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Quantum control and the Strocchi map
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Identifying the real and imaginary parts of wave functions with coordinates and momenta, quantum evolu-
tion may be mapped onto a classical Hamiltonian system. In addition to the symplectic form, quantum me-
chanics also has a positive-definite real inner product that provides a geometrical interpretation of the mea-
surement process. Together they endow the quantum Hilbert space with the structure of a Ka¨ller manifold.
Quantum control is discussed in this setting. Quantum time evolution corresponds to smooth Hamiltonian
dynamics and measurements to jumps in the phase space. This adds additional power to quantum control,
nonunitarily controllable systems becoming controllable by ‘‘measurement plus evolution.’’ A picture of quan-
tum evolution as the Hamiltonian dynamics in a classical-like phase space is the appropriate setting to carry
over techniques from classical to quantum control. This is illustrated by a discussion on optimal control and
sliding mode techniques.
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I. INTRODUCTION

The mathematical structures of classical and quantum
chanics are usually regarded as essentially different. H
ever, many years ago Strocchi@1#, by identifying the real and
imaginary parts of the wave function with coordinates a
momenta, has shown that quantum evolution may be map
onto a classical Hamiltonian system. In particular, this s
ting suits nicely a geometrical interpretation of quantum m
chanics. This formulation of quantum mechanics, first p
posed by Strocchi@1#, has since been rediscovered a
extended by many authors@2–6#. Some applications of the
Strocchi map to the evolution of finite-dimensional quantu
systems were considered in Ref.@7# and structures relevan
to the relation of classical to quantum mechanics were s
ied in Ref. @8#. A particularly interesting extension to th
original ideas of the Strocchi map was the realization that
addition to the symplectic form, characteristic of Ham
tonian evolution, quantum mechanics also has a posit
definite real inner product. Together they endow the quan
Hilbert space with the structure of a Ka¨ller manifold @3,6#.
We will discuss this more general framework of the Stroc
map. However, for simplicity and whenever possible, we w
adhere to the original intuitive coordinate formulation
Strocchi.

The aim of this work is to discuss quantum control in t
geometrical setting provided by the Strocchi map. Quant
time evolution will correspond to smooth Hamiltonian d
namics in a classical-like phase space and measuremen
jumps in the phase space. This is very different from
situation in classical feedback control, where the meas
ments needed for the feedback action are not suppose
change the state of the system or to change it only very li
However, in some cases, rather than being a nuisance
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state disturbance introduced by quantum measurement
additional power to quantum feedback control and, in p
ticular, it changes the question of controllability. Nonun
tarily controllable systems may become controllable
‘‘measurement plus evolution.’’

The paper is organized as follows: In Sec. II, a review
made up of the properties of the Strocchi map as well
some extensions needed to describe quantum evolution
control in both the von Neumann and positive-operat
valued measure approaches. In Sec. III, a new quantum
trol method is proposed which combines free quantum e
lution and quantum measurement to reach a desira
quantum state. Finally, in Sec. IV, quantum analogs of cl
sical nonlinear and optimal control methods are shortly d
cussed.

II. GEOMETRICAL FORMULATION OF QUANTUM
MECHANICS: THE STROCCHI MAP

Consider a basis$uk&% in a separable complex Hilber
spaceH* . A general quantum stateuc& is

uc&5(
k

ckuk&. ~1!

Define

ck5
1

A2
~qk1 ipk!, ~2!

where$qk ,pk% is a numerable set of real phase-space co
dinates. Then the scalar product in the complex Hilbert sp
H* ,
©2003 The American Physical Society04-1
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^c8uc&5
1

2 (
k

~qk8qk1pk8pk!1 i ~qk8pk2pk8qk!

5
1

2
$G~c8,c!1 iV~c8,c!%, ~3!

decomposes into the sum of a positive real inner produc

G~c8,c!5
1

2 (
k

~qk8qk1pk8pk!, ~4!

and a symplectic form

V~c8,c!5
1

2 (
k

~qk8pk2pk8qk!. ~5!

ConsideringH* 5(H,J) as a real Hilbert spaceH with a
complex structureJ, the triple (J,G,V) equipsH with the
structure of a Ka¨hler space because

G~c8,c!5V~c8,Jc!. ~6!

