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Abstract
In the framework of bilinear control of the Schrödinger equation, it has been
proved that the reachable set has a dense complement in S ∩ H2. Hence, in
this setting, exact quantum control in infinite dimensions is not possible. On
the other hand, it is known that there is a simple choice of operators which,
when applied to an arbitrary state, generate dense orbits in Hilbert space.
Compatibility of these two results is established in this paper and, in particular,
it is proved that the closure of the reachable set of bilinear control is dense in
S ∩ H2. The requirements for controllability in infinite dimensions are also
related to the properties of the infinite-dimensional unitary group.

PACS numbers: 03.65.−w, 02.30.Yy

1. Introduction

The problem of controllability of quantum systems in finite dimensions has been settled in
many papers (see for example [1–6]). In contrast, for infinite-dimensional quantum systems,
a few questions are still open [7, 8].

In the framework of bilinear control

i
∂

∂t
ψ (x, t) = (H0 + g(t)B)ψ (x, t) (1)

with g (t) ∈ L2 ([0, T ]) and operators such that H0 generate a continuous semigroup and B
is bounded; Turinici [9] has adapted a result of Ball–Marsden–Slemrod [10] to show that the
set of reachable states from any ψ0 ∈ S ∩ H2 has a dense complement in S ∩ H2, S being
the Hilbert sphere and H2 the W 2,2 Sobolev space. This is a very general result that applies
whenever the operators in (1) generate a piecewise (in time) countable sequence of continuous
evolution operators. Then, because continuous maps map compact sets into compact sets, the
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reachable set is a countable union of compact sets. In infinite-dimensional complete metric
spaces, compact sets are nowhere dense; hence, by Baire’s theorem, the reachable set is a
first category set with dense complement. Therefore, exact bilinear controllability cannot be
achieved in S ∩ H2.

Several ways may be devised to go beyond this result. Compactness is an internal property
of sets but nowhere density is not; it depends on the ambient space. Therefore, for example in
a higher regularity space, exact controllability might be achieved. This is the situation in the
local controllability results [11, 12] in S ∩ H7. Another less explored possibility would be to
choose a control operator B that does not generate a continuous evolution operator.

However, what is really important from the physical point of view is not exact but
approximate controllability, that is, the possibility of approaching any target state with arbitrary
accuracy. In the bilinear control setting in S ∩ H2, this would correspond to prove that the
reachable set is dense in S∩H2. This is likely to happen because the closure of a first category
set is not in general of first category. In fact, the closure of a linear set is of first category if
and only if it is itself nowhere dense.

Results on approximate controllability in infinite dimensions already exist in particular
cases or imposing some restrictions on the H0 and B operators or on their domains
[13–17]. For example, the exact controllability in the H7 Sobolev space for a 1D potential, in
[11, 12], implies approximate controllability in L2. In [14] the spectrum is considered to have
only finitely many discrete eigenvalues and in [13] the domain must be bounded. In [16]
approximate controllability requires the spectrum of H0 to be non-resonant and the potential
B to couple directly or indirectly every pair of eigenvectors of H0. However these conditions
were later shown [17] to be generic in some sense.

Also, the authors in [18] developed the notion of finitely controllable infinite-dimensional
systems. They consider a nested set of finite-dimensional subspaces of Hilbert space of which
the smallest one is controllable and in each subspace Hα acts a set Gα of operators such that
any orbit generated by exp (Gα) contains a vector in a lower dimensional subspace. Then
they prove that any vector in one of the finite-dimensional subspaces may be mapped into any
other vector in another finite-dimensional subspace. This is a powerful result with practical
applications but is not infinite-dimensional controllability. The subtlety of this difference is
related to the fact that G∞ (equation 12) is a proper subgroup of the infinite-dimensional
unitary group (see section 3 for details).

Here we follow a different approach. The fact that approximate controllability is possible
in S had already been proved in [19] by the explicit construction of a small set of unitary
operators that, operating in any ψ0 ∈ S, reach an arbitrarily small neighborhood of any target
state ψ . This result has been later generalized to open quantum systems [20]. However, this
does not settle the question of approximate bilinear controllability because it is not obvious
that the unitary operators used in [19] can be generated in the setting of equation (1).

