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Quantum control and the Strocchi map
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Identifying the real and imaginary parts of wave functions with coordinates and momenta, quantum evolu-
tion may be mapped onto a classical Hamiltonian system. In addition to the symplectic form, quantum me-
chanics also has a positive-definite real inner product that provides a geometrical interpretation of the mea-
surement process. Together they endow the quantum Hilbert space with the structure lig anigaifold.
Quantum control is discussed in this setting. Quantum time evolution corresponds to smooth Hamiltonian
dynamics and measurements to jumps in the phase space. This adds additional power to quantum control,
nonunitarily controllable systems becoming controllable by “measurement plus evolution.” A picture of quan-
tum evolution as the Hamiltonian dynamics in a classical-like phase space is the appropriate setting to carry
over techniques from classical to quantum control. This is illustrated by a discussion on optimal control and
sliding mode techniques.
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[. INTRODUCTION state disturbance introduced by quantum measurement adds
additional power to quantum feedback control and, in par-
The mathematical structures of classical and quantum mdicular, it changes the question of controllability. Nonuni-
chanics are usually regarded as essentially different. Howtarily controllable systems may become controllable by
ever, many years ago Stroc¢hi, by identifying the real and “measurement plus evolution.”
imaginary parts of the wave function with coordinates and The paper is organized as follows: In Sec. Il, a review is
momenta, has shown that quantum evolution may be mappeBade up of the properties of the Strocchi map as well as
onto a classical Hamiltonian system. In particular, this setSOme extensions needed to describe quantum evolution and
ting suits nicely a geometrical interpretation of quantum me<ontrol in both the von Neumann and positive-operator-
chanics. This formulation of quantum mechanics, first pro-valued measure approaches. In Sec. lll, a new quantum con-
posed by Strocch{1], has since been rediscovered andtrol method is proposed which combines free quantum evo-
extended by many authof2—6]. Some applications of the Iution and quantum measurement to reach a desirable
Strocchi map to the evolution of finite-dimensional quantumduantum state. Finally, in Sec. IV, quantum analogs of clas-
Systems were considered in RET] and structures relevant sical nonlinear and Optlmal control methods are Shortly dis-
to the relation of classical to quantum mechanics were studcussed.
ied in Ref.[8]. A particularly interesting extension to the
original ideas of the Strocchi map was the realization that, in
addition to the symplectic form, characteristic of Hamil- Il. GEOMETRICAL FORMULATION OF QUANTUM
tonian evolution, quantum mechanics also has a positive- MECHANICS: THE STROCCHI MAP
definite real inner product. Together they endow the quantum consider a basig|k)} in a separable complex Hilbert
Hilbert space with the structure of a Ker manifold [3,6].  spacer(*. A general quantum statey) is
We will discuss this more general framework of the Strocchi
map. However, for simplicity and whenever possible, we will
adhere to the original intuitive coordinate formulation of
Strocchi. 9 | lﬁ): EK ¢k| k> (1)
The aim of this work is to discuss quantum control in the
geometrical setting provided by the Strocchi map. Quantum
time evolution will correspond to smooth Hamiltonian dy- Define
namics in a classical-like phase space and measurements to
jumps in the phase space. This is very different from the
situation in classical feedback control, where the measure- (e ipy) @)
ments needed for the feedback action are not supposed to lﬂk—\/z(% Pw)
change the state of the system or to change it only very little.
However, in some cases, rather than being a nuisance, the
where{qy,px} is @ numerable set of real phase-space coor-
dinates. Then the scalar product in the complex Hilbert space
*Corresponding author. Electronic address: vilela@cii.fe.ul.pt ~ H*,

1050-2947/2003/65)/0534048)/$20.00 67 053404-1 ©2003 The American Physical Society