The Schro¨dinger equationi (]/]t)uc&5Huc& becomes the
set of Hamilton’s equations

d

dt
qk5

]

]pk
H,

d

dt
pk52

]

]qk
H ~7!

associated with the symplectic formV(c8,c) and the ‘‘clas-
sical’’ Hamiltonian

H5
1

2 (
k, j

$~qkqj1pkpj !ReHk j1~pkqj2qkpj !ImHk j%

~8!

with Hk j5^kuHu j &.
One sees that the time evolution of quantum mechanic

equivalent to the classical dynamics of a numerable se
coupled oscillators. What is unique to quantum mechanic
the special role played by the symmetric formG(c8,c).

Let S be the Hilbert sphere, that is, the space of norm
ized (ici51) functions in the Hilbert spaceH. G(c8,c)
defines a metric inS. Consider now a measurement of a
observableA that, for simplicity, we assume to have a~pos-
sibly degenerate! discrete spectrum. Leta be a~degenerate!
eigenvalue ofA andPa be the projector on the subspaceVa
of S associated to this eigenvalue. After the measuremen
A is performed and the value is found to bea , the quantum
state changes fromcPS to ca5Pac/iPaciPS and the
probability to find this value isiPaci2. The metricG(c8,c)
provides a nice geometrical interpretation of the measu
ment process in quantum mechanics.

Given cPS andfPVa,S, it is easy to see that
05340
is
of
is

l-

of

e-

~c2f,c2f! ~9!

is minimal when f5ca . Because (c2f,c2f)5G(c
2f,c2f), one concludes that the measurement projectc
on the element ofVa that is closest toc in theG metric. The
probability for this projection is

pa5iPaci25F12
1

2
GS c2

Pac

iPaci ,c2
Pac

iPaci D G2

.

~10!

Therefore, whereas the symplectic formV determines time
evolution, theG metric controls the measurement process
is the special role played by the metric that, in this fram
work, sets apart quantum from classical mechanics.

In the numerable basis$uk&% of finite or infinite cardinal-
ity x, each pure quantum state is represented by a p
(qW ,pW ) in a ‘‘phase space’’ of dimension 2x. Similarly, a
mixed state will be described by a density on the same sp
The density matrix for a mixed state of the formr(t)
5(nrnucn(t)&^cn(t)u((nrn51) becomes, using the nota
tions in Eq.~2!,

r~ t !5E dqW dpW r~qW ,pW !(
k,k8

~qk~ t !

1 ipk~ t !!~qk8~ t !2 ipk8~ t !!uk&^k8u. ~11!

Using the equations of motion, Eq.~7!, and integration by
parts, one obtains the following classical-like equation
the phase-space density:

d

dt
r~qW ,pW !52

]r

]qW
•

]H

]pW
1

]r

]pW
•

]H

]qW
52$r,H%. ~12!

In the Strocchi map framework, the~unobserved! dynam-
ics of quantum states is a continuous symplectic evolution
a phase space. On the other hand, measurement of a st
represented by jumps in phase space. Because the basis$uk&%
is arbitrary, we may suppose that this is a basis of eigenst
of the setK of observables which is being measured. L
the state before the measurement be (qW ,pW ). When a meas-
urement is performed and the results registered to bek,
the state jumps from (qW ,pW ) to (qW 5(qk /Aq21p2)ek

W , pW

5pk /Aq21p2ek8
W ), whereek

W and ek8W are unit vectors along
the k coordinate and thek momentum.

In feedback control, the results of the measurement
used to correct the driving forces and different correctio
will be associated with different results of the measureme
Therefore, the kind of measurement of interest in quant
control is a selective one, that is, one in which the result
the measurement is registered. However, in quantum
chanics, even if the results of the measurement are not
istered, the state of the system~or our information about it! is
changed anyway. For such nonselective measurements
4-2
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obtains a mixed state. If, for example the initial state is
normalized pure state, corresponding to the phase-space
tor (qW ,pW ), after the measurement the state corresponds
phase-space density

r~mW ,nW !5(
k

~qk
21pk

2!dS mW 2
qk

Aq21p2
ek
W D

3dS nW 2
pk

Aq21p2
ek8W D . ~13!

