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Abstract . We consider neural network models described by systems
of (continuous time) differential equations. Th e dynamical nature of
each model is identified, symmet ric networks being relat ed to gradient
vector fields and asymmet ric networks decomposed into their gradi­
ent and Hamilt onian components . From thi s identification follows, in
particular , a simple characterizat ion of st ructural stability for sym­
metric networks and a limit cycle analysis of asymmetric networks as
generators of coherent tempor al patterns.

1. Introduct ion

Although the signals sent by neurons along their axo ns are sharp sp ikes ,
the relevant information is probably not containe d in the spikes themselves
but in the firing rate, which dep ends on the magnitude of the membrane
pot ential. T his in turn results from the integr ated effect of the firin g rates
of the presynaptic neurons. In this sense a cont inuous time mo del wit h
continuous state variables might be closer to an actual neural system than a
binary discret e time mod el , at least for certain areas of the br ain. It should
be pointed out , however , that the recent neurophysiological observations of
extremely low firin g rates [1] sheds some doubt on the usefulness of the firin g
rate as the relevant neural variable.

Because of the convenience of electronic implem entation , there is a bias
toward binary sys te ms in neural network simula t ions . However , by smo oth­
ing the energy sur faces and eliminating shallow local minima, the use of
cont inuous degrees of freedom improves in general the spee d of convergence
to near-optimal solutions in associat ive mem ory, op t imizat ion (annealing)
problems, and supe rvised learning . As pointed out by Hopfield and Tank [2],
analog par allel dynamics, as opposed to digital sequent ial dynamics , allows
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all the elements of the network to cooperate simultaneously in the computed
decision . Also, during the computat ion, intermediate values of t he vari ab les
are explored , which in a logical sense would correspond to the use of pr oposi­
tions that are neither wholly true nor wholly false. That is, t here is a logical
broad ening of the nature of the computing process. In this sense the br ain
mode of operatio n , in which neurons react to the average of a sequence of
spikes, may be close to ideal becau se it benefits from the features of con­
t inuous par allel computation and, at the same t ime , the spikes provide the
amount of fluctuation, which allows for evasion from shallow local minima.

A number of authors [2, 3J were thus led to use cont inuous var iables to
describe neural networks and bring the techniques of non-linear differenti al
equations to the formul ation of their dynamical problems. In this pap er
we somehow pursue this tr end in the sense that , start ing from a general
system that contains many of the proposed models as particular cases, we
char act erize a network's behavior by identi fying it s nature as a dynamical
syste m.

It is a simple mat ter to check the relation betwee n neural networks wit h
symmetric synapt ic st rengths and gra dient dynamical systems. We exte nd
this analysis to non-symmet ric networks exhibit ing a decomposition into gra­
dient and Ham ilto nian components.

The identi cati on of the dynam ical classes, where the neural network mod­
els fit , pr ovides a met hodo logy for a systemat ic applicat ion of the results of
the general theory of dynami cal sys tems to this field. In par ti cular , result s
concern ing structur al stability as well as perturbation and averaging tech­
niques seem to be promising.

Although the emphasis is, as stated, on analog neural networks, most of
the resul ts and dynamical analysis also app ly to the equations for the mean
local magneti zation [4] of discrete neurons.

2. Gradient fields and Lyapunov fu nctions

Cohen and Gro ssb erg realized in 1983 [5] that many mod els of conte nt ad­
dressabl e memories (CAM), as well as other systems , can be wri t ten in the
form

dx, . { . ~ . }di = ai(x' ) . bi(x' ) - ~ cijdj(xJ
)

and if

Cij = Cji

and

ai(xi)d;(x i) ::::: 0

there is a Lyapunov fun cti on

(2.1a)

(2.1b)

(2.1c)

(2.2)
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that is, dV/ dt ::; a along the orbits .
The dynam ical evolution toward the stationary points of the Lyapu nov

function defines t he memory states learn ed by or built into the network, as
well as their basins of at traction. This Lyapunov function has since been
used and rediscovered in the context of several models.

