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The stochastic construction of solutions for nonlinear partial differential equations is
discussed. The technique provides new exact solutions and efficient numerical codes
for localized solutions and parallel computing. A brief review of known solutions and
some new results for the Poisson–Vlasov and Euler equations are included.
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1. Introduction: Stochastic solutions and their role

The solutions of linear elliptic and parabolic equations, both with Cauchy and Dirichlet

boundary conditions, have a probabilistic interpretation. These are classical results which

may be traced back to the work of Courant et al. [10] in the 1920s and became a standard

tool in potential theory [3,4,6]. For example, for the heat equation

›tuðt; xÞ ¼
1

2

›2

›x2
uðt; xÞ with uð0; xÞ ¼ f ðxÞ; ð1Þ

the solution may be written either as

uðt; xÞ ¼
1

2
ffiffiffiffi
p

p

ð
1ffiffi
t

p exp 2
ðx 2 yÞ2

2t

� �
f ðyÞdy ð2Þ

or as

uðt; xÞ ¼ Exf ðXtÞ; ð3Þ

Ex meaning the expectation value, starting from x, of the process

dXt ¼ dWt;

Wt being the Wiener process.

Equation (1) is a specification of the problem whereas (2) and (3) are solutions in the

sense that they both provide algorithmic means of construction of a function satisfying the
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specification. An important condition for (2) and (3) to be considered as solutions is the

fact that the algorithmic tools are independent of the particular solution, in the first case an

integration procedure and in the second the simulation of a solution-independent process.

This should be contrasted with stochastic processes constructed from a given particular

solution, as has been done for example for the Boltzman equation [19].

In contrast with the linear problems, for nonlinear partial differential equations,

explicit solutions in terms of elementary functions or integrals, are only known in very

particular cases. However, if a solution-independent stochastic process is found that

(for arbitrary initial conditions) generates the solution in the sense of Equation (3), a

stochastic solution is obtained. In this way, the set of equations for which exact solutions

are known would be considerably extended.

The exit measures provided by diffusion plus branching processes [12–16] as well as

the stochastic representations recently constructed for the Navier–Stokes

[5,21,28,29,34,35] and the Vlasov–Poisson equations [18,33] define solution-independent

processes for which the mean values of some functionals are solutions to these equations.

Therefore, they are exact stochastic solutions.

In the stochastic solutions, one deals with a process that starts from the point where the

solution is to be found, a functional being then computed along the whole sample path or

until it reaches a boundary. In addition to providing new exact results, the stochastic

solutions are also a promising tool for numerical implementation. There are several

reasons for why it is so. First, notice that whereas deterministic algorithms grow

exponentially with the dimension d of the space, roughly N d (L=N being the linear size of

the grid), stochastic simulations only grow with the dimension of the process, typically of

order d. In addition, because the stochastic representation processes always start from a

definite point in the domain and paths starting from different points are independent from

each other, these methods are quite efficient at computing localized solutions and are a

natural choice for parallel and distributed implementation. Stochastic algorithms may also

be used for domain decomposition purposes [1,2,31].

Because most stochastic solutions of nonlinear equations involve branching processes,

in the numerical evaluation of a stochastic solution, care should be taken of large deviation

phenomena. The fluctuations around the mean in a branching process are typically

non-Gaussian. Therefore, a simple calculation of the standard deviation or other lower

order momenta are not sufficient to check the reliability of the results. A large deviation

analysis is recommended for numerical calculations using branching processes, which

may be done by the empirical construction of the deviation function [30].

Stochastic solutions also provide an intuitive characterization of the physical

phenomena, relating nonlinear interactions to cascading processes. By the study of exit

times from a domain, they also provide access to quantities that cannot be obtained by

perturbative methods [17,32].

One way to construct stochastic solutions is based on a probabilistic interpretation of

the Picard series. The differential equation is written as an integral equation which is

rearranged in a such a way that the coefficients of the successive terms in the Picard

iteration obey a normalization condition. The Picard iteration is then interpreted as an

evolution and branching process, the stochastic solution being equivalent to importance

sampling of the normalized Picard series.

Section 2 contains a brief review of some known stochastic solutions for nonlinear

partial differential equations. This includes the McKean construction of a solution for the

Kolmogorov–Petrovskii–Piskunov (KPP) equation, the superprocesses solution of the
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diffusion equation with nonlinearities of the type ua (a [ ð0; 2�), the Navier–Stokes

equation and the Fourier-transformed Poisson–Vlasov equation.

Then, in Sections 3 and 4 some new results are presented for the Poisson–Vlasov

equation in configuration space and the Euler equation.

2. A review of stochastic solutions

In general, the stochastic solutions of nonlinear partial differential equations involve a

mixture of two processes, either diffusion and branching or an exponential process

and branching. The first contributions in this domain are very probably those of

McKean [24–26].