The above considerations refer to complete quantu
mechanical projections, that is to~selective or nonselective!
outputs of quantum-mechanical measurements. A descrip
of the behavior of a quantum system under continuous
servation also exists. It uses generalized quantum meas
ments implemented as positive operator-valued measu
Caves and Milburn@9# assume that any measurement take
certain amount of time and that, in the infinitesimal tim
interval dt, the measurement of the observableL corre-
sponds to the operation

r→PLrPL ~14!

with

PL~a!5S p

2sdtD
21/4

e2sdt(L2a)2
~15!

and *daPL
† (a)PL(a)51. Applying PL(a) to any state,

one obtains a superposition of eigenstates ofL with eigen-
vectors centered arounda ands defines the resolution~or the
strength! of the measurement. Notice, however, thatPL(a)
is not a projection. It is supposed@9# to represent a genera
ized selective measurement. For a nonselective meas
ment, that is, one where the results are not recorded,

r→E daPL~a!rPL~a!. ~16!

From Eqs.~15! and ~16! and the unconditional evolution
dr/dt52 i @H,r#, the following nonselective continuous ob
servation equation for the density matrix is obtained:

dr

dt
52 i @H,r#2

s

2
†L,@L,r#‡. ~17!

This equation is physically appealing, in the sense that,
example, the last double commutator term displays a me
nism for the damping of nondiagonal terms in the dens
matrix. Note however that thePL(a) operations are
quantum-mechanical projections only in the limit of infini
strength or infinite time.

Because the choice of basis is arbitrary, we may, with
loss of generality, choose a basis of eigenstates of the m
sured observableL. Then, one has the following equatio
for the matrix elements of the density matrix:
05340
a
ec-
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d

dt
rkk852 i ^ku@H,r#uk8&2

s

2
~lk2lk8!

2rkk8 ~18!

leading to the damping of nondiagonal terms,lk and lk8
being the eigenvalues ofL in the statesuk& and uk8&.

From the Strocchi map ‘‘phase-space’’ density point
view, Eq. ~18! means that if the initial state is a pure sta

r0(mW ,nW )5d(mW 2qW )d(nW 2pW ), ~in addition to the Hamiltonian
evolution! continuous observation splits the density into se
eral components that, whent→`, converge to a density a
in Eq. ~13!. Independent of the conceptual interest of gen
alized measurements and continuous observation, the im
tant point to retain is that the operation of measurem
modifies the Hamiltonian evolution. Hence, it might play f
quantum control a role similar to the one that is played
dissipation in nonlinear classical control techniques.

III. CONTROL BY MEASUREMENT PLUS EVOLUTION

As seen before, in the Strocchi map phase space, un
turbed time evolution is a smooth Hamiltonian dynamics
phase space, whereas measurements correspond to jum
the phase space. This last aspect is very different from
situation in classical feedback control, where the measu
ments needed for the feedback action are not suppose
change the state of the system or to change it only very lit
However, in some cases, rather than being a nuisance
state disturbance introduced by quantum measurement
additional power to quantum feedback control. In particu
it changes the question of controllability.

For quantum systems with Hamiltonian,

H~ t !5H01(
j 51

r

uj~ t !H j . ~19!

Huang, Tarn, and Clark@10# obtained a general result o
controllability involving the Lie algebras generated by t
free and control Hamiltonians. A bounded quantum syst
with finite energy has a finite numberN of allowed states.
For this case, a necessary and sufficient condition for pu
state controllability is that the Lie algebra generated
$H0,H1 , . . . ,Hr% contains su(N) or sp(N/2) ~if N is even!
@11–13# because these subgroups act transitively on
sphereS2N21 @14#.

When the Strocchi map is used to describe quantum e
lution of theN-level system, the phase space has dimens
2N with coordinates$qk ,pk%. The set of transformations tha
need to be available to have controllability is theU(N) sub-
group ofSO(2N) corresponding to the real linear canonic
transformations, that also preserve the formG(c8,c) @Eq.
~4!#. It containsN(N21)/2 one-parameter subgroups of th
type
4-3
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qi85qicosu1qjsinu,

qj852qisinu1qjcosu,

pi85picosu1pjsinu, ~20!

pj852pisinu1pjcosu,

N(N21)/2 of type

qi85qicosu2pjsinu,

qj852pisinu1qjcosu,

pi85picosu1qjsinu, ~21!

pj85qisinu1pjcosu,

andN of type

qi85qicosu2pisinu,

pi85qisinu1picosu. ~22!

Now, suppose thatA5$H0,H1 , . . . ,Hr%LA is a proper
subalgebra of u(N). Then, each orbit of the subgrou
G(A),U(N) might not coverSC

N21 . SC
N21 would then be a

fiber space with the orbits ofG(A) as fibers and bas
U(N)/G(A). A goal statec f can only be reached fromc0 if
c0 and c f belong to the same fiber. If the system is n
controllable purely by the action of the unitary evolutio
*exp(itH(t))dt it may, nevertheless, be controllable by t
joint action ofmeasurement plus evolutionin the following
sense.

