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Abstract

Ž .The characterization of non-stationary signals requires joint time and frequency information. However, time t and
Ž . Ž .frequency v being non-commuting variables there cannot be a joint probability density in the t,v plane and the

time-frequency distributions, that have been proposed, have difficult interpretation problems arising from negative or
complex values and spurious components. As an alternative, time-frequency information may be obtained by looking at the

Ž .marginal distributions along rotated directions in the t,v plane. The rigorous probability interpretation of the marginal
distributions avoids all interpretation ambiguities. Applications to signal analysis and signal detection are discussed as well
as an extension of the method to other pairs of non-commuting variables. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Non-stationary signals have a time-dependent
spectral content, therefore, an adequate characteriza-
tion of these signals requires joint time and fre-
quency information. Among the many time-frequency
Ž . w xquasi distributions 1,2 that have been proposed,

Ž . w xWigner–Ville’s WV 3,4

u u
) yi v uW t ,v s f tq f ty e du , 1Ž . Ž .H ž / ž /2 2

for an analytic signal f t , is considered to beŽ .
optimal in the sense that it satisfies the marginals, it
is time-frequency shift invariant and it possesses the
least amount of spread in the time-frequency plane.

However, the WV distribution has, in general,
positive and negative values and may be non-zero in

1 On leave from the P. N. Lebedev Physical Institute, Moscow,
Russia.

regions of the time-frequency plane where either the
signal or its Fourier transform vanish. Therefore,
despite the fact that the WV distribution is an accu-
rate mathematical characterization of the signal, in
the sense that it can be inverted by

1 tq tX
XX

) i v Ž tyt .f t f t s W ,v e dv , 2Ž . Ž . Ž .H ž /2p 2

its interpretation for signal detection and recognition
is no easy matter, because of the negative and ‘spuri-
ous’ components. The origin of this problem lies in
the fact that t and v being non-commuting vari-
ables, they cannot be simultaneously specified with
absolute accuracy and, as a result, there cannot be a
joint probability density in the time-frequency plane.

w xTherefore no joint distribution, even if positive 5 ,
may be interpreted as a probability density.

Looking back at the original motivation, leading
to the construction of the time-frequency distribu-
tions, namely the characterization of non-stationary

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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signals, we notice that we are asking for more than
we really need. To characterize a non-stationary
signal what we need is time and frequency-depen-
dent information, not necessarily a joint probability
density, a mathematical impossibility for non-com-
muting variables. The solution is really very simple.

2The time density f t projects the signal intensityŽ .
2on the time axis and the spectral density f vŽ .

projects it on the frequency axis. To obtain the
required time-frequency information, all we need is a

Ž .family of time and frequency functions s t,v ,j

depending on a parameter j , which interpolates be-
tween time and frequency. Projecting the signal in-
tensity on this variable, that is, computing the den-
sity along the s yaxis, one obtains a functionj

2
M s,j s f s , 3Ž . Ž . Ž .j

that has, for each fixed j , a probability interpreta-
tion. The simplest choice for s is a linear combina-j

tion

ssm tqnv , 4Ž .
Ž .the parameter j being the pair m,n . For definite-

ness we may choose

cosu sinu
ms , ns , 5Ž .

T V

T ,V being a reference time and a reference fre-
quency adapted to the signal to be studied. The

2Ž .function M s,u interpolates between f t andŽ .
2f v and, as we will prove below, contains aŽ .

complete description of the signal. For each u the
Ž .function M s,u is strictly positive and being a

Ž .bona-fide probability in s causes no interpretation
ambiguities. A similar approach has been suggested

w x w xfor quantum optics 6 and quantum mechanics 7–9 ,
the non-commuting variable pairs being respectively

Ž .the quadrature phases a ,a and the position-r i
Ž .momentum q, p .

Ž .The probability function M s,u may be obtained
by projection from the Wigner–Ville distribution and
in this context it has been called the Radon–Wigner

Ž w xtransform see for example 10,11 and references
.therein , which may also be related to the fractional

w xFourier transform 12 . Here however we will derive
Ž .the probability function M s,u directly from the

characteristic function of the signal.