2.1 The KPP equation

The KPP equation [20] is

›u

›t
¼

1

2

›2u

›x2
þ u2 2 u: ð4Þ

One rewrites it as an integral equation,

uðt; xÞ ¼ e2teð1=2Þtð›
2=›x 2Þuð0; xÞ þ

ðt

0

dte2ðt2tÞe1=2ðt2tÞð›2=›x 2Þu2ðt; xÞ ð5Þ

and iteration of this equation corresponds to the following process: At time t ¼ 0, a single

particle starts a Brownian motion from the origin continuing for an exponential holding

time t with Pðt . tÞ ¼ e2t. Then the particle splits into two new particles which continue

along independent Brownian paths starting from the branching point. These new particles

are subjected to the same branching rule, so that at time t one has k particles with

probability Pðn ¼ kÞ ¼ e2tð12 e2tÞk21. Then the solution of (4) is

uðt; xÞ ¼ E f ðx þ x1Þf ðx þ x2Þ· · ·f ðx þ xkÞ
� �

; ð6Þ

x þ x1; x þ x2; . . . ; x þ xk being the coordinates of surviving particles at time t and

f ðxÞ ¼ uð0; xÞ; ð7Þ

the initial condition. Some recent papers provide extensions to the probabilistic

study of equations of this type [7,22,23,27] and to a generalization involving

fractional derivatives [8].

2.2 Superprocesses and nonlinear pde’s

A ðXt;cÞ-superprocess is a measure-valued process which is a model for the random

evolution of a cloud of particles. Each particle follows a trajectory ruled by the Xt-process

and dies at a random time leaving a random offspring with size regulated by the function c

(Figure 1). At time t one has Nt particles located at the points {xiðtÞ}. To study the process

one looks at the measure

mt ¼
1

Nt

X
i

dxiðtÞ: ð8Þ

Stochastics: An International Journal of Probability and Stochastics Processes 281
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To obtain the ðX;cÞ-superprocess, one passes to the limit as the mass of each particle and

its lifetime tends to zero and the number of particles tends to 1 in such a way that the

measure mt converges weakly to a measure in the domain D. The superprocess constructed

in this way is the limit of a branching particle system [11,13].

An important concept is the exit measure (from the domain D). For the example in

Figure 1, the initial measure m is

m0 ¼
1

3

X3
i¼1

dxi
ð9Þ

and the exit measure nD, given by the particles that reach the boundary, is

nD ¼
1

4

X4
i¼1

dyi
:

In the literature one finds two notions of superprocesses, either as a system of mass

distributions (measures) at each time t or as a system of exit measures from a domain.

Notice that a mass distribution at fixed time t can also be interpreted as an exit measure

from the space-time domain ð21; tÞ £ D.

For the particular case of superdiffusions Xt is a diffusion associated to an elliptic

operator L. Superdiffusions provide representations for the positive solutions of the

nonlinear equations

Lu ¼ cðuÞ in D;

u›D ¼ w
ð10Þ

and

›u
›t
¼ Lu 2 cðuÞ in ½0;1Þ £ D;

uð0; ·Þ ¼ f ð·Þ;
ð11Þ

Figure 1. A sample path of the measure-valued ðX;cÞ-superprocess.
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w being a bounded nonnegative function defined on ›D. The solutions of these equations

can be related to the Laplace transform of the measure-valued superprocesses.

Let ðjt; t $ 0Þ be a diffusion, ðPt; t $ 0Þ its transition semigroup and Px the law of j

starting at x. c is a C 2 function in ð0;1Þ which defines the branching mechanism. Results

have been proven for c0s of the form

cðuÞ ¼ au þ bu2 þ

ð1
0

ðe2ru 2 1þ ruÞnðdrÞ;

n being a Radon measure on ð0;1Þ satisfying
Ð1
0
ðr ^ r 2ÞnðdrÞ , 1.

In the linear problem with Lu ¼ 0 in D and u ¼ w in ›D, the solution is obtained by

starting the process at x and sampling the boundary condition at the point where the path

hits the boundary. That is one starts with a point measure localized at x and integrates over

the boundary with another point measure localized at the hitting point. Likewise for the

nonlinear problems (10) and (11) one starts the superdiffusion with an initial measure

m0 ¼ dx and then integrates the boundary condition with the exit measure m›D generated

by the superprocess on the boundary. The solution of (10) is then given by

uðxÞ ¼ 2ln Exe2km›D;wl;

where Ex means Edx .

Likewise for (11) one obtains

uðt; xÞ ¼ 2ln Exe2kmt ;f l;

mt being now the mass distribution of the superprocess at time t. As stated before, the

measure mt may also be interpreted as an exit measure of a space-time domain

ð21; tÞ £ D.

For further results and a detailed study of superprocesses, see the monographs [15,16].