Theorem. Given any goal statec f , there is a family of
observablesM (c f) such that measurement of one of the
observables on anyc0 plus unitary evolution leads toc f if

G(A) is eitherO(N) or Sp(1
2 N).

Proof. If G(A)5O(N) or Sp(1
2 N), we may choose an

orthonormal basis$f i% for SN21 in the orbitG(A)c f . Con-
struct an observableM5( iai Pf i

, Pf i
being the projector on

f i . Measuring this observable on any statec0 and recording
the measured valueak, the state becomesfk and then, by
unitary evolution,c f may be reached.

Remarks. Some remarks are in order.
~i! Because of both the arbitrary nature of the eigenval

ai and of the orthonormal basis, there is a large family
observables appropriate for this type of control.

~ii ! In the result above, the statec f is fixed, butc0 is
arbitrary. If bothc0 andc f are fixed, a much simpler set o
controlling interactionsH j may be sufficient.c0 being fixed,
one constructs theM observable byN21 vectors in the (N
21)-dimensional subspace, orthogonal toc0, plus a single
05340
t

s
f

vector in the orbitG(A)c f , nonorthogonal toc0. Then,
G(A) may be a much smaller subgroup than the ones in
theorem.

~iii ! In caseG(A)5Sp(N/2), the system is already pure
state controllable, but, even in this case, it might be m
efficient to use the measurement-plus-evolution scheme.

One sees that, if properly used, the state disturbing eff
of quantum measurement, rather than being a nuisance,
controlling power over quantum processes.

Examples. A few examples are given here.
~i! A simple example of noncontrollable three-level sy

tem has been discussed by Solomon and Schirmer@15#. Let

H5H01u~ t !H1 ~23!

with

H05mS 21 0 0

0 0 0

0 0 1
D , H15dS 0 1 0

1 0 1

0 1 0
D . ~24!

H0 and H1 generate the algebra of SO(3); therefore, the
system is not controllable by unitary evolution. The Strocc
map evolution equations are

d

dt S qW

pW
D 5S 0 A

2A 0D S qW

pW
D . ~25!

A being the matrix

S 2m u~ t !d 0

u~ t !d 0 u~ t !d

0 u~ t !d m
D .

Equation~25! splits into block form,

d

dt S q1 ip
→

q2 ip
→ D 5 i S 2A 0

0 AD S q1 ip
→

q2 ip
→ D , ~26!

exhibiting the SO(3) nature of the control. In terms of t
Hilbert space wave functions, Eq.~26! means thatc* cannot
be reached fromc. Three one-parameters subgroups of t
SO(3) control group, to be used later on, areh1(u),
4-4



S q8
W

p8
W D 5

¨

1

2
~cosu11! 0

1

2
~cosu21! 0

21

A2
sinu 0

0 cosu 0
21

A2
sinu 0

21

A2
sinu

1

2
~cosu21! 0

1

2
~cosu11! 0

21

A2
sinu 0

0
1

A2
sinu 0

1

2
~cosu11! 0

1

2
~cosu21!

1

A2
sinu 0

1

A2
sinu 0 cosu 0

©
S qW

pW
D ; ~27!
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0
1

A2
sinu 0

1

2
~cosu21! 0

1

2
~cosu11!

h2(u),

S q8
W

p8
W D 5

¨

1

2
~cosu11!

21

A2
sinu

1

2
~12cosu! 0 0 0

1

A2
sinu cosu

21

A2
sinu 0 0 0

1

2
~12cosu!

1

A2
sinu

1

2
~cosu11! 0 0 0

0 0 0
1

2
~cosu11!

21

A2
sinu

1

2
~12cosu!

0 0 0
1

A2
sinu cosu

21

A2
sinu

0 0 0
1

2
~12cosu!

1

A2
sinu

1

2
~cosu11!

©
S qW

pW
D ; ~28!
e

the
h3(u),

S q8
W

p8
W D 5S cosu 0 0 sinu 0 0

0 1 0 0 0 0

0 0 cosu 0 0 2sinu

2sinu 0 0 cosu 0 0

0 0 0 0 1 0

0 0 sinu 0 0 cosu

D S qW

pW
D .

~29!

