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Abstract

Wave functions of bounded quantum systems with time-independent potentials, being almost periodic functions, cannot
have time asymptotics as in classical chaos. However, bounded quantum systems with time-dependent interactions, as used
in quantum control, may have continuous spectrum and the rate of growth of observables is an issue of both theoretical and
practical concern.

Rates of growth in quantum mechanics are discussed by constructing quantities with the same physical meaning as those
involved in the classical Lyapunov exponent. A generalized notion of quantum sensitive dependence is introduced and the
mathematical structure of the operator matrix elements that correspond to different types of growth is characterized. 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Bounded classical systems that are chaotic, display exponential growth of initial perturbations and other
interesting long-time asymptotics, like exponential decay of correlations. In contrast, quantum Hamiltonians of
bounded systems with time-independent potentials, having discrete spectrum, their wave functions are almost
periodic functions. For this reason the work on “quantum chaos” has shifted from consideration of long-time
properties to the statistics of energy levels of quantum systems with a chaotic classical counterpart (for a review of
recent work see [1] and references therein).

However, quantum systems with bounded configuration space but time-dependent interactions (for example,
particles in an accelerator subjected to electromagnetic kicks or the systems used in quantum control) may have
continuous spectrum. Therefore, the estimation and control of the rate of growth, of the perturbed matrix elements
of observables, becomes an issue of both theoretical and practical concern.
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In classical mechanics the most important asymptotic indicator of chaotic behavior is the Lyapunov exponent
(an ergodic invariant). Therefore, a natural first step to discuss rates of growth in quantum mechanics seems to be
the construction of a quantum Lyapunov exponent. After a few heuristic attempts by several authors (see references
in [2]) a satisfactory construction has been achieved [2], in the sense that the phase-space observables that are used
are exactly the same in classical and quantum mechanics. It uses the tomographic formulation which describes
conventional quantum mechanics by a set of marginal probability densities [3]. Then, the only difference between
the classical and the quantum exponent lies in the time evolution dynamical equation. In Section 2 we recall this
result. Translating it from tomographic densities to traces of operators, it turns out that the quantum Lyapunov
exponent measures the rate of growth of the trace of position and momentum observables starting from a singular
initial density matrix.

A positive Lyapunov exponent corresponds to exponential growth of these traces. However, the same quantities
may serve to characterize other types of growth, leading to a generalized notion of quantum sensitive dependence.

There are examples where exponential rates of growth (as in classical chaos) are also found in quantum systems
(Section 3). However, in many other cases, quantum mechanics seems to have a definite taming effect on classical
chaos. Therefore, a generalized notion of quantum sensitive dependence, corresponding to rates of growth milder
than exponential, might be of interest to classify different types of quantum complexity or to characterize the degree
of accuracy achievable in quantum control.

Quantum sensitive dependence is discussed in Section 4, as well as the mathematical structure of the operator
matrix elements, in the spectral representation of the trace, that corresponds to each type of growth. A convenient
unified framework to discuss these matters is the space of ultradistributions of compact support and their Fourier
images [4,5].

2. The quantum Lyapunov exponent

As a first step we will rewrite the results of Ref. [2] using operator traces. In Ref. [2] the quantum Lyapunov
exponent along the phase-space vectorv = (v1v2) is shown to be

(1)λv = lim
t→∞

1

t
log

∥∥∥∥
∫

dnX dnµdnν eiX•1
((∇µ

∇ν

)
δn(µ)δn(ν)

)
Mt(X,µ,ν)

∥∥∥∥,
where

(2)Mt(X,µ,ν)=
∫

Π
(
X,µ,ν,X′,µ′, ν′, t,0

)
M0(X,µ, ν) dX

′n dµ′n dν′n

is the time evolved tomographic density [3], starting from the initial condition

(3)M0
(
X′,µ′, ν′) = ((

v1 �µ′ + v2 � ν′) • ∇X′
)
δn

(
X′ −µ′q0 − ν′p0

)
,

a � b being defined as

(a � b)i = aibi.

WhenΠ is the classical propagator,λv , as defined in Eq. (1), coincides with the usual classical Lyapunov
exponent constructed from the tangent map. The only difference between classical and quantum Lyapunov
exponents lies in the dynamical law of the propagator, thus insuring that we are dealing with quantities with the
same physical meaning.