2.3 The Navier–Stokes equation

In the Navier–Stokes equation for incompressible fluids

›uk

›t
þ

›

›xj

ukuj ¼ n
›2uk

›xj›xj

2
›p

›xk

þ f k; ð12Þ

ð›uk=›xkÞ ¼ 0, the convective nonlinearity u·7u is of a type different from the ones

studied in the superprocesses. Variational formulations of this equation in a stochastic

context were developed. Nevertheless, a general stochastic representation for the solution

of equations with nonlinearities of this type remained, for a long time, an open

problem. The breakthrough was finally made on a paper by LeJan and Sznitman [21]

further developed by other authors [5,28,29,34,35]. Transforming Equation (12) to the

Fourier space

ûðj; tÞ ¼ ð2pÞ2n=2

ð
Rn

e2ix·j uðx; tÞdx;

Stochastics: An International Journal of Probability and Stochastics Processes 283
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one obtains

›ûk

›t
þ ið2pÞ2n=2jjðûk*ûjÞ ¼ 2njjj

2
ûk 2 ijkp̂ þ f̂k; ð13Þ

which by Leray projection, multiplication and division by jjj, s ! t 2 s and assuming the

initial data and the forcing to be divergence-free, may be rewritten in integral form

ûðj; tÞ ¼ e2njjj
2
t û0ðjÞ þ

ðt

0

dse2njjj
2
s jjjffiffiffiffiffiffi

2p
p� �n

(
ð
Rn

ûðh; t 2 sÞ^jûðj2 h; t 2 sÞdhþ f̂ðj; t 2 sÞ

� ð14Þ

with

a^jb ¼ 2i
j

jjj
·a

� �
b 2

j

jjj
·b

� �
j

jjj

� �
:

Now each one of coefficients in the equation is normalized to obtain probability

measures. Define

xðj; tÞ ¼
ûðj; tÞ

hðjÞ
; x0ðjÞ ¼

û0ðjÞ

hðjÞ
; mðjÞ ¼

2jjjh*hðjÞ

njjj
2 ffiffiffiffiffiffi

2p
p� �n

hðjÞ
; ð15Þ

fðj; tÞ ¼
2f̂ðj; tÞ

njjj
2
hðjÞ

; Kjðh; j2 hÞ ¼
hðhÞhðj2 hÞ

h*hðjÞ
; ð16Þ

h being called a majorizing kernel. Then

xðj; tÞ ¼ e2njjj
2
tx0ðjÞ þ

ðt

0

dsnjjj
2
e2njjj

2
s mðjÞ

2

	
ð
Rn

xðh; t 2 sÞ^jxðj2 h; t 2 sÞKjðh; j2 hÞdh þ
fðj; t 2 sÞ

2

�
:

ð17Þ

Two examples of majorizing kernels for three dimensions satisfying h*hðjÞ # jjjhðjÞ

are hðjÞ ¼ 1=p3jjj
2
; hðjÞ ¼ ðb=2pÞðe2bjjj=jjjÞ:

2.3.1 Probabilistic interpretation of Equation (17)

Let S be an exponentially distributed random variable with parameter njjj
2
, k a Bernoulli

random variable with parameter 1/2, h1 and h2 a pair of correlated random variables

distributed as Kjðdj1; dj2Þ. S, k and h1;h2 are assumed to be independent processes. Then

xðj; tÞ ¼ E x0ðjÞ1½S$t� þ fðj; t 2 SÞ1½S,t�1½k¼0�



þmðjÞxðh1; t 2 SÞ^jxðh2; t 2 SÞ1½S,t�1½k¼1�

�
¼ E{V ð1Þðj; tÞ}:

R. Vilela Mendes284
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Iterating the random variable Vðj; tÞ one obtains in the limit (if it exists)

V ð1Þðj; tÞ ¼ x0ðjÞ1½S$t� þ fðj; t 2 SÞ1½S,t�1½k¼0�

þ mðjÞV ð1Þðh1; t 2 SÞ^jV
ð1Þðh2; t 2 SÞ1½S,t�1½k¼1�

and

xðj; tÞ ¼ E{V ð1Þðj; tÞ}:

2.3.2 The stochastic process

It is an exponential process plus a branching one, leading to a tree backward in time.

Starting at t, the mode j propagates backwards in time with holding parameter njjj
2
. At the

death of j, a Bernoulli coin is tossed. If k ¼ 0, no new modes are born. If k ¼ 1, two new

modes h1 and h2 ¼ j2 h1 are born with probability density Kjðh1;h2Þ. The process is

repeated for the new modes with exponential lifetimes with parameters njh1j
2
and njh2j

2
.

In the Figure 2, a sample path of the process is displayed. Input nodes are marked ðOÞ

and operational nodes ð†Þ. At an input node at time t * . 0, ðj*; t *Þ, the tree samples the

forcing at that point fðj*; t *Þ. At an input node below t ¼ 0, the tree samples the initial

data x0ðjÞ. All the sample values are combined at the operational nodes by the mðjÞa^jb

functional.