Although not controllable by unitary evolution alone, th
system is controllable bymeasurement plus evolution. Con-
sider, for example,

c f5H qW 5~0,0,0!,pW 5S 1

A2
,0,

1

A2
D J
05340
as the goal state. By applyingh1(2p/2) and h2(p/2)h1
(2p/2) to this state, one obtains an orthogonal set

c15$qW 5~0,1,0!,pW 5~0,0,0!%,

c25H qW 5S 21

A2
,0,

1

A2
D ,pW 5~0,0,0!J , ~30!

c35H qW 5~0,0,0!,pW 5S 1

A2
,0,

1

A2
D J .

Denoting byPi the projectors on the statesc i , measurement
of an arbitrary state by any one of the observables in
family
4-5



,

a
t
c
fo

n

hi
op
n
a
h

an
n
e

b

ick

s

tio

with
re-
cks
ate.
trol-

ful
still

ld-
ics
ol to
We

nd
dis-

not
us
ry
hi

or

’

R. VILELA MENDES AND V. I. MAN’KO PHYSICAL REVIEW A 67, 053404 ~2003!
(
i

ai Pi ~31!

projects it on the fiber ofc f and then, by unitary evolution
c f may be reached.

~ii ! So far, control by measurement plus evolution h
been discussed for finite-dimensional spaces. However,
same technique may be used in infinite-dimensional spa
to reach a large number of states. This is illustrated
kicked motions in the torus. LetxW5„x1 ,x2P@2p,p)… be
coordinates in the two-torusT2 and the system Hamiltonia
H be

H52
D

2
1(

n
H 21

2
u1~ t !~xW +A+ i“1 i“+A+xW !1u2~ t !x1

1u3~ t !x2J d~ t2nt!. ~32!

The switching functionsui(t) take values 0 or61, and the
matrix A is chosen such thatM5exp(A) is a hyperbolic 2
32 matrix with integers entries and determinant one, t
being the condition that ensures unitarity of the Floquet
erator @18#. The system is a controlled version of the co
figurational quantum cat@16#, a system that describes
charged particle acted upon by electromagnetic pulses. W
u1(t)Þ0, the Floquet operator has continuous spectrum
quantum chaos, in the sense of positive quantum Lyapu
exponents@17,18#. The free and kicked components of th
Floquet operator are

U05expS i
D

2
t D ,

U15expF i

2
~xW +A+ i“1 i“+A+xW !G ,

U25exp~2 ix1!, ~33!

U35exp~2 ix2!.

HereU0 corresponds to free propagation,U1 to the action of
a linear vector field, andU2 ,U3 to scalar potentials. The
eigenstates of momentum form a numerable normalized
sis

ukW &5
1

A2p
eikW•xW, kW5~k1 ,k2!, kiPZ, ~34!

which is dense on the Hilbert space of the system. The k
U1 act on these states as follows:

U1ukW &5uM 21kW &. ~35!

By the action of kicks of typeU1 the momentum eigenstate
move along hyperbolas. The kicksU2 andU3 move between
different hyperbolas. In between the kicks, free propaga
just changes the phase of the states.
05340
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Given now an arbitrary statec , measuring its momentum
the state becomes projected on a momentum eigenstate
known eigenvalue, if the result of the measurement is
corded. By switching on the appropriate sequence of ki
Ui , it is then possible to reach any momentum eigenst
Therefore one sees that with measurement and three con
ling fields, one can, from an arbitraryc, reach any state in an
infinite-dimensional dense set.

IV. NONLINEAR AND OPTIMAL CONTROL

Classical control is a very mature field where many use
techniques and results have been found, many of them
without parallel in quantum control. The Strocchi map, yie
ing a picture of quantum evolution as Hamiltonian dynam
in a classical-like phase space, may be the appropriate to
carry over techniques from classical to quantum control.
will give two examples below.

A. Optimal control

Optimal control is an important issue both in classical a
quantum controls and, in quantum control, it has been
cussed using variational techniques@19–21#. However, in
classical control, Pontryagin maximum principle@22# pro-
vides a more general framework in the sense that it does
require differentiability and can handle piecewise continuo
and magnitude-limited control. We now show how to car
over this principle to quantum control using the Strocc
map.

In addition to the 2N phase-space variables (xk
5qk ;xk1N5pk) with dynamical laws

d

dt
xk5

d

dt
qk5

]

]pk
H5Xk,

d

dt
xk1N5

d

dt
pk52

]

]qk
H5Xk1N ~36!

obtained from Eq.~7!, we introduce a variablex0 with dy-
namical law

d

dt
x05X0~x,u,t ! ~37!

with

F5E
0

T

X0~x,u,t !dt ~38!

being the performance functional to be minimized. If, f
example, minimal controlling energy is desired,X0(x,u,t)
5uu(t)u2, etc.

