons, as in the preceding
example, with the asymmetric connections and the number of neurons chosen
in such a way that each group I'y = [{z}, {y}«] has a different Hamiltonian
frequency wi = cp(NENF)/2.

The self-regulation functions (3.14) lead to a potential

V(S):Z%(zi)z ﬂZ( )4 ﬂ3( )6+ Z (rz)

%

PR - R+ R g Dy

We now have two stable modes of operation in each neuron group I'y. One
is the quiescent state with all z* = y* = 0, and the other is a limit cycle of
approximate frequency wy and amplitude

2 BotBs(Na/Ny) + A
* 7 2(Bs + (Nu/Ny)?Be)
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with

In particular, oscillations of small amplitude will die out and the network will
tend to the quiescent state. This network may be a model for a system that,
subject to an oscillating stimulus of sufficient intensity and an appropriate
frequency, will excite one of the neuron groups if there is one with a frequency
that closely matches the stimulus.

Using a similar approach it also possible to construct models of temporal
association whereby a network, when triggered, excites sequentially a set of
neurons. It is enough to construct a network with both a quiescent state and
a stable Hamiltonian orbit that passes through the required states. Then, if
triggered to a state belonging to the stable orbit, the network will unfold the
required temporal pattern.

4. Final remarks

The decomposition into components with well-studied dynamical properties
provides a strategy for further systematic work in neural network models.
For example,

1. The bifurcation theory of gradient dynamical systems is certainly re-
lated to the mechanisms of creation of new fixed points in the learning
process of associative memories.

2. Coupling a small Hamiltonian perturbation to a primarily dissipative
system with many degrees of freedom, one obtains local fluctuations of
the variables without losing the global coherence, in the sense that the
motion remains near a global fixed point of the unperturbed dissipative
system. This may be relevant to the construction of models where
the mean active time of individual neurons is less than the memory
coherence time.

In this paper we were concerned with the fast dynamics of the neural
model. If] in addition, we interpret learning as a slow dynamical process
coupled to the fast dynamics of the nodes, we conclude that the global system
may have non-trivial behavior that arises from the coupling. Consider for
example a learning dynamics of the Hebbian type, for example

dey _
dt
A passive decay term with coefficient A;; was considered and we have allowed

for different functions w and z in the post- and pre-synaptic neurons. Other
more complicated learning processes have been considered (3], allowing for

—ijcij + Kijwi(a*)z;(27) (4.1)
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example the decay to be gated by the neuron variables. However, for the
purposes of this remark, this simple form will suffice.

Typically in the learning process a set of neurons (conventionally denoted
inputs and outputs) are fixed and the rest of the network allowed to relax
to values z(co). Then the neuron variables are fixed at z* = z%(co0) and the
synaptic strengths updated according to the relaxation of (4.1). However,
when the c;;’s change, the variables z° that are not fixed from outside will
start to relax to new values. This will certainly occur if, as expected, the
relaxation times of the z*’s are smaller than those of the cij’'s. What we
have then is a coupled dynamical system with equations (2.1) and (4.1), plus
constraints. (The constraints are the functional relations resulting from the
externally fixed variables.) Even when the ¢;;’s are symmetric, the coupled
system is no longer differentiably equivalent to a gradient system. It will have
Hamiltonian components and oscillations become possible in the dynamics
of the learning process.
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