T he dynam ical behavior of CAM models of this typ e is closely related to
the behavior of a gradient field. Assuming differenti ability of the funct ions
involved in (2.1a), one eas ily finds that the dynamical system (2.1) is dif­
ferentiably equivalent to a gradient system. That is, t here is a different iable
change of coordinates yi = yi(X) such that the system reduces to

BV
Byi

In fact , from (2.1) and (2.2) one obtains

dxi ai(xi) BV
----

dt d;(xi) Bxi

and the change of coord inat es leading to (2.3) is

(2.3)

(2.4)

(2.5)

where in (2.1c) we now require strict positivity.
Altern atively, from (2.4) we could state that xi itself is a gradient vector

field in the metric

(2.6)

(2.7)

T he Lyapunov fun ction of the Cohen-Grossberg mod el is of a special
type because not all vecto r fields wit h Lyapunov functions are necessarily
equivalent to grad ient fields. On the ot her hand , it is clear that other models
exist that are differenti ably equivalent to gradient fields and are not of the
Cohen-Grossberg typ e. In general, given an arbitrary function V( x) of n
coordinates and a set of n functions yi = yi(X), i = 1, . . . , n with non­
vani shing J acobi an (By/B x) , there is a dynami cal syst em

dx' {( By) - l (By)-lT} BV
di = - ~ Bx Bx ik Bxk

having V (x ) as it s Lyapunov funct ion .
The relat ion between general CAM models and gradient fields is not of

purely academic interest . The differenti al equivalence of Cohen-Grossberg
symmetric mod els to gradient vector fields mean s that a complete charac­
ter ization of these models may be obtained as a st raightforwar d applicat ion
of the known prop ert ies of gradient fields [6J . For example, for a dynamical
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syst em to be an adequate model for a neur al system it should be robust , in
the sense that sma ll changes in the parameters should result only in small
changes in the qualitative behav ior of the solutions . T his corr esponds to
the notion of struct ural stability, which requi res that our system poss ess a
C1-neighborhood of systems topologically equivalent to the original one by
homeomorphisms close to the identi ty.

A necessary condit ion for st ruct ural st ability of gradient vector fields is
the non-degeneracy of the crit ical points of V , nam ely

II
C/2V II C/Vdet C/xiC/x j oF 0 a t the points where C/xi = O.

In a gra dient flow, all orbits approach the critical points as t -. 00. If
the crit ical points are non-degenerate, then t he grad ient flow sat isfies the
condit ions defining a Morse-Smale field , except perhaps the tr an sversality
condit ions for stable and unstabl e manifolds of the crit ical points. However ,
becau se Morse-Sm ale fields are open and dense in the set of gradient vector
fields, any gradient flow wit h non-degenerat e critical points may always be
C1-app roximat ed by a (structur ally stable) Morse-Smale gradient field.

3 . Hamiltonian co m ponents and coherent temporal patterns

Synaptic connec t ions in biological neural networks are seldom symmet ric.
Qui te ofte n only one of C;j or Cji is nonzero. It is therefore imp ort ant to
ident ify the nature of the dynamical systems that are implemented by asym­
metric neur al networks. Because of it s generality we use once again the
Cohen-Grossberg form (2.1) , but now the Ci/S are not required to be sym­
metr ic. We consider the dynam ical system to have an even number n of
var iab les. Otherwise it is trivially embedded into a system of dimension
n + 1. Define

r. = c(S) + c(A)
"tJ ' J ' J

(3.1)

and

V (S) = - i:JX

' bi (C ) d: (~i ) d~i + ~ t cJ~) dj (xj ) dk (xk )
i = l j ,k=l

(3.2)

(3.3)H = t JX

' di (~' ) d~i
i =l ai(~' )

Then we have the following.

Theorem 1. If ai(x i)jd;(xi) > OVx,i and the matrix c}1) has an inverse,
then the vector field Xi in equation (2.1a) decomposes into gradient and
Hamiltonian components, Xi = xi(G ) + xi(H), where

.( i) <lV(S) <lVCS)
' i (G) _ _~_u 2: i j ( )_U_
x - d'( ') <l . - g X <l .. x' ux' . uxJ

, J

(3.4a)
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'(H) '" . (A) . 8H "' .. 8Hi' = - LJai( X') Cij (x)aj(xJ) = LJI'J(x) 8x j
J J

and
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(3.4b)

ij ( ) = ai(X
i
) dj

g X d;(xi ) U

where wijI jk = 8f are the comp onents of th e Ri emanian m etric and th e
symplectic form.