R. VILELA MENDES AND V. I. MAN'KO PHYSICAL REVIEW A 67, 053404 (2003

’ 1 ’ ’ . ’ (¢_ ¢l¢_ ¢) (9)
(W'19)=5 22 (4Gt PP+ (GPy— Pl
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and a symplectic form Therefore, whereas the symplectic fofindetermines time

evolution, theG metric controls the measurement process. It
1 , , is the special role played by the metric that, in this frame-
Q' )= 5 Ek: (QiPk— Pi k) - (5 work, sets apart quantum from classical mechanics.
In the numerable basigk)} of finite or infinite cardinal-
Consideringi* = (,J) as a real Hilbert spack witha ity x, €ach pure quantum state is represented by a point
complex structurel, the triple ,G,Q) equipsH with the  (q,p) in a “phase space” of dimension 2 Similarly, a

structure of a Khler space because mixed state will be described by a density on the same space.
The density matrix for a mixed state of the forp{(t)
Gy ) =Q (', I). 6) =3 ol n() W) (Zhpn=1) becomes, using the nota-

tions in Eq.(2),
The Schrdinger equation(d/dt)|#)=H|) becomes the
set of Hamilton’s equations

p(t)=| dadpp(q,p) > (qu(t)
k,k’

d d
at % 5p, FipKD) (G (D =P (D) kN(K]. (1D)
d Using the equations of motion, E¢7), and integration by
—pe=— iH ) parts, one obtains the following classical-like equation for
dt JQk the phase-space density:
associated with the symplectic forth( ¢/, ¢) and the “clas-
sical” Hamiltonian d .. dp JH dp JH
ap(q,p)Z——e'—»Jr—e'—»:—{P,H}- (12
aq dp dp dq

1

=_ . . e L . .
=3 %’ {000t + Pupy) ReH + (P — iy ) IMH . In the Strocchi map framework, tanobservepdynam-

(8) ics of quantum states is a continuous symplectic evolution in
a phase space. On the other hand, measurement of a state is

with ij:<k|H|j>- represented by jumps in phase space. Because the{{asis

One sees that the time evolution of quantum mechanics ig arbitrary, we may suppose that this is a basis of eigenstates
equivalent to the classical dynamics of a numerable set dhf the setkC of observables which is being measured. Let
coupled oscillators. What is unique to quantum r’nechamcs fhe state before the measurement bepj. When a meas-
the special role played by the symmetric foG(y)",)). urement is performed and the results registered tokbe

Let S be the Hilbert sphere, that is, the space of normal- . > - - - -
ized (|¢]=1) functions in the Hilbert spacel. G(y',y) 1€ state jumps fromq,p) to (q=(a/Va"+p9eq p
defines a metric inS. Consider now a measurement of an =p,/+/q°+ pze&), whereéﬂ and e_,)’( are unit vectors along
observableA that, for simplicity, we assume to have@os- the k coordinate and th& momentum.
sibly degeneratediscrete spectrum. Let be a(degenerate In feedback control, the results of the measurement are
eigenvalue ofA and P, be the projector on the subspaég  used to correct the driving forces and different corrections
of S associated to this eigenvalue. After the measurement ofill be associated with different results of the measurement.
A is performed and the value is found to &e the quantum Therefore, the kind of measurement of interest in quantum
state changes fronye S to ,=P,i/| P, e S and the control is a selective one, that is, one in which the result of
probability to find this value i$P,i]%. The metricG(y’,¢)  the measurement is registered. However, in quantum me-
provides a nice geometrical interpretation of the measurechanics, even if the results of the measurement are not reg-
ment process in quantum mechanics. istered, the state of the systeéor our information about jtis

Given ye Sandgp e V,CS, it is easy to see that changed anyway. For such nonselective measurements, one
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obtains a mixed state. If, for example the initial state is a d _ s )
normalized pure state, corresponding to the phase-space vec-  g;Pk =~ i(kI[H,p]lk")— 7 M= Ne) e (18)
tor (q,p), after the measurement the state corresponds to a