For a system with Hamiltonian

(4)H = p2

2
+ V (q),
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the evolution equation for the quantum propagator of the tomographic densities is

∂Π

∂t
−µ • ∇νΠ − ∇xV

(
q̃
) • (ν � ∇XΠ)

(5)+ 2

h̄

∞∑
n=1

(−1)n+1
(
h̄

2

)2n+1∇i1···i2n+1V (q̃)

(2n+ 1)! (ν � ∇X)i1 · · · (ν � ∇X)i2n+1Π = 0

with initial condition

(6)lim
t→t0

Π
(
X,µ,ν,X′,µ′, ν′, t, t0

) = δn
(
X−X′)δn(µ−µ′)δn(ν − ν′)

reducing forh̄= 0 to the classical evolution equation.
In the tomographic formulation, classical and quantum mechanics are both described by a set of positive

probability distributionsMt(X,µ,ν), the h̄-deformation appearing only in the time-evolution. It is this fact that
allows the notion of Lyapunov exponent to be carried over without ambiguity from classical to quantum mechanics.
However, to relate the Lyapunov exponent to the behavior of operator matrix elements and the spectral properties
of the Hamiltonian, it is more convenient to rewrite it as a functional of the density matrixρ(x, x ′). The first step
is to consider the Fourier transformGt(µ,µ) of the tomographic densityMt(X,µ,ν)

(7)Gt(µ, ν)
.=Gt(1,µ, ν)=

∫
dnX eiX•1Mt(X,µ,ν)

and perform the integrals in (1) to obtain

(8)λ( v1
v2

) = lim
t→∞

1

t
log

∥∥∥∥ ∇µGt (µ, ν) |µ=ν=0
∇νGt(µ, ν) |µ=ν=0

∥∥∥∥.
Now, using the relation between the tomographic densities and the density matrix [2], namely,

(9)Gt(µ, ν)=
(

1

2π

)n ∫
dnX dnp dnx dnx ′ ei(X•1−p•(x−x ′))ρt (x, x ′)δn

(
X −µ�

(
x+x ′

2

) + v � p
)

one easily obtains

(10)λ( v1
v2

) = lim
t→∞

1

t
log

∥∥∥∥ Tr{ρtx}
Tr{ρtp}

∥∥∥∥
the density matrix at time zero (corresponding toM0(X

′,µ′, ν′) in Eq. (3)) being

(11)ρ0(x, x
′)= −eip0•(x−x ′)

{
(v1 • ∇)δn

(
q0 − x+x ′

2

) + iv2 • (x − x ′)δn
(
q0 − x+x ′

2

)}
.

Eq. (10) means that the quantum Lyapunov exponent measures the exponential rate of growth of the expectation
values of position and momentum, starting from the initial singular perturbationρ0. This is a rather appealing and
intuitive form for the Lyapunov exponent. That the quantum Lyapunov exponent should have a form of this type
had already been proposed in Ref. [6], based on qualitative physical considerations. What is not obvious, though,
without the tomographic formulation, is that this is the form that corresponds exactly to the same physical quantity
as the classical Lyapunov exponent. Also non-obvious is the specific form that the initial singular perturbationρ0
should take.

Using the time-dependent operators in the Heisenberg picture

(12)xH (t)=U†xU, pH (t)=U†pU,

one has an equivalent form forλ�v

(13)λ( v1
v2

) = lim
t→∞

1

t
log

∥∥∥∥ Tr′{ρ0xH (t)}
Tr′{ρ0pH (t)}

∥∥∥∥,



356 V.I. Man’ko, R. Vilela Mendes / Physics Letters A 300 (2002) 353–360

where we have also defined

Tr′{ρ0xH (t)} = Tr{ρ0xH(t)}/Tr{ρ0xH (0)}.
Wheneverρ0xH (t) is a trace class operator, the term corresponding to Tr{ρ0xH (0)} has no contribution in the
t → ∞ limit. On the other hand, by taking the appropriate cut-off and a limiting procedure, the above expression
may also make mathematical sense even in some non-trace class cases.

3. An example: kicked motions in the torus

Let x1, x2 ∈ [−π,π) be coordinates in the 2-torusT 2 with conjugate momentap1,p2 and the dynamics be
defined by the Hamiltonian

(14)H =H0 +
∑
n

V (x,p)δ(t − nτ)

x ∈ T 2, p ∈R2 and, in particular,H0 = p2/2. Let

(15)H = L2([−π,π), d2x
)
.

Physical observables should be self-adjoint operators. Therefore the domainD(xi) of xi is

(16)D(xi)= {f ∈ H}
and the domain ofpi

(17)D(pi)= {
f ∈ H

∣∣ f (xi = −π)= f (xi = π)
}
.

A convenient basis of vectors inD(pi) is

(18)H =
{
〈x|q〉 = 1√

2π
eiq•x

∣∣∣∣ k ∈ Z2
}
.

The Floquet operator associated to the periodic HamiltonianH is

(19)UF =U0UK

with U0 = exp(iH0τ ) and

(20)UK = exp(iV (x,p)).

We will consider different types of kick potentials. WheneverV (x,p) is a function ofx or p alone, any
differentiable function will generate an unitary operatorUK operating in the basis (18). However, for kicks of
the electromagnetic type,V (x,p)= 1

2(xipi + pixi), because

(21)D
( 1

2(xipi + pixi)
) =D(xipi)∩D(pixi)= {f ∈H | f (xi = −π)= −f (xi = π)}.