Proof. The decomposition follows by dir ect calcula t ion from (2.1a), (3.2),
and (3.3) . The condit ions on ai(x i) , d;(x i) , and c~:) insure that g is a well­
defined metric and W is non-degenerate. Indeed let Vi be a vector such that
L i ViWij = O. Then

i . (A) v k

0= L V Wijaj(XJ)Cjk = --( k)
i,j ak x

would imply v k = 0 \f k . That W is a closed form follows from the fact that
Wij depends only on xi and x j . •

The identifi cation in the Cohen-Grossberg mod el of just one gradi ent
and one Hamilto nian compo nent with exp licitly kn own potential and Hamil­
tonian functions is a considerabl e simplificat ion over a generic dynamical
system . We recall that in the genera l case, although such a decomposition
is possible locally [7] , explicit functi ons are not easy to obtain unl ess one
allows for one gradient and n - 1 Hamiltonian compo nents . Not ice that the
decompositi on of the vector field does not decouple the dynamical evolution
of the components. In fact , as seen below, it is the int erplay of the dissipa­
tive (gradi ent) and the Ha milto nian components that lead s to the limit cycle
behavior .

In light of the non-negligibl e fact that actual neural connections are asy m­
metric, the main motivation for st udy ing non-symmetric networks is the
potential for unders tanding the emergence of coherent temporal behavior.
Whereas in CAM symmet ric networks the memories th at are recalled are the
minima of the Lyapunov funct ion , in the asy mmet ric networks the memo­
ries might be stable oscillat ions or non-periodic temporal sequences. In both
cases these patterns might be used to pro cess temporal information .

It is clear that the behavior of an asy mmetric network will depend on
the relative size of the gradient and the Hamiltonian compo nents . If for
exa mple the Hamiltonian component is very small, t hen the dynami cs will
be determined primaril y by the gra dient part , the trajectories flowing to the
neighborhood of the minima of V . We will be mostly concerne d, however,
with the cases where H is sufficient ly large to det ermine stable persis tent
moti ons in some regions of ph ase space.

When in a non-conse rvative syste m persistent motions are found in som e
.subspace of the whole phase space, it mean s that dissipation and regeneration
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effects comp ensate each other in such a way that a kind of "local energy"
or constant of motion is preserved along some orb its. A well known case [8]
is the creation of limit cycles in the plane from closed orbits of pert urb ed
Hamil tonian systems . The necessary condit ion for the existence of the cycle
is the vani shin g of the variat ion of the monodromy

wit h

I( c) = f(Bdx - Ady) = 0 (3.5)

8Hx = BY + EA(x, y,E)
8H

if = - 8x + EB (x ,y , E)

In reference [9] this idea has been generalized by introducing the notions
of "const ant of motion" and "arc of vecto r fields wit h constants of motion ."
We recall these definitions:

Let (M,X) be a differentiable dynami cal system, where M is a manifold
and X a smoot h vector field . A "constant of motion" of (M ,X) is any
differentiable function cP : M ----> R such that for som e solut ion (orbit) f of
X we have cP 0 f = const ant . Noti ce the qualifica tion some rather than all,
which would have been the case had cP been a first integral.

A famil y of vecto r fields E ----> X" E E [- a,aJis called an "arc of vecto r
fields with constants of mot ion" if

1. Each X has a constant of mot ion cP. over a periodi c solut ion f. ·

2. The constant of motion cPo of X o is a first integral in a neighb orh ood
of f o .

3. The maps E ----> X" E ----> f ., and E ----> cP. are C1-differentiable.

The main resul t of reference [9] is a generalization of equation (3.5), stating
a necessary condit ion for the existence of the arcs, nam ely for local persistent
dynami cs with a constant of motion . This is

(3.6)

wher e To is the period of the orbit of X o .

Because of condit ion 2, the point E = 0 in the arc where the derivative is
computed is a point where the corres ponding vector field has a first int egral.
Therefore, alt hough the result (3.6) is very general, in practice it is useful
mostl y when X o is a Hamil tonian field because then at least one first integral ,
the energy, is known.