For the example shown in the figure, the contribution is

mðjÞ{mðh1Þx0ðh11Þ^h1
x0ðh12Þ}^jfðh2; t 2 Su 2 S2Þ;

the solution being an average over all trees.

Renormalizing the times, the branching process is identical to a Galton–Watson

process which is known to terminate in finite time with probability one. The number of

factors in the multiplicative functional is finite and with the bounds jx0ðjÞj # 1 and

Figure 2. A sample path of the backwards in time branching process leading to a stochastic solution
of Navier–Stokes.
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jfðj; tÞj # 1 on the initial condition and forcing, together with a choice of majorizing

kernel satisfying h*hðjÞ # jjjhðjÞ, the multiplicative functional is bounded by one in

absolute value almost surely.

Other stochastic approaches have been developed for the Navier–Stokes equation.

In some cases, they provide elegant existence proofs. However, they follow a different

point of view and the stochastic representations that are obtained cannot be classified as

stochastic solutions in the sense described in the introduction. This is because the

stochastic process that is used is not independent of the solution, instead it is obtained

implicitly. For example, in the work of Constantin and Iyer [9], the drift term in the

stochastic differential equation is computed implicitly as the expected value of an

expression involving the flow it drives.

2.4 The Fourier-transformed Poisson–Vlasov equation

The (multi-species) Poisson–Vlasov equation in 3 þ 1 space-time dimensions is

›f i

›t
þ ~v·7xf i 2

ei

mi

7xF·7vf i ¼ 0 ð18Þ

ði ¼ 1; 2Þ, with

DxF ¼ 24p
X

i

ei

ð
f ið~x; ~v; tÞd 3v

( )
: ð19Þ

In the Navier–Stokes equation, the dissipation provides, through njjj
2
, a natural clock

for the exponential process. In conservative equations like Euler or Vlasov, there is no

natural such clock. We may however multiply the solution f by a invertible function of

time gðtÞ and write a stochastic representation for the product gðtÞf . Another issue is the

fact that in the Vlasov equation one needs to control the growth associated both to 7x and

7v. In Refs. [18,33], these issues were dealt with by the choice gðtÞ ¼ e2lt and a

renormalization of time. Here, this construction will be reviewed as well as an

alternative choice which avoids the renormalization of time at the cost of a more complex

branching process. Notice that also for Navier–Stokes in two dimensions [28],

multiplication by the factor expð2ltÞ is used to obtain a convergent stochastic

representation of the solution.

Because of the localized nature of the stochastic solutions, as discussed in the

introduction, solutions of both the Fourier-transformed and the configuration space

equations are useful for the applications. If, in a plasma confinement device, one is

interested in the behaviour of the solution at a particular point (for example at a point

in the scrape-off layer) then it is the solution in configuration space that should be

used. If however one is interested in the overall nature of the turbulent fluctuations it

is probably the study of high Fourier modes in the Fourier-transformed equation that

will be useful.

Fourier transforming Equations (18) and (19), with

Fiðj; tÞ ¼
1

ð2pÞ3

ð
d 6hf iðh; tÞeij·h; ð20Þ

R. Vilela Mendes286
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h ¼ ð~x; ~vÞ and j ¼ ð ~j1; ~j2Þ ¼
+
ðj1; j2Þ, one obtains

0 ¼
›Fiðj; tÞ

›t
2 ~j1·7j2Fiðj; tÞ

þ
4pei

mi

ð
d 3j01Fiðj1 2 j01; j2; tÞ

~j2· ~j
0
1

jj01j
2

X
j

ejFjðj
0
1; 0; tÞ:

ð21Þ

Changing variables to

t ¼ g jj2j
� �

t; ð22Þ

where gðjj2jÞ is a positive continuous function satisfying

gðjj2jÞ ¼ 1 if jj2j , 1

gðjj2jÞ $ jj2j if jj2j $ 1

leads to

›Fiðj; tÞ

›t
¼

~j1

gðjj2jÞ
·7j2Fiðj; tÞ2

4pei

mi

ð
d 3j01Fiðj1 2 j01; j2; tÞ

£
~j2·ĵ

0
1

gðjj2jÞjj
0
1j

X
j

ejFjðj
0
1; 0; tÞ

ð23Þ

with ĵ1 ¼ ð ~j1=jj1jÞ. Equation (23) written in integral form, is

Fiðj; tÞ ¼ etð
~j1=gðjj2jÞÞ·7j2Fiðj1; j2; 0Þ2

4pei

mi

ðt
0

dseðt2sÞð ~j1=ðgðjj2jÞÞÞ·7j2

£

ð
d 3j01Fiðj1 2 j01; j2; sÞ

~j2·ĵ
0
1

gðjj2jÞjj
0
1j

X
j

ejFjðj
0
1; 0; sÞ:

ð24Þ

A stochastic representation is obtained for the following function

xiðj1; j2; tÞ ¼ e2lt Fiðj1; j2; tÞ

hðj1Þ
ð25Þ

with l a constant and hðj1Þ a positive function to be specified later on. The integral

equation for xðj1; j2; tÞ is

xiðj1; j2; tÞ ¼ e2ltxi j1; j2 þ t
j1

gðjj2jÞ
; 0

� �
2

8pei

mil

ðjj1j
21

h*hÞðj1Þ

hðj1Þ

£

ðt
0

dsle2ls

ð
d 3j 0

1pðj1; j
0
1Þxi j1 2 j 0

1; j2 þ s
j1

gðjj2jÞ
; t2 s

� �

£
ðj2 þ sðj1=gðjj2jÞÞÞ·ĵ

0
1

gðjj2 þ sðj1=gðjj2jÞÞjÞ

X
j

1

2
eje

lðt2sÞxjðj
0
1; 0; t2 sÞ

ð26Þ
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with

ðjj01j
21

h*hÞ ¼

ð
d 3j 0

1jj
0
1j
21

hðj1 2 j 0
1Þhðj

0
1Þ ð27Þ

and

pðj1; j
0
1Þ ¼

jj 0
1j
21

hðj1 2 j 0
1Þhðj

0
1Þ

ðjj 0
1j
21

h*hÞ
: ð28Þ

Equation (26) has a stochastic interpretation as an exponential process (with a time

shift in the second variable) plus a branching process. pðj1; j
0
1Þd

3j 0
1 is the probability that,

given a j1 mode, one obtains a ðj1 2 j 0
1; j

0
1Þ branching with j01 in the volume

ðj01; j
0
1 þ d 3j01Þ. xðj1; j2; tÞ is computed from the expectation value of a multiplicative

functional associated to the processes. Convergence of the multiplicative functional hinges

on the fulfilling of the following conditions:

ðAÞ jFiðj1; j2; 0Þ=hðj1Þj # 1

ðBÞ ðjj01j
21

h*hÞðj1Þ # hðj1Þ

. Condition (B) is satisfied, for example, for

hðj1Þ ¼
c

ð1þ jj1j
2
Þ2

and c #
1

3p
: ð29Þ

Indeed, computing jj01j
21

h*h one obtains

c2Gðj1Þ ¼ ðjj01j
21

h*hÞðj1Þ

¼ 2pc2 2 lnð1þ jj1j
2
Þ

jj1j
2
ðjj1j

2
þ 4Þ2

þ
1

jj1j
2
ðjj1j

2
þ 4Þ

(

þ
jj1j

2
2 4

2jj1j
3
ðjj1j

2
þ 4Þ2

p

2
2 tan21 22 2jj1j

2

4jj1j

 ! !)
:

ð30Þ

Then ð1=hðj1ÞÞðjj
0
1j
21

h*hÞ is bounded by a constant for all j1j j, and choosing c sufficiently

small, condition (B) is satisfied. Once hðj1Þ, consistent with (B) is found, condition (A)

only puts restrictions on the initial conditions.

Because e2lt is the survival probability during time t of an exponential process with

parameter l and le2lsds the decay probability in the interval ðs; s þ dsÞ, xiðj1; j2; tÞ in
Equation (26) is obtained as the expectation value of a multiplicative functional for the

following backward-in-time process:

Starting at ðj1; j2; tÞ, a particle of species i lives for an exponentially distributed time s

up to time t2 s. At its death a coin ls (probabilities 1=2; 1=2) is tossed. If ls ¼ 0, two new

particles of the same species as the original one are born at time t2 s with Fourier modes

ðj1 2 j01; j2 þ sðj1=gðjj2jÞÞÞ and ðj
0
1; 0Þwith probability density pðj1; j

0
1Þ. If ls ¼ 1, the two

new particles are of different species. Each one of the newborn particles continues its

backward-in-time evolution, following the same death and birth laws. When one of the
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particles of this tree reaches time zero it samples the initial condition. The multiplicative

functional of the process is the product of the following contributions:

. At each branching point where two particles are born, the coupling constant is

gijðj1; j
0
1; sÞ ¼ 2elðt2sÞ 8peiej

mil

ðjj01j
21

h*hÞðj1Þ

hðj1Þ

ðj2 þ sðj1=gðjj2jÞÞÞ·ĵ
0
1

gðjj2 þ sðj1=gðjj2jÞÞjÞ
ð31Þ

. When one particle reaches time zero and samples, the initial condition the

coupling is

g0iðj1; j2Þ ¼
Fiðj1; j2; 0Þ

hðj1Þ
: ð32Þ

The multiplicative functional is the product of all these couplings for each realization

of the process Xðj1; j2; tÞ, this process being obtained as the limit of the following iterative

process:

Xðkþ1Þ
i ðj1; j2; tÞ ¼ xi j1; j2 þ t

j1

gðjj2jÞ
; 0

� �
1½s.t� þ giiðj1; j

0
1; sÞ

£ XðkÞ
i j1 2 j01; j2 þ s

j1

gðjj2jÞ
; t2 s

� �
XðkÞ

i ðj01; 0; t2 sÞ1½s,t�1½ls¼0�

þ gijðj1; j
0
1ÞX

ðkÞ
i j1 2 j01; j2 þ s

j1

gðjj2jÞ
; t2 s

� �
XðkÞ

j ðj01; 0; t2 sÞ1½s,t�1½ls¼1�:

ð33Þ

Then xiðj1; j2; tÞ is the expectation value of the functional.

xiðj1; j2; tÞ ¼ E{Pðg0g
0
0· · ·Þðgiig

0
ii· · ·Þðgijg

0
ij· · ·Þ} ð34Þ

For example, for the realization in Figure 3 the contribution to the multiplicative

functional is

gjiðj1; j
0
1; t2 t1Þgijðj1 2 j01; j

00
1; t1 2 t2Þgiiðj

0
1; j

000
1 ; t1 2 t3Þ

£ g0iðj
0
1 2 j0001 ; k3Þg0iðj

000
1 ; 0Þg0jðj

00
1; 0Þg0iðj1 2 j01 2 j001; k2Þ

ð35Þ

and

k ¼ j2;

k1 ¼ k þ ðt2 t1Þ
j1

gðjj2jÞ
;

k2 ¼ k1 þ ðt2 2 t1Þ
ðj1 2 j01Þ

gðjk1jÞ
;

k3 ¼ ðt3 2 t1Þj
0
1:

ð36Þ
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With the conditions (A) and (B), and choosing l $ j8peiej=mini{mi}j and

c # e2ltð1=3pÞ, the absolute value of all coupling constants is bounded by one.

The branching process, being identical to a Galton–Watson process, terminates with

probability one and the number of inputs to the functional is finite (with probability one).

With the bounds on the coupling constants, the multiplicative functional is bounded by one

in absolute value almost surely. Once a stochastic representation is obtained for

xðj1; j2; tÞ, one also has, by (25), a stochastic solution of the Fourier-transformed

Poisson–Vlasov equation and one obtains:

Theorem 1. The stochastic process Xðj1; j2; tÞ, above described, with kernel hðj1Þ

satisfying condition (B), provides a stochastic solution for the Fourier-transformed

Poisson–Vlasov equation Fiðj1; j2; tÞ for any arbitrary finite value of the arguments,

provided the initial conditions at time zero satisfy the boundedness conditions (A).

Instead of renormalizing the time (Equation (22)) and defining xiðj1; j2; tÞ ¼
e2ltðFiðj1; j2; tÞ=hðj1ÞÞ, one might write a stochastic representation for

Qiðj1; j2; tÞ ¼ e2tjj2j
Fiðj1; j2; tÞ

hðj1Þ
; ð37Þ

which leads to the integral equation

Qiðj1; j2; tÞ ¼ e2tjj2jQiðj1; j2 þ tj1; 0Þ2
8peiNðj1; j2; tÞ

mi

ðjj1j
21

h*hÞðj1Þ

hðj1Þ

£

ðt

0

dsPðj1; j2; sÞ

ð
d 3j 0

1pðj1; j
0
1ÞQiðj1 2 j 0

1; j2 þ sj1; t 2 sÞ

£
ðj2 þ sj1Þ·ĵ

0
1

jj2 þ sj1j

X
j

1

2
ejQjðj

0
1; 0; t 2 sÞ:

ð38Þ

Figure 3. A sample path of the stochastic process Xðj1; j2; tÞ.
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The probability density pðj1; j
0
1Þ and the conditions on hðj1Þ are the same as before.

The main different is the survival probability of the propagating particles, namely e2tjj2j is

the survival probability up to time t and dsPðj1; j2; sÞ the dying probability in time ds, with

Pðj1; j2; sÞ ¼
jj2 þ sj1je

ðt2sÞjj2þsj1j2tjj2j

Nðj1; j2; tÞ
; ð39Þ

the normalizing function being obtained from

Nðj1; j2; tÞ ¼
1

12 e2tjj2j

ðt

0

dsjj2 þ sj1je
ðt2sÞjj2þsj1j2tjj2j: ð40Þ

The stochastic process is qualitatively the same as before and for the convergence of the

solution functional one requires jQiðj1; j2; 0Þj # 1 and the constant c in the definition of

the majorizing kernel hðj1Þ to satisfy condition (29) and j8pceiNðj1; j2; tÞ=mij # 1.