1
2(xipi + pixi) does not generate a continuous unitary group in (18) and only a discrete set of kicks will be
acceptable, namely,

(22)UK = exp
( 1

2(x •A • p + p •A • x))
exp(A) being a 2× 2 matrix with integers entries and determinant one, the last condition resulting from

e
1
2 (x•A•p+p•A•x) = ex•A•pe

1
2 TrA.
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Using the momentum basis (18) the initial density matrixρ0 of Eq. (11) may be written

(23)ρ0 = −2

(
v1 • ∂

∂q0
+ v2 • ∂

∂p0

) ∑
k∈Z2

|p0 − k〉ei2k•q0〈p0 + k|

and in a position (generalized) eigenstate basis

(24)ρ0 = −4π

(
v1 • ∂

∂q0
+ v2 • ∂

∂p0

)∫

T 2

d2x |q0 + x〉ei2x•p0〈q0 − x|.

The corresponding traces, needed to compute the Lyapunov exponent, are

(25)Tr

{
ρ0U

†
t

(
x

p

)
Ut

}
= −2

(
v1 • ∂

∂q0
+ v2 • ∂

∂p0

) ∑
k∈Z2

ei2k•q0〈p0 + k|U†
t

(
x

p

)
Ut |p0 − k〉

and

(26)Tr

{
ρ0U

†
t

(
x

p

)
Ut

}
= −4π

(
v1 • ∂

∂q0
+ v2 • ∂

∂p0

)∫

T 2

d2x ei2x•p0〈q0 − k|U†
t

(
x

p

)
Ut |q0 + x〉.

Another form, that will be used later on, is a spectral decomposition using the eigenmodes of the Floquet operator.
For discrete spectrum

(27)Tr

{
ρ0U

†
t

(
x

p

)
Ut

}
=

∑
µ,ν

〈Eµ|ρ0|Eν〉〈Eν |
(
x

p

)
|Eµ〉e−i(Eµ−Eν)t

and in general

(28)Tr

{
ρ0U

†
t

(
x

p

)
Ut

}
=

∫
dEµ dEν ρ0(µ, ν)

(
x(ν,µ)

p(ν,µ)

)
e−i(Eµ−Eν)t .

Three types of potentials will be considered.

Case 1. V (x,p)= 0.

This is just free motion on the torus withUt = exp
(
i
p2

2 t
)
. Then

U
†
t

(
x

p

)
Ut =

(
x + tp

p

)

and from (25) it follows that Tr
{
ρ0U

†
t

(
x
p

)
Ut

}
is a constant independent of time, implyingλv = 0. A similar

conclusion would be obtained analyzing the spectral decomposition because the spectrum of the Floquet being
discrete in this case the right-hand-side of Eq. (27) is an almost periodic function.

Free motion having an irrelevant effect on the computation of the Lyapunov exponent, we restrict ourselves, for
simplicity, to the resonant case,τ = 4πm, m ∈Z, in the next two examples.

Case 2. V (x,p)= αg(x) andτ = 4πm, m ∈ Z.

From

〈p0 + k|U†
t

(
x

p

)
Ut |p0 − k〉 = 〈p0 + k|

(
x

p + t
τ
α∇g(x)

)
|p0 − k〉

it follows that Tr
{
ρ0U

†
t

(
x
p

)
Ut

}
grows at most linearly witht , implying alsoλv = 0.
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In this case the Floquet operator spectrum is continuous but the kernelsx(ν,µ) andp(ν,µ) being

x(ν,µ)∼ δ(Eν −Eµ), p(ν,µ)∼ δ′(Eν −Eµ),

we obtain the same conclusion from the spectral representation (28).

Case 3. V (x,p)= 1
2(x •A • p + p •A • x), τ = 4πm, m ∈ Z andM = exp(A)= ( 1 1

1 2

)
.

Let t = nτ . From

〈p0 + k|U†
t xUt |p0 − k〉 = (

(M−1)T
)n〈p0 + k|x|p0 − k〉

and

〈p0 + k|U†
t pUt |p0 − k〉 =Mn〈p0 + k|p|p0 − k〉

with

Mn =
(
ω−2n+1 +ω2n−1 −ω−2n +ω2n

−ω−2n +ω2n ω−2n−1 +ω2n+1

)
, M−n =

(
ω2n+1 +ω−2n−1 −ω2n +ω−2n

−ω2n +ω−2n ω2n−1 +ω−2n+1

)

andω = 1
2(1 + √

5), we conclude working out Eq. (25) that in this case there is a non-zero Lyapunov exponent
λv = 2 logω.