Then, for each variable in the set

xW5~x0 ,q1 , . . . ,qN ,p1 , . . . ,pN!,

an adjoint variablef i is defined and a new ‘‘Hamiltonian’
H(x,f,u)
4-6



l,
n

w

in
e
il

ol

h
e
p
m
i

te
n
e

he
n-
ce.

nce
es.

t at
ave
ian
rva-
or
ical

re-
the

te,
one

iddle

tate
le
this

the
off.
dle

ons
ea-
en
the
ut

-
he
e

x-
ble

he
in
nk
ore
tain

QUANTUM CONTROL AND THE STROCCHI MAP PHYSICAL REVIEW A67, 053404 ~2003!
H~x,f,u!5(
i 50

2N

f iXi~x,u!. ~39!

For each specified initial @xk5qk5qk(0),xk1N5pk
5pk(0)# and final state @xk5qk5qk(T),xk1N5pk
5pk(T)#, the optimal control that, in timeT, minimizes the
functionalF is obtained by integration of

d

dt
xk5

]

]fk
H~x,f,u!,

d

dt
fk52

]

]xk
H~x,f,u!, ~40!

uW 5arg maxuW PVH~x,f,u!,

V being the domain of allowed controls.
In the variational formulation of optimal quantum contro

the technique that has been used is to minimize the fu
tional

J5^c~T!u~12P!uc~T!&1E
0

T

X0~c,u,t !dt

1E
0

T

Im^z~ t !u i ] t2Huc~ t !&,

P being the projector onto the target state. The first t
expressions in Eq.~40! correspond to the Schro¨dinger equa-
tion and to the equation for the Lagrange multiplierz(t),
whereas the third one corresponds to the equation obta
by variationduW of the control parameters. However, the s
~40! is more general in that it does not require differentiab
ity in u of J and allows the specification of arbitrary contr
domainsV.

B. Sliding mode techniques in quantum control

A very robust tool used in classical control is the tec
nique of variable structure control leading to sliding mod
@23#. The design of a variable structure control has two ste
First, a switching surface must be chosen so that the dyna
cal system restricted to the surface has the desired dynam
Second, a switched control must be found to drive the sys
to the switching surface and, upon interception, to maintai
there. For this step, a Lyapunov function approach is us
s
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the gradient of the Lyapunov function being negative in t
neighborhood of the switching surface. In this way, the ta
gent vectors to the state trajectory point towards the surfa
The system is attracted to the switching surface and, o
having intercepted it, remains there for all subsequent tim
Then, the state trajectory is said to be asliding mode.

From the very nature of the technique, one sees tha
least close to the switching surface, the dynamics must h
a dissipative component and therefore a purely Hamilton
control cannot be used. However, as seen in Sec. I, obse
tion introduces non-Hamiltonian effects that might play f
quantum dynamics the same role as dissipation in class
control.

Consider again the noncontrollable example of the p
ceding section and suppose that one wants to stabilize
middle energy level. Starting from an arbitrary initial sta
one measures the energy. If the result is zero, we are d
because it means that the state was projected on the m
level. Otherwise if the result is1m or 2m, one knows from
the controlling subgroups in Eqs.~27!–~29! that there is a
control, that changes the upper or the lower level into a s
with a 50% probability of being projected on the midd
energy state by an energy measurement. One performs
control plus measurement operation until the result of
measurement is zero. Afterwards, the control is switched
If there are no disturbances, the state remains in the mid
level. Otherwise, if there are some decoherent interacti
with the environment, the state should be periodically m
sured. If the disturbance is small or if the intervals betwe
measurements are small, there is a high probability that
system will be projected back on the middle level, witho
any need for further controlling operations.

V. CONCLUSIONS

In addition to a formulation of quantum control in a sym
plectic geometry setting, the main result of this work is t
proposal of a new protocol for quantum control, which w
have called ‘‘control by measurement plus evolution.’’ It e
tends the scope of quantum controllability and is applica
both to finite- and infinite-dimensional level systems.

Different aspects of quantum control are united in t
framework of the Strocchi map, allowing some insight
optimal control and nonlinear control techniques. We thi
that the potential of this picture is not exhausted and m
analogies with classical problems may be used to ob
progress in the quantum domain.
s.
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