3. The Poisson–Vlasov equation in configuration space

Let Gið~x; ~v; tÞ be

Gið~x; ~v; tÞ ¼ e2lt f ið~x; ~v; tÞ

wið~x 2 t~v; ~vÞ
; ð41Þ

wð~x; ~vÞ being a function to be specified later. From (18) and (19), one obtains the following

integral equation

Gið~x; ~v; tÞ ¼ e2ltGið~x 2 t~v; ~v; 0Þ2 2
X

j

1

2

eiej

mil

ðt

0

dsle2lsAðjÞ
x;v;t;se

lðt2sÞ

£

ð
d 3x 0d 3upðjÞ

x;v;t;sð~x
0; ~uÞGjð~x

0; ~u; t 2 sÞ d~x 2 s~v 2 ~x 0~x 2 s~v 2 ~x 0

0@ 1A
£

1

wið~x 2 t~v; ~vÞ
ð7v þ s7xÞwið~x 2 t~v; ~vÞGið~x 2 s~v; ~v; t 2 sÞ

ð42Þ

with

pðjÞ
x;v;t;sð~x

0; ~uÞ ¼
1

A
ðjÞ
x;v;t;s

wjð~x
0 2 uðt 2 sÞ; ~uÞ

j~x 2 s~v 2 ~x 0j
2

; ð43Þ

Ax;v;t;s being the normalization constant

AðjÞ
x;v;t;s ¼

ð
d 3x 0d 3u

wjð~x
0 2 uðt 2 sÞ; ~uÞ

j~x 2 s~v 2 ~x 0j
2

: ð44Þ
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The simplest choice for the functions wið~x; ~vÞ is

wið~x; ~vÞ ¼ f ið~x; ~v; 0Þ ð45Þ

the initial conditions of the Cauchy problem. Then, the probabilistic interpretation

requires finiteness of

AðjÞ
x;v;t;s ¼

ð
d 3x 0d 3u

f jð~x
0 2 uðt 2 sÞ; ~u; 0Þ

j~x 2 s~v 2 ~x0j
2

; ð46Þ

a quantity that has the nature of a retarded field intensity generated by the initial condition.

From Equation (42), one concludes that a stochastic solution of the configuration space

Poisson–Vlasov equation is obtained by the following Yð~x; ~u; tÞ process:

Starting at ð~x; ~u; tÞ, a particle of species i propagates backwards in time for an

exponentially distributed time s1 up to time t 2 s1. At this time, the particle is at the

position ~x 2 s1~v and a new particle of the same or of the opposite type (probabilities

1=2; 1=2) is born at position ~x0 and velocity ~u with probability distribution p
ðjÞ
x;v;t;sð~x

0; ~uÞ.
The original particle receives a label ðs1Þ and continue its propagation for another

exponentially distributed time s2 up to time t 2 s1 2 s2. There the process is repeated, that

is, it receives a label ðs2Þ and a new particle is born at ~x00; ~u0. Each one of the newborn

particles follows a similar rule, until all particles reach time zero (Figure 4).

The solution is obtained by a multiplicative functional

Gið~x; ~v; tÞ ¼ E{Pðg1g2· · ·Þðt1t2· · ·Þ}; ð47Þ

the g0s being the coupling constants at the creation of new particles and the t0s the terminal

contribution of the particles that reach time zero.

. The coupling constants at the creation of each new particle is

gijðx; v; t; sÞ ¼
2eiej

mil
AðjÞ

x;v;t;se
lðt2sÞ: ð48Þ

. The terminal contribution of a particle that in the course of its evolution has received

Figure 4. A sample path of the process Yð~x; ~u; tÞ.
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the labels s1; s2; . . . ; sn is

1

f ið~x 2 t~v; ~v; 0Þ
ð7v þ s17xÞð7v þ s27xÞ· · ·ð7v þ sn7xÞf ið~x 2 t~v; ~v; 0Þ: ð49Þ

Convergence of the multiplicative functional in the stochastic solution (47) requires

2eiej

minðmiÞl
max

s
AðjÞ

x;v;t;s

� 
elðt2sÞ

���� ���� # 1 ð50Þ

and

1

f ið~x 2 t~v; ~v; 0Þ
ð7v þ s17xÞð7v þ s27xÞ· · ·ð7v þ sn7xÞf ið~x 2 t~v; ~v; 0Þ

���� ���� # 1 ð51Þ

that is satisfied for sufficiently small and smooth initial conditions. Notice however that

these are somewhat more restrictive conditions than for the stochastic solution of the

Fourier-transformed equation. The result is summarized in the following:

Theorem 2. The stochastic process Yð~x; ~u; tÞ, above described, provides a stochastic

solution for the configuration space Poisson–Vlasov equation provided the initial

conditions satisfy the constraints (50) and (51).

Provided conditions similar to (50) and (51) are satisfied, other choices for the

regularizing functions wið~x; ~vÞ are possible. The identification of wið~x; ~vÞ with the initial

conditions is the choice that provides the simplest form for the multiplicative functional

(47). Notice however that to obtain the solution f ið~x; ~v; tÞ of the Poisson–Vlasov equation

from Gið~x; ~v; tÞ in all points of the domain, one should restrict to nowhere vanishing initial

conditions or to approximate f ið~x; ~v; 0Þ by a sequence of nowhere vanishing functions.