phase-space density

leading to the damping of nondiagonal termsg, and \ .
Ok being the eigenvalues of in the stategk) and|k’).
\/sz k From the Strocchi map “phase-space” density point of
view, Eg. (18) means that if the initial state is a pure state
P S po(,v)=8(—q) 8(v—p), (in addition to the Hamiltonian
q 71 2 € 13 evolution continuous observation splits the density into sev-
eral components that, wheén-o, converge to a density as
The above considerations refer to complete quantumin Eg.(13). Independent of the conceptual interest of gener-
mechanical projections, that is teelective or nonselectiye alized measurements and continuous observation, the impor-
outputs of quantum-mechanical measurements. A descriptiolant point to retain is that the operation of measurement
of the behavior of a quantum system under continuous obmodifies the Hamiltonian evolution. Hence, it might play for
servation also exists. It uses generalized quantum measurguantum control a role similar to the one that is played by
ments implemented as positive operator-valued measuregissipation in nonlinear classical control techniques.
Caves and Milburi9] assume that any measurement takes a
certain amount of time and that, in the infinitesimal time

interval dt, the measurement of the observalde corre- IIl. CONTROL BY MEASUREMENT PLUS EVOLUTION
sponds to the operation

p(p,v)= E (G2+pR) 8| u

X6

As seen before, in the Strocchi map phase space, undis-
p—PApP, (14)  turbed time evolution is a smooth Hamiltonian dynamics in
phase space, whereas measurements correspond to jumps in
with the phase space. This last aspect is very different from the
situation in classical feedback control, where the measure-
—la ) ments needed for the feedback action are not supposed to
PA(a):(m) g™ sdA~a) (159  change the state of the system or to change it only very little.
However, in some cases, rather than being a nuisance, the
and fdaPR(a) P\(a)=1. Applying P,(a) to any state, State disturbance introduced by quantum measurement adds
one obtains a superposition of eigenstates\ofiith eigen-  additional power to quantum feedback control. In particular,
vectors centered aroundands defines the resolutiofor the it changes the question of controllability.
strength of the measurement. Notice, however, tRaf(a) For quantum systems with Hamiltonian,
is not a projection. It is suppos¢d] to represent a general-
ized selective measurement. For a nonselective measure-
ment, that is, one where the results are not recorded, ;

H(t)=H0+]Zl uj(OH; . (19
p—>f daP(a)pP(a). (16)

From Egs.(15 and(16) and the unconditional evolution Huang, Tarn, and Clark10] obtained a general result on
dp/dt=—i[H,p], the following nonselective continuous ob- controllability involving the Lie algebras generated by the

servation equation for the density matrix is obtained: free and control Hamiltonians. A bounded quantum system
with finite energy has a finite numbét of allowed states.

dp _ s For this case, a necessary and sufficient condition for pure-

a:_'[H,P]—E[AIAvP]]- 7 state controllability is that the Lie algebra generated by

{HoH1, ... H,} contains suf) or sp(N/2) (if N is even

This equation is physically appealing, in the sense that, fof11-13 because these subgroups act transitively on the
example, the last double commutator term displays a mechaphereS?N 1 [14].
nism for the damping of nondiagonal terms in the density When the Strocchi map is used to describe quantum evo-
matrix. Note however that theP,(«) operations are lution of theN-level system, the phase space has dimension
guantum-mechanical projections only in the limit of infinite 2N with coordinategq, ,py}. The set of transformations that
strength or infinite time. need to be available to have controllability is tHéN) sub-

Because the choice of basis is arbitrary, we may, withougroup of SO(2N) corresponding to the real linear canonical
loss of generality, choose a basis of eigenstates of the me&ansformations, that also preserve the fo@ty', ) [Eq.
sured observabld. Then, one has the following equation (4)]. It containsN(N—1)/2 one-parameter subgroups of the
for the matrix elements of the density matrix: type
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q/ =qjcosf+q;siné,

;= —q;sin#+q;cosé,

p; =p;cosd+ p;sin, (20)
p; = —p;sin 6+ p;cosé,
N(N—1)/2 of type
q; =q;cosfd—p;siné,
q; = —p;sin6+q;coso,
p; =picosf+q;sin g, (21
pj =q;sin 6+ p;cosé,
andN of type
q{ =g;cosf—p;siné,
p{ = q;sin 6+ p;cosé. (22

Now, suppose thatd={HoH,, ... H} A is a proper
subalgebra of U{). Then, each orbit of the subgroup
G(A)CU(N) might not coverSy *. SV~ ! would then be a
fiber space with the orbits 0G(A) as fibers and base
U(N)/G(.A). A goal statey;; can only be reached from, if
o and 5 belong to the same fiber. If the system is not
controllable purely by the action of the unitary evolution
Jexpi(7))dr it may, nevertheless, be controllable by the
joint action of measurement plus evolution the following
sense.