To reconstruct a signal in signal processing or a
wave function in quantum mechanics by looking at
its probability projections on a family of rotated axis,
is similar to the computerized axial tomography
Ž .CAT method. The basic difference is that in CAT

Ž .scans one deals with a pair x, y of commuting
position variables and here one deals with a plane
defined by a pair of non-commuting variables. For
this reason we call the present approach non-com-

Ž .mutatiÕe tomography NCT .
The paper is organized as follows. In Section 2

Ž .we rederive the NCT or Radon–Wigner transform
from the characteristic function and show its positiv-
ity and normalization properties. We also establish
the invertibility of the transformation, which shows
that it contains a complete description of the signal.
Because the NCT transform involves the square of
the absolute value of a linear functional of the signal,
it is actually easier to compute than bilinear trans-
forms like WV.

In Section 3 we work out the analytical form of
the NCT transform for some typical signals and

Ž .display the M s,u in some examples. The particular
importance of the robust probability interpretation of
this transform is its application to detect the presence
of signals in noise for small signal to noise ratios
Ž .SNR . An illustrative example is worked out at the
end of Section 3. Here the essential observation is
that, for small SNR, the signal may be difficult to
detect along t or v, however, it is probable that

Ž .there are other directions on the t,v plane along
which detection might be easier. It is the consistent
occurrence of many such directions that supplies the
detection signature.

Finally in Section 4 we point out that the NCT
approach may also be used for other pairs of non-
commuting variables of importance in signal pro-
cessing. As an example we work out the relevant
formulas for the scale-frequency pair.

2. Non-commutative time-frequency tomography

Because the Fourier transform of a characteristic
function is a probability density, we compute the
marginal distribution for the variable ssm tqnv

using the characteristic function method. Frequency
and time are operators acting in the Hilbert space of
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analytic signals and, in the time-representation, the
frequency operator is vsyiErE t . The characteris-

Ž .tic function C k is

i k m tqnvŽ .² :C k s eŽ .

s f ) t e i kŽ m tyinE rE t . f t dt , 6Ž . Ž . Ž .H
Ž .where f t is a normalized signal

2
f t dts1Ž .H

The Fourier transform of the characteristic function
is a probability density

1
yi k sM s,m ,n s C k e dk . 7Ž . Ž . Ž .H

2 p

After some algebra, one obtains the marginal distri-
Ž .bution 7 in terms of the analytical signal

2
21 im t its

M s,m ,n s exp y f t dt ,Ž . Ž .H
< <2 p n 2 n n

8Ž .

with normalization

M s,m ,n dss1 . 9Ž . Ž .H
For the case ms1, ns0, it gives the distribution of
the analytic signal in the time domain

< < 2M t ,1,0 s f t , 10Ž . Ž . Ž .
and for the case ms0, ns1, the distribution of the
analytic signal in the frequency domain

< < 2M v ,0,1 s f v , 11Ž . Ž . Ž .
Ž .The family of marginal distributions M s,m,n

contains complete information on the analytical sig-
nal. This may be shown directly. However it is more
interesting to point out that there is an invertible

Ž .transformation connecting M s,m ,n to the
Wigner–Ville quasidistribution, namely

M s,m ,n s exp yik sym tynv W t ,vŽ . Ž . Ž .H

=
dk dv dt

, 12Ž .22pŽ .

and

1
W t ,v s M s, m , nŽ . Ž .H

2p

=exp yi m tqnvys dm dn ds,Ž .
13Ž .

Therefore, because the WV quasidistribution has
Ž .complete information, in the sense of Eq. 2 , so has

Ž .M s,m,n .

3. Examples

Ž .We compute the NCT transform M s,m,n for
some analytic signals:

Ž .i A complex Gaussian signal
1r4a a b

2 2f t s exp y t q i t q i v t .Ž . 0ž /p 2 2

14Ž .
It has the properties

² : ² :t s0, v sv , 15Ž .0

1
22 2² : ² :s s t y t s ,t 2a

a 2 qb 2
22 2² : ² :s s v y v s ,v 2a

y1² : ² : ² :2 tvqv t y t v b
rs s .

2 2s s (a qbv t

16Ž .
This signal minimizes the Robertson–Schrodinger¨
uncertainty relation

1 1
2 2s s G . 17Ž .v t 24 1yr

In quantum mechanics, it corresponds to a correlated
w xcoherent state 13,14 .