This is one of the purposes of this paper, namely to show that, given any initial and
target states (ψ0, ψ) and an approximation accuracy δ, it is possible to generate by bilinear
control the required evolution. Use will be made of the results in [19], which allows us to
prove infinite-dimensional controllability with very mild conditions on the free Hamiltonian
H0. Approximations of the shift operator play an important role in this construction. Why the
shift operator or some other essentially infinite-dimensional operator is essential for control
in infinite dimensions is related to the properties of the infinite-dimensional unitary group.
This is explained in detail in section 3 and an alternative representation of the shift operator
is also described. The role of essentially infinite-dimensional operators in the controllability
results may also shed some light on the nature of the operator conditions used in past attempts
to prove approximate controllability in infinite dimensions.
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2. Approximate bilinear control in infinite dimensions

The set of operators [19] that were shown to implement approximate controllability in infinite
dimensions are the operators of a U(2) group and the shift operator. By the choice of a
countable basis, any separable Hilbert space is shown to be isomorphic to �2 (Z), the space of
double-infinite square-integrable sequences

a = {. . . , a−2, a−1, a0, a1, a2, . . .} ∈ �2(Z) (2)

|a| = ( ∑∞
−∞ |ak|2

) 1
2 < ∞, with basis

ek = {. . . , 0, 0, 1k, 0, 0, . . .}.
It was in this setting that the results in [19] were derived, the shift operator U+ being

U+ek = ek+1, k ∈ Z (3)

with inverse

U−1
+ ek = ek−1, k ∈ Z (4)

and the U(2) group operating in the linear space spanned by e0 and e1 and leaving the
complementary space unchanged. It was then shown that once initial and target states (ψ0, ψ)

and an accuracy δ are defined, one may, by the application of these operators, go in a finite
number of steps, from ψ0 to ψn such that ‖ψ − ψn‖ < δ.

In the space of double infinite sequences, one may choose a representation Hilbert space
L2(0, 2π), the domain of the operators H0 and B being

D = {ψ ∈ H2;ψ(0) = ψ(2π)}.
Then {

ek = 1√
2π

eikθ ; k ∈ Z

}

and the shift operator is

U+ = eiθ . (5)

Using this background knowledge we now prove.

Proposition. Approximate bilinear quantum control, with H0 generating a strongly
continuous semigroup and bounded control operators B, is possible in infinite dimensions.
That is, the reachable set is dense in S ∩ H 2.

The proof proceeds by showing that the U(2) and the shift operators may be approximated
with arbitrary precision by bounded operators in the bilinear control context.

Let U1, U2, . . . , Un be the finite set of U(2) and shift operators that take ψ0 to a state
ψn through a sequence of states ψ1 = U1ψ0, ψ2 = U2ψ1, . . . , ψn = Unψn−1 such that
‖ψ − ψn‖ < δ. Now, considering another set of approximating operators U ′

1, U
′
2, . . . , U

′
n,

and defining ψ ′
1 = U ′

1ψ0, ψ
′
2 = U ′

2ψ
′
1, . . . , ψ

′
n = U ′

nψ
′
n−1, we have the following estimate:

ψ ′
n − ψn =

n∑
k=1

U ′
n . . . U ′

n−k+2(U
′
n−k+1 − Un−k+1)ψn−k

∥∥ψ ′
n − ψn

∥∥ �
n∑

k=1

‖(U ′
n−k+1 − Un−k+1)ψn−k‖. (6)
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The generator θ of the shift operator (5) is not an operator in D but it can be approximated
by bounded operators in D. Consider the following family of bounded operators in D:

Bp (θ) = π − 2
p∑

k=1

sin (kθ)

k
(7)

and, for an arbitrary normalized state φ = ∑
k akek in L2(0, 2π), compute

‖(U+ − eiBp(θ))φ‖2 = 1

2π

∥∥∥∥∥
∑

k

ak ei(k+1)θ −
∑

k

ak ei(kθ+Bp(θ))

∥∥∥∥∥
2

= 1

π

∫ 2π

0
dθ

∑
k

∑
k′

a∗
k ak′ e−i(k−k′)θ (1 − cos(Bp(θ) − θ))

� 1

π

⎧⎨
⎩

∫ 2π

0
dθ

⎛
⎝1 − cos

⎛
⎝ ∞∑

k=p+1

2

k
sin (kθ)

⎞
⎠

⎞
⎠

⎫⎬
⎭ .

