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Abstract

Accurate control of quantum evolution is an essential requirement for quantum state engineering, laser chemistry,
information and quantum computing. Conditions of controllability for systems with a finite number of energy levels hav
extensively studied. By contrast, results for controllability in infinite dimensions have been mostly negative, stating
control cannot be achieved with a finite-dimensional control Lie algebra. Here we show that by adding a discrete oper
Lie algebra it is possible to obtain full control in infinite dimensions with a small number of control operators.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

To control the time evolution of quantum system
is an essential step in many new and old applicati
of quantum theory [1]. Among the fields requiring a
curate control of quantum mechanical time evolut
are quantum state engineering, cooling of molec
degrees of freedom, selective excitation, chemica
actions and quantum computing.

The first general results on controllability of qua
tum systems have been obtained by Huang, Tarn
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Clark (HTC) [2]. Subsequently an extensive amoun
work has been done, mostly on establishing conditi
and degrees of controllability for systems with a fin
number of energy levels. By contrast, results for c
trollability in the infinite-dimensional Hilbert spher
SH have been mostly negative, stating that full con
in SH cannot be achieved with a finite-dimension
control Lie algebra [2], a result similar to the one o
tained by Ball, Marsden and Slemrod for classical c
trol systems in Banach spaces [3].

It seemed therefore that control in infinite dime
sions would require the use of infinite-dimension
Lie algebras. This is what happens in the propo
of Lloyd and Braunstein [4] for quantum computati
over continuous variables. They propose, for the c
struction of a universal quantum computer, the s
cessive application of quadratic Hamiltonians an
higher order one (for example, the Kerr Hamiltonia
.
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By commutation all polynomial Hamiltonians are o
tained. Hence, the control algebra, although finit
generated, is an infinite-dimensional Lie algebra.

The HTC no-go result is based on a local arg
ment concerning the finite dimensionality of the loc
manifold generated by the unitary action of the fini
dimensional control group. Left open is the quest
of whether the local argument extends to the glo
action in the Hilbert sphere, which however is prob
bly true. On the other hand the result does not ap
to non-Lie groups, for example, a Lie group comp
mented by a discrete operation. This is the kind of
uation that is explored in this Letter. As a physical m
tivation for the kind of control situation we deal with
consider a charged particle in a circle (a charged p
rotator) with Hilbert spaceL2(0,2π) and free Hamil-
tonian

H0 = − ∂2

∂ϕ2

ϕ ∈ [0,2π), defined in the domain

D(H0)=
{
f ∈AC2;f (0)= f (2π)},

whereAC2 stands for functions with absolutely co
tinuous first derivative. The eigenstates ofH0 are
{|k〉 = eikϕ; k ∈ Z} with eigenvaluesk2.

An application of a magnetic field pulse corr
sponds to the unitary operator

U+ = eiϕ

which shifts the eigenstates one level up

U+|k〉 = |k + 1〉,
with inverse

U−1+ |k〉 = |k − 1〉.
Because the energy level spacing is not uniform

�Ek = k2 − (k − 1)2 = 2k − 1

one may, by resonant and non-resonant excitat
make arbitraryU(2) transformations between a parti
ular pair of successive levels [5]. As it turns out (Se
tion 2), these simple controls (namelyU+, U−1+ , U(2))
are sufficient for full controllability of this infinite-
dimensional system.
2. Control in the �2(Z)—Hilbert sphere

Consider the space of double-infinite square-inte
able sequences

a = {. . . , a−2, a−1, a0, a1, a2, . . .} ∈ �2(Z),

|a| =
( ∞∑

−∞
|ak|2

)1/2

<∞,

with basis

ek = {. . . ,0,0,1k,0,0, . . .},

(1)a =
∞∑

−∞
akek.

Define:

(i) A linear operatorU+ acting as a shift on the bas
states

U+ek = ek+1, k ∈ Z

and its inverse

U−1+ ek = ek−1, k ∈ Z.

(ii) Another linear operatorΠ

Πe0 = e1,
Πe1 = e0,
Πek = ek, k ∈ Z \ {0,1}.

Then

Πn =Un+ΠU−n+
acts as

Πnen = en+1,

Πnen+1 = en,
Πek = ek, k �= n,n+ 1.