The NCT transform is
21 sysŽ .

M s, m , n s exp y , 18Ž . Ž .22 2 s(2 ps ss

with the parameters

1 22s s n ay ib y im , ssv n , 19Ž . Ž .s 02a
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Ž .For the case of mscos urT , nssin urV , Eq. 19
shows how the initial Gaussian evolves along the u

axis, changing its maximum and width

21 sin u cos u
2s s ay ib y i ,Ž .s 2a V T

sin u
ssv . 20Ž .0

V

Thus, we have squeezing in the quadrature compo-
nents and their correlation. In the case bs0, one

w x w xhas a purely squeezed state 15 16 , which mini-
mizes the Heisenberg uncertainty relation

1
2 2s s G . 21Ž .v t 4

Ž .ii A normalized superposition of two Gaussian
signals

f t sN A f t qA f t , 22� 4Ž . Ž . Ž . Ž .s 1 1 2 2

Ž .where f t isi

2f t sN exp ya t qb t , is1,2 , 23Ž . Ž .i i i i

and

21r4
) )a qa 1 b qbŽ .i i i i

N s exp y . 24Ž .i
)p 8 a qai i

The superposition coefficients being complex num-
bers, the normalization constant N readss

< < 2 < < 2N s A q As 1 2ž
y1r2

) )q2 Re A A f t f t dt . 25Ž . Ž . Ž .H1 2 1 2 /
Computing the marginal distribution M s, m , n byŽ .

Ž .Eq. 8 we arrive at a combination of three Gaussian
terms

2 < < 2M s, m , n sN A M s, m , nŽ . Ž .�s 1 1

< < 2q A M s, m , nŽ .2 2

)q2 Re A A M s, m , n , 26Ž . Ž .41 2 12

where we have the contribution of two real Gaussian
terms

2
1 sysŽ .i

M s,m ,n s exp y ,Ž .i 22 2s(2ps ii

is1,2, 27Ž .
and the superposition of two complex Gaussians

2
n sysŽ .12 12

M s,m ,n s exp y .Ž .12 22 2s(2ps 1212

28Ž .

The parameters of the real Gaussians are the disper-
sions

2im
n a yi 22s s2 , 29Ž .i

)a qai i

and means

m
)Im b a qRe bŽ .i i iž /2ns sn . 30Ž .i Re ai

The parameters of the complex Gaussian are

im im
)a y a q1 2ž / ž /2n 2n2 2s s2n , 31Ž .12
)a qa1 2

and

in im im
) )s s b a y yb a q .12 2 1 1 2

) ž / ž /a qa 2n 2n1 2

32Ž .

The complex amplitude n of the complex Gaussian12

contribution being of the form

s12
n s12 ' < <2p n

=

2 ) 2 21 b b s1 2 12
exp q q .2im im4 2s12� 0)a y a q1 22n 2n

33Ž .
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Ž .iii Finite-time signals Here we consider signals

f t sN eya i t
2qb i t , t - t- t , 34Ž . Ž .i i 2 i 1 i

which vanish for all other times and compute the
NCT for one signal and for the superposition of two
such signals. The parameters a and b are complexi i

numbers. The normalization constant is

2
)b qbŽ .i i

)N s a qa exp y(i i i
)4 a qaŽ .i i

=

)'p b qbi i
)erfc a qa t y( i i 2 i

)ž /2 2 a qaŽ .i i

y1r2
)b qbi i

)yerfc a qa t y .( i i 1 i
)ž /2 a qaŽ .i i

35Ž .

where erfc is the function

`2 2yxerfc y s e dx . 36Ž . Ž .H'p y

Ž .Using Eq. 8 , we arrive at the following marginal
distribution

M s,m ,nŽ .i

2N im n b y isi i
s erfc a y t y( i 2 i< < ž /8 n 2n 2n a y imi

2
im n b y isi

yerfc a y t y .( i 1 iž /2n 2n a y imi

37Ž .