It is instructive to find out how the same result may be obtained from the spectral representation (28). In the
resonant case (τ = 4πm) the eigenstates of the Floquet operator are [7]

|Eα〉 = 1√
2π

∞∑
n=−∞

e−iαn
∣∣MnP

〉

with eigenvalue exp(−iα). From

〈Eµ|U†
t pUt |Eα〉 =Mn〈Eµ|p|Eα〉 = e−i(Eα−Eµ)nτ 〈Eµ|p|Eα〉,

and the corresponding equation forx, it follows that the kernelsx(ν,µ) andp(ν,µ) are linear combinations of

δ
(
Eα −Eµ − i

τ
logλk

)
,

λk , k = 1,2, being the eigenvalues of the matrixM. It is the complex shift in the argument of the delta that converts
the complex exponentials in the spectral decomposition (28) into an exponential growing quantity.

In both Cases 2 and 3 the Floquet spectrum is absolutely continuous. Nevertheless the rate of growth of the
traces is quite different. These examples suggest that the critical role is actually played by the analytic nature of
the phase-space operator kernelsx(ν,µ) andp(ν,µ). This will further clarified in Section 4.

4. Sensitive dependence in quantum mechanics [8,9]

Let us denote the dynamical variable appearing in Eq. (13) as

(29)∆(t)=
∥∥∥∥ Tr′{ρ0xH (t)}

Tr′{ρ0pH (t)}
∥∥∥∥.

In the three examples studied in the preceding section this dynamical quantity shows no growth in the free motion
case, polynomial growth for space-dependent kicks and exponential growth for the electromagnetic-like kicks. The
second case, as well as the study of the standard map in Ref. [2], clearly show the taming effect that quantum
mechanics has on classical chaos. Nevertheless∆(t), as defined in Eq. (29), is the quantum observable that
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corresponds to the notion of separation of nearby trajectories in the classical case. Therefore, for example, a
polynomial growth of this observable signals an higher degree of dynamical complexity that no growth at all.
Therefore, in view of the widespread quantum suppression of exponential growth, it makes sense to characterize
different degrees of quantum dynamical complexity by a more general notion of sensitive dependence. We define:

Definition. Quantum dynamics is sensitive-dependent in the support ofρ0 if for any T andM > 0, there is at > T

such that(∆(t)/∆(0)) >M.

The above definition allows for rates of growth slower than exponential and even for oscillations of the ratio
∆(t)/∆(0). It only requires it to be unbounded.

In the examples of the preceding section, free motion is not sensitive-dependent, whereas thex-dependent kicks
in Case 2 are polynomial sensitive-dependent and the non-local (electromagnetic) kicks in Case 3 in Section 3 are
exponential sensitive-dependent.

A precise mathematical characterization of when each type of sensitive-dependence is to be expected, is
possible. This uses the well-known space of ultradistributions of compact support [4,5] and the corresponding
Fourier image.

Let Xn = {z : z ∈ C, |z| > n} andBn be the Banach space of complex functions analytic inXn and continuous
in Xn with norm

(30)‖φ‖n = sup
z∈Xn

|φ(z)|.

The space of ultradistributions of compact supportUc is the inductive limit of the spacesBn. Its dual is the
space of entire functions. An important subspace ofUc is the space of distributions of compact supportDc, the
correspondence being established by the injective (but not surjective) mapping (the Stieltjes transform)

(31)Sf (z)= 1

2πi

∫
6

f (λ)

λ− z
dλ.

Wheneverf is a distribution of compact support, the ultradistributionSf ∈ Uc vanishes at infinity.
On the other hand the Fourier transform establishes a correspondence between the space of ultradistributions of

compact support and the space of functions of exponential growth.
An entire functionΨ (z) is said to be of exponential growth if and only if there are constantsα andβ such that

|Ψ (z)| � αeβ|z|, ∀z ∈ C. The vector space of these functions will be denoted byHe. The Fourier transform

(32)(Fφ)(x)=
∫
6

eixλφ(λ) dλ

with φ ∈ Uc is a bijective linear map ofUc overHe .
On the other hand the restriction ofF to the subspaceDc establishes an isomorphism betweenDc and the

subspace ofHe consisting of entire functions with polynomially bounded growth on horizontal strips around the
real axis.

Now noticing that, in the energy differences(Eµ −Eν) variable, the integral in Eq. (28) is the Fourier transform
of the kernels

(33)K(µ, ν)= ρ0(µ, ν)

(
x(ν,µ)

p(ν,µ)

)

we conclude:
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Proposition. A necessary condition for exponential sensitive dependence in quantum dynamics is that the kernel
K(µ, ν) as a function of the energy differences Eµ − Eν be a member of Uc/Dc. If the kernel belongs to Dc then
there is, at most, polynomial growth.

Cases 2 and 3 in Section 3 are examples where the kernels belong in the first case toDc and in the second to
Uc/Dc.
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