The argument of the cosine in the last term is a Fourier series remainder which, for θ 	= 2π ,
may be made as small as desired by choosing a sufficiently large p. Because the inequality
does not depend on φ, we obtain a norm estimate∥∥U+ − eiBp(θ)

∥∥ � εU+ (p) (8)

for arbitrarily small εU+ (p).
Now, if H0 generates a strongly continuous semigroup, then H0 + g (t) Bp (θ) with Bp (θ)

and g (t) bounded is also the generator of a strongly continuous semigroup [22]. Then

‖( eiBp(θ) − ei�t(H0+ 1
�t

Bp(θ)))ψ‖ � εB(�t, ψ)

for any ψ , εB (�t, ψ) being as small as desired by a sufficiently small choice of �t .
A similar reasoning applies to a control operator to add to H0 to approximate the U(2)

transformations to precision εU2 (�t, ψ). Now suppose that to reach ψn from the initial state
ψ0 one needs L applications of the shift operator and N U(2) transformations. Then by
choosing εU+ (p), εB (�t, ψ) and εU2 (�t, ψ) such that

L(εU+(p) + εB(�t, ψ)) + NεU2(�t, ψ) � δ

one concludes from (6) that the desired control precision is obtained. This completes the
proof.

3. The shift operator and the infinite-dimensional unitary group

In the proof of approximate controllability in infinite dimensions in [19], the shift operator
played an important role. Of course, the choice of operators implementing quantum control
in infinite dimensions is not unique, but the fact that an operator with properties similar to
the shift is needed reflects the special features of the infinite-dimensional unitary group. The
infinite-dimensional unitary and orthogonal groups, U (∞) and O (∞), are clearly transitive in
complex and real infinite-dimensional Hilbert space. Therefore, the operators that implement
control in infinite dimensions must somehow be able to generate these groups. The suitable
mathematical setting for the groups U (∞) or O (∞) is a Gelfand triplet

E∗ ⊃ L2(Rd) ⊃ E, (9)

E being a nuclear space obtained as the limit of a sequence of Hilbert spaces with successively
larger norms. An element g of U (∞) is a transformation in E such that

‖gξ‖ = ‖ξ‖. (10)

4



J. Phys. A: Math. Theor. 44 (2011) 135302 R V Mendes and V I Man’ko

By duality 〈x, gξ 〉 = 〈g∗x, ξ 〉, x ∈ E∗, ξ ∈ E, the infinite-dimensional unitary group is also
defined on E∗, the two groups being algebraically isomorphic.

For the harmonic analysis on U (∞) one needs functionals on E∗. U (∞) is a
complexification of O (∞) and a standard result states that if a measure μ is invariant under
O (∞) it must be of the form

μ = aδ0 +
∫

μσ dm (σ)

a sum of a delta and Gaussian measures μσ with variance σ 2. Hence, we are led to consider
the (L2) space of functionals on E∗ with an O(∞)-invariant Gaussian measure

(L2) = L2(E∗, B, μ),

B being generated by the cylinder sets in E∗ and μ the measure with characteristic functional

C(f ) =
∫

S∗
ei〈x,f 〉 dμ(x) = e− 1

2 ‖f ‖2
, x ∈ E∗, f ∈ E.

In conclusion, the proper framework to study transitive actions and functional analysis in
infinite-dimensional quantum spaces is the complex white noise setting [21]. In this context
many useful results are already available. For example, the regular representation of U(∞)

Ugϕ(z) = ϕ(g∗z), z ∈ E∗
c , ϕ ∈ (L2

c)
∼= (L2) ⊗ (L2)

splits into irreducible representations [23] corresponding to the Fock space (chaos expansion)
decomposition of (L2

c)

(L2) = ⊕∞
n=0

( ⊕n
k=0 Hn−k,k

)
,

Hn−k,k being a complex Fourier–Hermite polynomial of degree (n− k) in 〈z, ξ 〉 and of degree
k in 〈z, ξ 〉.