Applying (3.6) to the syste m (2.1a), and defining the arc as

X . = E x(G) + x (H ) (3:7)
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with :i:(G ) and :i:(H) as in Theorem 1 and the constant of motio n ¢o being H
it self, one obtains

(3.8)

the integration being taken along a closed orbit of H.

Example 1. As a first example consider a network with two groups of
neurons, which we denot e by the coordina tes {x} and {y} , connected in such
a way that inside bo th groups the synap tic strengths are symmetric, whereas
between groups they are ant isymmet ric. T hat is, {x} is excitatory to {y },
and {y} is inhibitory to {x}.

Assume the self-regulation funct ions b, of the neur ons to be

b(x) = (31X - (33x3

b(y ) = (34Y - (36y3

(3.9a)

(3.9b)

where {31> (34 and (33 , (36 are auto-excitation and self-saturation coefficients ,
respectively.

For simplicity, let ai(x) = ai(Y) = 1, d(x ) = x , d(y ) = y , and the
syna pt ic st rengths between the {x } and {y} groups have constant amplit ude
( c (yx ) = - c (xy) = c ) . The symmetric strengths c(xx) and c( YY) inside the
groups {x} and {y} are left to be adjust ed by some learning process. Then
the potential fun ction y eS) of the gradient component is

(3.lOa)

and the Hami ltonian is

(3.10b)

Not ice however that , whereas the metric is t rivial (gi j = 8i j ) , the inverse of
the symplect ic form connects each Xi with all y's, and conversely.

The equation of motion corres ponding to the Hamiltonian H , namely the
dynamics in the limit E = 0 in (3.7) , is

:i: ~ = -cLY~
j

(3.11a)

(3.11b)
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From (3.11) one concludes that the Ham ilt onian orbits are param etrized by

x~ = A cos wt

y~ = B sin wt

(3.12a)

(3.12b)

with W
Z = C

ZNxNy and B= AJNx/ Ny, with N'; and Ny being the number
of neurons in the group s.

Using equation (3.8) one then obtains

A Z _ {31 + {34 - (l/Nx ) L j cl;xl - (l/Ny ) I:i j clr l

- ~ ({33 + (Nx/Ny){36)
(3.13)

as the approximate amplitude of the limit cycle. One sees that the frequency
of the pers istent oscilla t ion is determined by asy mmetric synapt ic st rengths ,
whereas its amplitude is regulated by the symmet ric st rengths inside the {x}
and {y} groups.

We want to point out that equat ion (3.8) gives only an appr oxim at e
est imate of the limit cycle, whenever it exists . However , as shown in reference
[9] by numerical simulation , in most cases equat ion (3.8) provides a good
qualitative est imate of the persistent motions even for large values of the
deformat ion par ameter.

Example 2. For the second example we take neurons with self-regulat ion
functions bi of the form

b(x ) = - {31X + {3zx3 - (33xs

b(y ) = - {34Y+ {3s y3 - {36ys

{3I, {3z ,{33 > 0

{34, {3s , {36 > 0

(3.14a)

(3.14b)

and consider several groups of {x} and {y} neurons, as in the preceding
example, wit h the asy mmetric connections and the number of neurons chosen
in such a way that each group I'k = [{ x}k , {y}d has a different Hamiltonian
frequ ency Wk = ck(N!:N;) l/Z .

The self-regulation functions (3.14) lead to a potential

We now have two stable modes of operat ion in each neuro n group f k . One
is the quiescent state wit h all Xi = y i = 0, and the ot her is a limit cycle of
approximate frequency Wk and amplit ude

A Z _ {3z + (3s (Nx/Ny) + ~

k - 2({33 + (Nx/Ny)2{36)
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with
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(4.1)

In par ticular , oscilla tions of small amplitude will die out and the network will
tend to the quiescent state. This network may be a model for a syst em that ,
subject to an oscillat ing st imulus of sufficient intensity and an appropriate
frequency, will excite one of the neur on groups if there is one with a frequency
that closely matches the st imulus.

Using a similar approach it also possible to const ruct models of temp oral
associat ion whereby a network , when triggered, excites sequent ially a set of
neuron s. It is enough to construct a network with both a quiescent state and
a stable Hamiltonian orbit that passes through the requi red states. Then , if
tr iggered to a st ate be longing to the stable orb it , the network will unfold the
required temp oral pattern.