In the limit t ™y`, t ™`, the marginal distribu-1 i 2 i
Ž .tions 37 goes to the Gaussian distribution given by

Ž .27 . In the case a s0, b s iv , the distributioni i i
Ž .37 describes a sinusoidal signal of finite duration.
The normalization constant takes the limit value

y1r2N ´ t y t . 38Ž . Ž .i 2 i 1 i

For a superposition of two finite-time signals

f t sN A f t qA f t ,� 4Ž . Ž . Ž .s 1 1 2 2

Ž . Ž . Ž .with the signals f t and f t as in 34 . The1 2
Ž .normalization constant is given by Eq. 25 with

overlap integral

tb
)f t f t dtŽ . Ž .H 1 2

ta

2
)'p b qbŽ .i i

sNN NN exp1 2
)) 4 a qaŽ .2 a qa( i i1 2

=

)b qb1 2
)erfc a qa t y( 1 2 a

)½ ž /2 a qaŽ .1 2

)b qb1 2
)yerfc a qa t y . 39Ž .( 1 2 b

) 5ž /2 a qaŽ .1 2

The marginal distribution for the superposition
Ž .signal has the same form as Eq. 26 but with the

changed normalization constant, the distributions
Ž .M s,m ,n and M s,m ,n given by Eq. 37 , andŽ . Ž .1 2

an interference term M s,m ,nŽ .12

M s,m ,nŽ .12

N N im n b y is1 2 1
s erfc a y t y( 1 21½< < ž /8 n 2n 2n a y im1

im n b y is1
yerfc a y t y( 1 11 5ž /2n 2n a y im1

im n b y is2
m erfc a y t y( 2 22½ ž /2n 2n a y im2

)

im n b y is2
yerfc a y t y .( 2 12 5ž /2n 2n a y im2

40Ž .

The case a s0 corresponds to the combination of a2

finite time chirp and a finite time sinusoidal signal
shown in one of the figures below.

Ž .iv Graphical illustrations
Use of the NCT transform for signal analysis will

require some familiarity with the typical signatures
of different types of signals. The analytical expres-
sions derived above contain very general informa-
tion, however, a graphical representation of some
particular cases might be helpful. Therefore we have
plotted M s,m ,n for some signals. In all cases weŽ .
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Ž .Fig. 1. NCT transform for the signal in Eq. 41 .

Ž .use m and n as in Eq. 5 with Ts1 and Vs10.
All signals are finite time signals and in each case
we display a three-dimensional and a contour plot.

a Fig. 1a,b. The signal is

eyi 20 t qe i10 t tg 0,1Ž .
f t s . 41Ž . Ž .½ 50 tf 0,1Ž .
Although the number of periods, during which is
signal is on, is relatively small, the two contributing
frequencies are clearly seen in the separating ridges.

a Fig. 2a,b. The signal is

1° ¶
yi 20 te tg 0,ž /4

1 3~ •0 tg ,f t s . 42Ž . Ž .ž /4 4
3

i10 te tg ,1¢ ßž /4

Ž .Fig. 2. NCT transform for the signal in Eq. 42 .

Once again the contributions separate as u grows,
but notice the intermediate interference region which
is a signature of the time-sequence of the frequencies
occurrence and of their relative phase.

Ž .Fig. 3. NCT transform for the signal in Eq. 43 .
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Ž .Fig. 3. continued .

a Fig. 3a,b. The signal is

yi 20 tq10 t 2 i10 tŽ .e qe tg 0,1Ž .
f t s .Ž . ½ 50 tf 0,1Ž .

43Ž .

Contrasts the signature shapes of a chirp contribution
and a regular sinusoidal pulse.

Ž .Notice that all M s,u values have a probability
interpretation. Therefore all peaks or oscillations have
a direct physical meaning and, as opposed to the
time-frequency quasidistributions, we need not worry
about spurious effects. This is particularly important
for the detection of signals in noise, as we will see in
the next section.

Ž . Ž . Ž . Ž .Fig. 4. a , b Time plot and spectral density for a superposition of noise with a sinusoidal signal of short duration. c , d NCT transform
Ž . Ž .for the signal in a , b .
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4. Detection of noisy signals by NCT

Ž .In Fig. 4a,b we have plotted a time signal f t
2and its spectral density f v . It is really veryŽ .

hard to decide, from these plots, where this signal
might have originated from. Now we plot the NCT

Ž . Ž .transform Fig. 4c and its contour plot Fig. 4d
with the normalization Ts1 and Vs1000. It still
looks a mess but, among all the peaks, one may
clearly see a sequence of small peaks connecting a
time around 0.5 to a frequency around 200.