Theorem Given any goal stat@;, there is a family of

observableavi (#;) such that measurement of one of these

observables on any, plus unitary evolution leads tg; if
G(A) is eitherO(N) or SpGN).

Proof. If G(A)=0O(N) or Sp(;N), we may choose an
orthonormal basi$;} for SN~ in the orbitG(.A) ;. Con-
struct an observablel =X a; Pg. Py, being the projector on
¢; . Measuring this observable on any stateand recording
the measured value,, the state becomeg, and then, by

unitary evolution,i; may be reached.
Remarks Some remarks are in order.

(i) Because of both the arbitrary nature of the eigenvalues
a; and of the orthonormal basis, there is a large family of

observables appropriate for this type of control.

(ii) In the result above, the staig is fixed, butyg is
arbitrary. If both¢y and ¢ are fixed, a much simpler set of
controlling interactionsd; may be sufficienty, being fixed,
one constructs thd observable byN—1 vectors in the
—1)-dimensional subspace, orthogonalitg, plus a single
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vector in the orbitG(.A) ¢, nonorthogonal toy,. Then,
G(.A) may be a much smaller subgroup than the ones in the
theorem.

(iii ) In caseG(.A) =Sp(N/2), the system is already pure-
state controllable, but, even in this case, it might be more
efficient to use the measurement-plus-evolution scheme.

One sees that, if properly used, the state disturbing effects
of quantum measurement, rather than being a nuisance, add
controlling power over quantum processes.

ExamplesA few examples are given here.

(i) A simple example of noncontrollable three-level sys-
tem has been discussed by Solomon and Schifdfgr Let

with

(24)

Ho and H; generate the algebra of $8); therefore, the
system is not controllable by unitary evolution. The Strocchi
map evolution equations are

d(a)_( 0 A) q -
dt| p -A 0/\p
A being the matrix
- u(t)d 0
u(t)d 0 u(t)d
0 ut)yd  w
Equation(25) splits into block form,
d +i A 0 +i
q+ip T qrip
m . —I( 0 A) . s (26)
q-—1p q-—1p

exhibiting the SO(3) nature of the control. In terms of the
Hilbert space wave functions, E6) means thaty* cannot

be reached fromy. Three one-parameters subgroups of the
SO(3) control group, to be used later on, arés),
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1 1 -1
= 0 = - 0 —sj 0
2(cose+ 1) 2(c050 1) \/Esme
-1 -1
0 cos6 0 —siné 0 —=siné
V2 V2
1( 9-1) O 1( 0+1) 0 —sing 0
- =(cosf— =(cos —=sin -
q’ 2 2 V2 q
_|= -5 (27)
P’ 0 isina 0 E(cosé?Jr 1) 0 E(cos¢9— 1) P
V2 2 2
L 0 0 L 0 0 cosé 0
—=sin —=sin
V2 V2
0 L 0 ! 1 0 ! 1
Esme E(cose— ) E(cosa+ )
h,(9),
! 1) “Zsine fa1 0 0 0
E(cosa+ ) Esma 5( cosh)
i 0 cosé —1 0 0 0 0
—=sin —=sin
V2 V2
1(1 0) ! 6 1( 6+1) 0 0 0
- =(1-cos —=sinf = (cos -
a| |2 22 (q) 8
p’ 0 0 0 ! 1) “Zsing t(1 2
E(coséH- ) Esme f( —C0s06)
1 -1
0 0 0 —sinég cosé —siné
V2 V2
0 0 0 ! 1 L ! 1
5( —C0s06) Esmﬁ E(cosﬁ+ )
|
hs(6), as the goal state. By applying;(— 7/2) and hy(7/2)h;
0 0 0 ine 0 0 (—/2) to this state, one obtains an orthogonal set
cos sin
0 1 0 0 O 0 > >
. 0 o o 0 O ool la ¥1={9=(0,1,0,p=(0,0,0},
q co —sin q
(67)_ —sing 0 O cos® O 0 (5) 11
o 0 0 0 1 o0 Vo= a=| 5075|.p=(000), (30)
0 0 sing 0 0 cosd
(29 L1
Although not controllable by unitary evolution alone, the 3= { c]z(0,0,0),ﬁz(—,O,—) ]
system is controllable byneasurement plus evolutioGon- V2 2
sider, for example,
Denoting byP; the projectors on the statégs, measurement
_lAa_ S i i of an arbitrary state by any one of the observables in the
$1=109=(0,0,0,p \/5,0,\/5 famil
amily
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Given now an arbitrary stat# , measuring its momentum
> aP; (3D the state becomes projected on a momentum eigenstate with
' known eigenvalue, if the result of the measurement is re-
projects it on the fiber off; and then, by unitary evolution, Ccorded. By switching on the appropriate sequence of kicks
W may be reached. U;, it is then possible to _reach any momentum eigenstate.
(i) So far, control by measurement plus evolution has! herefore one sees that with measurement and three control-