4 . Final remarks

The decomposit ion into components with well-st udied dynamical properties
provides a strategy for fur ther systemat ic work in neur al network models.
For exa mple,

1. The bifurcation theory of gradient dynamical systems is certainly re­
lated to the mechanisms of creation of new fixed points in the learning
process of associat ive memories.

2. Coupling a small Hamil tonian perturbation to a primarily dissipative
system with many degrees of freedom, one obtains local fluctuations of
the variables wit hout losing the global coherence, in the sense that the
mot ion remains near a global fixed point of the unperturbed dissipative
syste m. T his may be relevant to the const ruction of models where
the mean act ive time of individual neurons is less than the memory
coherence t ime.

In this paper we were concerned with the fast dynamics of the neur al
model. If, in addition, we interpret learni ng as a slow dyn amic al pro cess
coupled to the fast dynamics of the nodes, we conclude that the global system
may have non-trivial behavior that arises from the coup ling. Consider for
example a learning dynamics of the Hebbian typ e, for example

dc.;j i .ill = -AijCij + K ij W i ( X ) Zj(XJ
)

A passive decay term with coefficient Ai j was considered and we have allowed
for different fun ctio ns wand Z in the post- and pre-synaptic neurons. Other
mor e complicated learni ng processes have been considered [3], allowing for
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example the decay to be gated by the neuron var iab les. However , for the
purposes of this remark , this simple form will suffice.

Typically in the learning pro cess a set of neurons (conventionally denoted
inputs and out puts ) are fixed and th e rest of the network allowed to relax
to values xi(oo) . Then the neuron var iables are fixed at Xi = xi (oo ) and the
synaptic st rengths upd ated according to the relaxation of (4.1). However ,
when the Ci/S change , the variab les Xi that are not fixed from outside will
start to relax to new values. This will certainly occur if, as expected, the
relaxation t imes of the Xi'S are smaller than those of the Ci/S. What we
have then is a coupled dynamical system with equat ions (2.1) and (4.1), plus
const ra ints. (T he const raints are the functional relations resulting from the
exte rnally fixed variab les.) Even when the Ci/s are symmetric, the coupled
system is no longer different iably equivalent to a gradient system. It will have
Hamiltonian components and oscillations become possible in the dyn amics
of the learning pro cess.

References

[1] M. Ab eles , E . Vaad ia , and H. Bergm an , Network, 1 (1990) 13- 25.

[2] J. J. Hopfield and D. W . Tank, Biological Cybern etics, 52 (1985) 141; see
also "Collective Computat ion wit h Con tinuous Variab les," pages 155-170 in
Disordered Systems and Biological Organization, edite d by E. Bienenstock et
al. (Berlin , Springer , 1986).

[3] S. Gr ossb erg, Neural Networks, 1 (1988) 17-61 , and references t herein.

[4] D . J . Amit, Modeling Brain Function (Cambridge, Cambridge University
P ress , 1989).

[5] M. A. Cohen and S. Grossb erg, IEEE Transactions on Syst ems, Man and
Cybernetics, 13 (1983) 815-826.

[6] S. Smale, Annals of Mathemat ics, 74 (1961) 199-206. J. P alis and S. Smale,
Proceedings of the Symposium on Pure Mathemat ics, vol. XIV (P rovidence,
American Mathemati cal Societ y,1970) .

[7] R. Vilela Mendes and J . T. Duar t e, Journal of Mathematical Physics, 22
(1981) 1420-1422.

[8] See, for example, D . V. An osov and V . 1. Arnold , "Dynamical Systems," in
volume I of En cyclopaedia of Mathemat ical Sciences (Berlin, Springer , 1988).

[9] J . T . Duarte and R. Vilela Mendes, Journal of Mathematical Physics, 24
(1983) 1772-1778; Lett ers on Mathemat ical Phy sics, 6 (1982) 249-252; for a
review and gene ralizations of t hese result s see also R. Vilela Mendes, "Defor­
mation Stability of Periodic and Quasi-periodi c Mot ion in Dissipa ti ve Dys­
t ems ," in Deform ation Theory of Algebras and Structures and Applications,
edited by M. M. Hazewinkel and M. Gersten hab er (Dordrecht, Kluwer Aca­
demi c Publish ers , 1988).