4. The Euler equation

The construction of the stochastic solution in this section is similar to the one for the

Fourier transformed Poisson–Vlasov equation. Consider a Euler equation in 3 þ 1 space-

time dimensions

›u

›t
þ ðu·7Þu ¼ 7p ð52Þ

for an incompressible fluid, 7·u ¼ 0. Passing to the Fourier transform

ûðj; tÞ ¼
1

ð2pÞ3=2

ð
uðx; tÞeij·xdx; ð53Þ

one obtains

›ûkðj; tÞ

›t
2

i

ð2pÞ3=2

X3
j¼1

jjðûj*ûkÞðj; tÞ ¼ 2ijkp̂ðjÞ; k ¼ 1; 2; 3; ð54Þ

p̂ being the Fourier transform of the pressure p.
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Change the time variable to

t ¼ gðjjjÞt; ð55Þ

gðjjjÞ being a function with the same properties as the one defined in (22). Then

›ûkðj; tÞ

›t
2

i

ð2pÞ3=2

X3
j¼1

jj

gðjjjÞ
ðûj*ûkÞðj; tÞ ¼ 2i

jk

gðjjjÞ
p̂ðjÞ; k ¼ 1; 2; 3 ð56Þ

.

A stochastic representation is written for

xðj; tÞ ¼ e2lt ûðj; tÞ

hðjÞ
ð57Þ

with l a constant and hðjÞ a positive majorizing kernel. Let us denote by Pj the orthogonal

projection on the space , j .’, more precisely

Pjv ¼ v2 , v; ĵ . ĵ

ĵ ¼ j=jjj. Since 7·u ¼ 0, û [, j .’. Applying the operator to the Equation (56), one

obtains the following vectorial integral equation

xðj; tÞ ¼e2ltxðj; 0Þ2
iðh*hÞðjÞ

lð2pÞ3=2 hðjÞ

ðt
0

dsle2ls

ð
R3

xðh; t2 sÞ^jxðj2 h; t2 sÞelðt2sÞqðj;hÞdh;

ð58Þ

where

qðj;hÞ ¼
hðj2 hÞhðhÞ

ðh*hÞðjÞ
ð59Þ

and

a^jb ¼ Pj

j

gðjjjÞ
·ab

� �
: ð60Þ

Equation (58) has a stochastic interpretation as an l-exponential process plus a branching

process. qðj;hÞdh is the probability that, given a j mode, one obtains a ðj2 h;hÞ
branching with h in the volume ðh;hþ dhÞ. xðj; tÞ is computed from the expectation

value of a multiplicative functional associated to the processes. Convergence of the

multiplicative functional is obtained by imposing the following conditions:

ðCÞ
ûðj; 0Þ

hðjÞ

���� ���� # 1;

ðDÞ ðh*hÞðj1Þ # hðj1Þð2pÞ
3=2le2lt:
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In three dimensions a function hðj1Þ satisfying (D) is, for example

hðj1Þ ¼

ffiffiffiffi
2

p

r
le2lt

ð1þ jj1j
2
Þ2
:

As before the solution is obtained by the following process, denoted Zðj; tÞ: Starting at
ðj; tÞ, a particle lives for an exponentially distributed time s up to time t2 s. At its death

two new particles are born at time t2 s with Fourier modes j2 h and h with probability

density qðj;hÞ. Each one of the new born particles continues its backward-in-time

evolution, following the same death and branching laws. When one of the particles of this

tree reaches time zero it samples the initial condition. The multiplicative functional of the

process has the following contributions:

. At each branching point

mðj; sÞ ¼
ih*hðjÞ

ð2pÞ3=2hðjÞ

elðt2sÞ

l
: ð61Þ

. When one particle reaches time zero and samples the initial condition

x0ðjÞ ¼ x0ðj; 0Þ ¼
ûðj; 0Þ

hðjÞ
: ð62Þ

The multiplicative functional is the composition of all these factors for each realization of

the process Zðj; tÞ, obtained as the limit of the iterative process

Z ðkþ1Þðj; tÞ ¼ xðj; 0Þ1½s.t� þ mðj; sÞZ ðkÞðj2 h; t2 sÞZ ðkÞðh; t2 sÞ1½s,t�:

Then, xðj; tÞ is the expectation value of the functional obtained by composing the

contributions (61) and (62) with the ^j product defined in (60)

xðj; tÞ ¼ E
n

mðj; sÞ{mðh1; s1Þ· · ·x0ðhkþ1Þ^hk
x0ðhkþ2Þ}g

^j{mðh0
1; s01Þ· · ·x0ðh

0
kþ1Þ^h0

k
x0ðh

0
kþ2Þ}

o
:

Theorem 3. The stochastic process Zðj; tÞ provides a stochastic solution (up to a finite

time t) for the Fourier-transformed Euler equation provided conditions (C) and (D) are

satisfied.

Note

1. http://www.label2.ist.utl.pt/vilela/.
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