Furthermore, results concerning a classification of the subgroups of U(∞) are useful to
understand the requirements of quantum control in infinite dimensions. In particular one must
distinguish between subgroups that only involve transformations that may be approximated
by finite-dimensional transformations like G∞, obtained as the limit of a sequence of finite-
dimensional unitary groups

Gn = {g ∈ U(∞), g|Vn
∈ U(n), g|V ⊥

n
= I } (11)

G∞ = proj lim
n→∞ Gn (12)

from those that contain transformations changing, in a significant way, infinitely many
coordinates. These group elements are called essentially infinite dimensional (see section 4
for a definition). The essential point to remember is that to generate U(∞), and therefore to be
transitive in infinite dimensions, some essentially infinite-dimensional elements are needed.
This is why the shift operator or some other essentially infinite-dimensional operation is
required for control in S ∩ H2.

In our mathematical construction we have represented a separable Hilbert as a space of
double-infinite sequences. Given the importance of essentially infinite-dimensional operators
for the quantum control in S∩H2 we include in the next section an implementation of the shift
operator in an oscillator-like basis, which may be closer to the usual physical applications.

5
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4. The shift operator in an oscillator-like basis

In the Gelfand triplet setting

E ⊂ H ⊂ E∗

with the white noise measure μ in E∗, choose an orthonormal basis in E

{ξi : i = 0, 1, 2, . . .}.
In this basis one has the usual raising and lowering operators a+ and a and define the operators

A+ : A+ξi = ξi+1

A :
Aξi = ξi−1; i 	= 0
Aξ0 = 0,

that is, A+ = a+ 1√
a+a+1

and A = 1√
a+a+1

a.
The projection operator P0 on the basis state ξ0 is

P0 = |ξ0〉〈ξ0| = 1 − A+A

and in any other state ξn is

Pn = |ξn〉〈ξn| = (A+)nP0(A)n.

The elementary operator Pjk that transforms ξk into ξj is

Pjk = |ξj 〉〈ξk| = (A+)jP0(A)k

and one also define the following parity operators:

P± = 1
2 (1 ± eiπa+a).

Now the operator

U+ = (A+)2P+ + (A)2P− + P01

plays the same role as the shift operator in the space of double-infinite square-integrable
sequences, as may easily be seen by the appropriate renumbering of a double infinite
sequence. Note that this operator is different from the resonant driving field (u(t)x), used
in the discussions of controllability of the harmonic oscillator [24, 25], which together with
free Hamiltonian generates a four-dimensional Lie algebra. U+ together with an SU(2) group
acting in the subspace {ξ0, ξ2} generates an infinite-dimensional Lie algebra and controllability
in infinite dimensions is obtained. U+ is an essentially infinite-dimensional operator. This
notion is rigorously defined through the average power [21], that is,

ap(U+)(x) = lim sup
N→∞

1

N

N∑
n=1

〈x,U+ξn − ξn〉2

x ∈ E∗. If ap(U)(x) for an operator U is positive almost surely for the measure μ in E∗,
the operator is called essentially infinite dimensional. Qualitatively it means that it acts, in
a significant way, in infinitely many coordinates. In the opposite case, if ap(U)(x) = 0
almost surely, then U may be approximated by transformations acting on finite-dimensional
subspaces. The average power of U+ is 2 almost surely.

Other essentially infinite-dimensional operators may be obtained by constructions similar
to the one used for U+. As follows from the nature of the infinite-dimensional unitary group,
at least one such operator (or an arbitrarily close approximation there of) is needed to obtain
density in S ∩ H2.

6
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5. Conclusions

In addition to establishing that under mild conditions the closure of the reachable set of
bilinear control is dense in S ∩H2, we have also put in evidence the special role of essentially
infinite-dimensional operators in quantum control.

The central role here was played by the shift operator and approximations thereof. This
is an operator that behaves like the application of a magnetic field pulse to a charged particle
in a circle (a charged plane rotator), which shifts the eigenstates one level up. Other simple
essentially infinite-dimensional operators are described in [21], which may be used as a guide
to develop control methodologies for infinite-dimensional quantum systems.
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