In fact the signal was generated as a superposition
of a normally distributed random amplitude and ran-
dom phase noise with a sinusoidal signal of the same
average amplitude but operating only during the time
0.45–0.55. This means that, during the observation
time, the signal to noise power ratio is 1r10. The
signature that the signal leaves on the NCT trans-
form is a manifestation of the fact that, despite its
low SNR, there are a certain number of directions in

Ž .the t,v plane along which detection happens to be
more favorable. The reader may convince himself of
the soundness of this interpretation by repeating the
experiment with different noise samples and noticing
that each time the coherent peaks appear at different
locations, but the overall geometry of the ridge is the
same.

Of course, to rely on a ridge of small peaks for
detection purposes only makes sense because the

Ž .rigorous probability interpretation of M s,u renders
the method immune to spurious effects.

In this case, the detection signature being a ridge
of peaks connecting a time region to a frequency
region, the interpretation is clear. In other cases
typical signatures would be different, as may be
expected from the examples worked out in the pre-
ceding section. Efficient detection of noisy signals
would benefit from a detailed library of signal signa-
tures, which remains to be done.

5. NCT for other non-commuting pairs. The
time-scale and frequency–scale cases

The method may also be applied to other pairs of
non-commuting variables for which, as in the time-

frequency case, there cannot be any joint probability
density. Consider the pair time-scale, where scale is
the operator

1 i
Ds tvqv t sv tq . 44Ž . Ž .

2 2

Ž .In the plane t, D we consider the linear combina-
tion

cosu
s sm tqn Ds tqn D . 45Ž .1 T

The relevant characteristic function is

Ž1. i k m tqn D ) i kŽ m tqn D.Ž .² :C k s e s f t e f t dtŽ . Ž . Ž .Hmn

m kn
) ykn r2s f e t exp i2 sinhŽ .H ž /n 2

=f ekn r2 t dt , 46Ž . Ž .

and the NCT transform is, as before, the Fourier
Ž1.Ž .transform of C kmn

1
Ž1. Ž1. yi k s1M s ,m ,n s C k e dk ,Ž . Ž .H1 mn2 p

leading to

M Ž1. s ,m ,nŽ .1

1 dt
s f tŽ .H '2 p n tt)0

=

2
m s1

exp i ty log tž /n n

1 dt
q f tŽ .H

2 p n (t-0 t

=

2
m s1

exp i ty log t . 47Ž .ž /n n
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Ž .For the pair frequency-scale, v, D , we obtain
similarly

cosu
s smvqn Ds vqn D , 48Ž .2

V

M Ž2. s ,m ,nŽ .2

1 dv
s f vŽ .H '2 p n vv)0

=

2
m s2

exp yi vy log vž /n n

1 dv
q f vŽ .H

2 p n (v-0 v

=

2
m s2

exp yi vy log v , 49Ž .ž /n n

Ž . Ž .f v being the Fourier transform of the signal f t .

6. Conclusions

In this paper the NCT transform was derived from
the characteristic function corresponding to the linear
combination m tqnv of time and frequency vari-
ables. Instead of a linear combination, one might
instead project on a non-linear function of t and v,
to enhance special features of the signal. The func-
tion should however preserve the invertibility of the
new transform to insure that no information is lost.
This, the exploration of the transform associated to
other pairs of noncommuting variables, as exempli-
fied in Section 5, and an extensive identification of
the NCT signatures of time-frequency correlated sig-
nals are directions for further exploration.

At this point, however, the main lesson to retain
is the rigorous probability interpretation of the NCT
Ž .or Radon–Wigner transform and the fact that it
contains complete information on the signal. As
shown in the preceding sections, because it is ob-
tained from a linear functional, this transform is even

easier to compute than bilinear transforms like
Wigner–Ville’s. The probability nature of the trans-
form implies that none of its features is physically
spurious as in the time-frequency quasidistributions.
This is very important for the detection of signals on
noise, because the relevant information may be con-
tained in subtle time-frequency correlations. The in-
terpretation of neurophysiological signals is a clear
domain of useful application.

The overall conclusion is that this transform, al-
ready used occasionally in the past, seems to have
the potential to become a standard tool for signal
analysis.
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