been discussed for finite-dimensional spaces. However, tHi9 fields, one can, from an arbitragy, reach any state in an

same technique may be used in infinite-dimensional spacdgfinite-dimensional dense set.
to reach a large number of states. This is illustrated for

kicked motions in the torus. Let=(X,,X,e[ —r, 7)) be IV. NONLINEAR AND OPTIMAL CONTROL

coordinates in the two-torus” and the system Hamiltonian  Cjassical control is a very mature field where many useful
H be technigues and results have been found, many of them still
without parallel in quantum control. The Strocchi map, yield-
_—ul(t)(QOAOiV+iVvo)?)Jruz(t)xl ing a picture of quantum evolution as Hamiltonian dynamics
2 in a classical-like phase space, may be the appropriate tool to
carry over techniques from classical to quantum control. We

+u3(t)x2] S(t—n). (32) will give two examples below.

g A
2

+2

The switching functionss;(t) take values 0 or-=1, and the A. Optimal control

matrix A is chosen such tha¥l =exp(®) is a hyperbolic 2 Optimal control is an important issue both in classical and
X 2 matrix with integers entries and determinant one, thigguantum controls and, in quantum control, it has been dis-
being the condition that ensures unitarity of the Floquet opcussed using variational techniqug9—-21. However, in
erator[18]. The system is a controlled version of the con-classical control, Pontryagin maximum princigdl22] pro-
figurational quantum caf16], a system that describes a vides a more general framework in the sense that it does not
charged particle acted upon by electromagnetic pulses. Whegquire differentiability and can handle piecewise continuous
u,(t) #0, the Floquet operator has continuous spectrum anénd magnitude-limited control. We now show how to carry
quantum chaos, in the sense of positive quantum Lyapuno@ver this principle to quantum control using the Strocchi
exponent§17,18. The free and kicked components of the map.

Floquet operator are In addition to the A phase-space variablesx(
=0y Xk+n=Px) With dynamical laws
A
U0=exr<i§r), d d J
&Xk—a%—a—pkH—Xk,
i -
U1=exp{§(onoiV+iVvox) , d d 9
JUkENT g P a—qkﬂzka (36)
U2=eX[Z(—iX1), (33)
obtained from Eq(7), we introduce a variabl&, with dy-
Uz=exp(—ix,). namical law
HereU, corresponds to free propagatids, to the action of E _x ¢ 3
a linear vector field, andJ,,U; to scalar potentials. The thO_ oX,u,t) (37)
eigenstates of momentum form a numerable normalized ba-
sis with
. 1 .- . T d
Ky=—=€"% k=(kq,ky), kieZ, 34 F=j Xo(X,u,t)dt 38
| > \/E (kq,k2) i€/ (34) o ol ) (39
which is dense on the Hilbert space of the system. The kickbeing the performance functional to be minimized. If, for
U, act on these states as follows: example, minimal controlling energy is desired,(x,u,t)
=|u(t)|?, etc.
UqlK)=|M k). (35) Then, for each variable in the set
By the action of kicks of typ&J,; the momentum eigenstates >Z=(x0,q1, ceaNGPLy - PN

