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Abstract

Accurate control of quantum evolution is an essential requirement for quantum state engineering, laser chemistry, quantum
information and quantum computing. Conditions of controllability for systems with a finite number of energy levels have been
extensively studied. By contrast, results for controllability in infinite dimensions have been mostly negative, stating that full
control cannot be achieved with a finite-dimensional control Lie algebra. Here we show that by adding a discrete operation to a
Lie algebra it is possible to obtain full control in infinite dimensions with a small number of control operators.
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1. Introduction Clark (HTC) [2]. Subsequently an extensive amount of
work has been done, mostly on establishing conditions
To control the time evolution of quantum systems and degrees of controllability for systems with a finite
is an essential step in many new and old applications humber of energy levels. By contrast, results for con-
of quantum theory [1]. Among the fields requiring ac- trollability in the |nf|n|te-d|men3|ongl Hilbert sphere
curate control of quantum mechanical time evolution S# have been mostly negative, stating that full control
are quantum state engineering, cooling of molecular in S# cannot be achieved with a finite-dimensional
degrees of freedom, selective excitation, chemical re- control Lie algebra [2], a result similar to the one ob-
actions and gquantum computing. tained by BaI_I, Marsden and Slemrod for classical con-
The first general results on controllability of quan- trol systems in Banach spaces [3].

tum systems have been obtained by Huang, Tarn and 't seéeémed therefore that control in infinite dimen-
sions would require the use of infinite-dimensional

Lie algebras. This is what happens in the proposal
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By commutation all polynomial Hamiltonians are ob-
tained. Hence, the control algebra, although finitely
generated, is an infinite-dimensional Lie algebra.

The HTC no-go result is based on a local argu-
ment concerning the finite dimensionality of the local
manifold generated by the unitary action of the finite-
dimensional control group. Left open is the question
of whether the local argument extends to the global
action in the Hilbert sphere, which however is proba-
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2. Control in the £2(Z)—Hilbert sphere

Consider the space of double-infinite square-integr-
able sequences

a={...,a_p,a_1,ap,a1,az, ...} € {*(Z),

00 1/2
(Z |ak|2> < o0,
—0o0

la| =

bly true. On the other hand the result does not apply with basis

to non-Lie groups, for example, a Lie group comple-
mented by a discrete operation. This is the kind of sit-
uation that is explored in this Letter. As a physical mo-
tivation for the kind of control situation we deal with,

consider a charged particle in a circle (a charged plane

rotator) with Hilbert spacé.2(0, 27) and free Hamil-
tonian

82
_8—(p2
¢ € [0, 27), defined in the domain

Hp =

D(Ho) = {f € AC?; f(0) = f(2m)},

where AC? stands for functions with absolutely con-
tinuous first derivative. The eigenstates Hf are
{Ik) = ek¢: k € Z} with eigenvalue?.

An application of a magnetic field pulse corre-
sponds to the unitary operator

Uy =e'?
which shifts the eigenstates one level up
Uilk) =k + 1),
with inverse
ULtk = 1k — 1).
Because the energy level spacing is not uniform

AEy=k?—(k—1°=2k—1

one may, by resonant and non-resonant excitation,

make arbitrary (2) transformations between a partic-
ular pair of successive levels [5]. As it turns out (Sec-
tion 2), these simple controls (namély., U;l, U(2))
are sufficient for full controllability of this infinite-
dimensional system.

ex={...,0,0,1,0,0,...},

o
a= Zakek.

—00

1)
Define:

(i) Alinear operatof/ acting as a shift on the basis

states

Uier=ery1, keZ

and its inverse

Uile = Z
y ek=¢ek-1, ke

(i) Another linear operatofl

Ieg = ey,
ITey = e,

ITey =e¢r, keZ\{0,1}.

Then

11, = UﬁHU;n

acts as

ITye, = €n+1,
Iyepr1=ey,
k#n,n+1

In the sequence = >~ _ arex it exchanges:, with
ap+1. Likewise

ITey = ey,

Lemma 1. Givena € (2(Z), k € Z, | € Z, the linear
operatoriT x4 (I € N) defined byTy 11 = T} and

My gv1a =gy 1 -+ Ty 201 -+ - gy a,

)
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for [ > 2 exchanges the coefficients @f and e,
in (1), thatis

Iy k10 = agyex + agepy + Z arey.
rek ket

Theorem 1. Let G (U4, IT) stand for the group
generated by/,, Uy and 1. Then for any0#a €
(%(Z) the linear span o6 (U, IT)a is dense it?(Z).

Proof. It is sufficient to show thabt 1. G(Uy, IT)a
implies »=0. Supposeb = ¢, for some k € Z.
Sincea # 0 there isl € N U {0} such that at least
one of the numbersy,; or a;_; is different from
zero. Then(b, Iy j+1a) = aky; or (b, [Tx_;xa) =
ax—;, a contradiction. Similarly if bottu and b are

Lemma 2. Suppose: is a terminating normalized
sequence. Then, there gse G(U4, U(2)) such that
gep=a.

Proof. Let

a=a_nye_-N+---+apeo+---+ayen.

By U (2) transformations in théeg, e1} subspace and
use of thell; 4+; operators (Eq. (2)) one constructs
with operatorsg; € G(U4, U(2)) the following se-
guence

g1e0 = xi1e0+a-ye—y =1,

82011 = X260 +A-_N+16—N+1 T Ad—_N€—_N =2,

terminating sequences, that is, sequences with a finite ¢, o,y 1 = xoyeg+ Zakek = oo,

number of non-zero elements.

Suppose now that is terminating but: is not. Let
by =0 for |k| > N’. ThenaN < N’ such thatb, a) =
>Ny biay =0 and eitheb’ay # 0 orb* ya_y #0.
Then there isl such thatayy; # ay or a_y_; #
an. Hence(b, My y+ia) = YV N biar + byan+i #
0 or (b, My, —n—1a) = YN 3 biay + bya_n— #0,
a contradiction. Similarly fos terminating and non-
terminating.

If neither a nor b terminates, then there are

pairsay # a; andb,, # b,. With appropriateg, g’ €
G (U4, IT) we obtain

(b, ga) =by,ar + bya; + biam + bfay
+ Z bra, =0,
r#k,l,m,n
(b, g'a) =b}ax + b}a; + bia, + bfay
+ Z bfa, =0.
r#k,l,m,n

Henceb;, ay + bjia; = bjar + b},a;, which is possible
only if eitherb,, = b, or a; = a;, a contradiction. O

Now instead of thdT operator we consider&é(2)
group operating in the linear space spanneddasgnd
e1 and as the identity 0f(Z) © {eo, e1}. In particular
IT1 e U_2).

N
-N

82N+102N = a.

Finally

82N+182N - - - 8281€0 =a. O

Proof of Theorem 2. Considera, b € ¢2(Z) with
la] = |b]| = 1. Choose andN such that

N

o= Zaké’k >1—¢,
—N
N

B=|> biex|>1-¢.
—N

By the Lemma 2 there arg, g’ € G(U+, U(2)) such
that

N
g arex = weo,
—-N

N
o
g'(aeo) == > brex.
'8 —N
Hence

|b—g’ga|<28+‘1—%‘<38. m|

In conclusion: given any initial statesB a € (%(Z)

it is possible by the unitary action of an element in
G(U4,U(2)) to approach as closest as desired any
other stateb in ¢2(Z) with the same norm.

Theorem 2. For any a € (3(Z), |a| = 1, the set
G(Uy,U(2)a is dense in thé?(Z)—Hilbert sphere.
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