In the sequencea =∑∞
−∞ akek it exchangesan with

an+1. Likewise

Lemma 1. Givena ∈ �2(Z), k ∈ Z, l ∈ Z, the linear
operatorΠk,k+l (l ∈ N) defined byΠk,k+1 =Πk and

(2)

Πk,k+la =ΠkΠk+1 · · ·Πk+l−2Πk+l−1 · · ·Πk+1Πka,
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for l � 2 exchanges the coefficients ofek and ek+l
in (1), that is

Πk,k+la = ak+lek + akek+l +
∑

r �=k,k+l
arer .

Theorem 1. Let G(U+,Π) stand for the group
generated byU+, U−1+ andΠ . Then for any0 �= a ∈
�2(Z) the linear span ofG(U+,Π)a is dense in�2(Z).

Proof. It is sufficient to show thatb ⊥ G(U+,Π)a
implies b= 0. Supposeb = ek for some k ∈ Z.
Since a �= 0 there is l ∈ N ∪ {0} such that at leas
one of the numbersak+l or ak−l is different from
zero. Then(b,Πk,k+la) = ak+l or (b,Πk−l,ka) =
ak−l , a contradiction. Similarly if botha and b are
terminating sequences, that is, sequences with a fi
number of non-zero elements.

Suppose now thatb is terminating buta is not. Let
bk = 0 for |k|>N ′. Then∃N �N ′ such that(b, a)=∑N

−N b∗
kak = 0 and eitherb∗

NaN �= 0 orb∗−Na−N �= 0.
Then there isl such thataN+l �= aN or a−N−l �=
aN . Hence(b,ΠN,N+la)=∑N−1

−N b∗
kak + b∗

NaN+l �=
0 or (b,ΠN,−N−la) = ∑N−1

−N b∗
kak + b∗

Na−N−l �= 0,
a contradiction. Similarly fora terminating andb non-
terminating.

If neither a nor b terminates, then there a
pairsak �= al andbm �= bn. With appropriateg,g′ ∈
G(U+,Π) we obtain

(b, ga)= b∗
mak + b∗

nal + b∗
kam + b∗

l an

+
∑

r �=k,l,m,n
b∗
r ar = 0,

(b, g′a)= b∗
nak + b∗

mal + b∗
kam + b∗

l an

+
∑

r �=k,l,m,n
b∗
r ar = 0.

Henceb∗
mak + b∗

nal = b∗
nak + b∗

mal , which is possible
only if eitherbm = bn or ak = al , a contradiction. ✷

Now instead of theΠ operator we consider aU(2)
group operating in the linear space spanned bye0 and
e1 and as the identity on�2(Z)�{e0, e1}. In particular
Π ∈ U(2).

Theorem 2. For any a ∈ �2(Z), |a| = 1, the set
G(U+,U(2))a is dense in the�2(Z)—Hilbert sphere.
Lemma 2. Supposea is a terminating normalized
sequence. Then, there isg ∈ G(U+,U(2)) such that
ge0 = a.

Proof. Let

a = a−Ne−N + · · · + aoe0 + · · · + aNeN.
By U(2) transformations in the{e0, e1} subspace an
use of theΠk,k+l operators (Eq. (2)) one construc
with operatorsgi ∈ G(U+,U(2)) the following se-
quence

g1e0 = x1e0 + a−Ne−N = α1,

g2α1 = x2e0 + a−N+1e−N+1 + a−Ne−N = α2,

...

g2Nα2N−1 = x2Ne0 +
N∑

−N
akek = α2N,

g2N+1α2N = a.

Finally

g2N+1g2N · · ·g2g1e0 = a. ✷
Proof of Theorem 2. Considera, b ∈ �2(Z) with
|a| = |b| = 1. Chooseε andN such that

α =
∣∣∣∣∣
N∑

−N
akek

∣∣∣∣∣> 1− ε,

β =
∣∣∣∣∣
N∑

−N
bkek

∣∣∣∣∣> 1− ε.

By the Lemma 2 there areg,g′ ∈ G(U+,U(2)) such
that

g

N∑
−N
akek = αe0,

g′(αe0)= α

β

N∑
−N
bkek.

Hence

|b− g′ga| � 2ε+
∣∣∣∣1− α

β

∣∣∣∣� 3ε. ✷
In conclusion: given any initial state 0�= a ∈ �2(Z)

it is possible by the unitary action of an element
G(U+,U(2)) to approach as closest as desired
other stateb in �2(Z) with the same norm.
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Any infinite-dimensional separable Hilbert spa
is isomorphic to�2 [6]. Therefore the results hav
a large degree of generality. However, depending
the Hilbert space realization for each concrete infin
dimensional quantum system, the control opera
discussed here may or may not be easy to implem
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