move along hyperbolas. The kickk, andU; move between
different hyperbolas. In between the kicks, free propagatioran adjoint variablep; is defined and a new “Hamiltonian”
just changes the phase of the states. H(X,¢,u)
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2N the gradient of the Lyapunov function being negative in the
H(X, ¢,u)= >, ¢Xi(x,u). (399  neighborhood of the switching surface. In this way, the tan-

=0 gent vectors to the state trajectory point towards the surface.
The system is attracted to the switching surface and, once
having intercepted it, remains there for all subsequent times.
Then, the state trajectory is said to bslaling mode

For each specified initial [X,=0gx=qx(0),Xk+N= Pk
=pk(0)] and final state [x=0dx=0dk(T),Xk+Nn= Pk

=px(T)], the optimal control that, in tim&, minimizes the From the very nature of the technique, one sees that at
functional F is obtained by integration of least close to the switching surface, the dynamics must have
a dissipative component and therefore a purely Hamiltonian
ix =iH(x é,u) control cannot be used. However, as seen in Sec. |, observa-
dt ™ agy e tion introduces non-Hamiltonian effects that might play for
quantum dynamics the same role as dissipation in classical
d 4 control.
ad’k__ (9_ka(X’¢’u)’ (40) Consider again the noncontrollable example of the pre-
ceding section and suppose that one wants to stabilize the
U=arg max. oH(x, ¢,u), middle energy level. Starting from an arbitrary initial state,
one measures the energy. If the result is zero, we are done
) being the domain of allowed controls. because it means that the state was projected on the middle

In the variational formulation of optimal quantum control, level. Otherwise if the result i$- w or — «, one knows from
the technique that has been used is to minimize the fundhe controlling subgroups in Eq§27)—(29) that there is a
tional control, that changes the upper or the lower level into a state
; with a 50% probability of being projected on the middle
_ _ energy state by an energy measurement. One performs this
I=(eMid H)|¢(T)>+j0 Xoltu,t)dt control plus measurement operation until the result of the
. measurement is zero. Afterwards, the control is switched off.
. If there are no disturbances, the state remains in the middle
* jo Im(¢(t)]ia—H[¢(t)), level. Otherwise, if there are some decoherent interactions
with the environment, the state should be periodically mea-
IT being the projector onto the target state. The first twosured. If the disturbance is small or if the intervals between
expressions in Eq40) correspond to the Schiinger equa- measurements are small, there is a high probability that the
tion and to the equation for the Lagrange multipligt),  system will be projected back on the middle level, without
whereas the third one corresponds to the equation obtainethy need for further controlling operations.

by variation 5u of the control parameters. However, the set

(40) is more general in that it does not require differentiabil- V. CONCLUSIONS
ity in u of J and allows the specification of arbitrary control . . .
domains). In addition to a formulation of quantum control in a sym-

plectic geometry setting, the main result of this work is the
proposal of a new protocol for quantum control, which we
have called “control by measurement plus evolution.” It ex-
A very robust tool used in classical control is the tech-tends the scope of quantum controllability and is applicable
nique of variable structure control leading to sliding modesboth to finite- and infinite-dimensional level systems.
[23]. The design of a variable structure control has two steps. Different aspects of quantum control are united in the
First, a switching surface must be chosen so that the dynamiramework of the Strocchi map, allowing some insight in
cal system restricted to the surface has the desired dynamiasptimal control and nonlinear control techniques. We think
Second, a switched control must be found to drive the systenthat the potential of this picture is not exhausted and more
to the switching surface and, upon interception, to maintain inalogies with classical problems may be used to obtain
there. For this step, a Lyapunov function approach is usedyrogress in the quantum domain.

B. Sliding mode techniques in quantum control
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