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Abstract

Hilbert space operators may be mapped onto a space of ordinary functions (operator symbols) equipped
with an associative (but noncommutative) star-product. A unified framework for such maps is re-
viewed. Because of its clear probabilistic interpretation, a particular class of operator symbols (tomo-
grams) is proposed as a framework for quantum information problems. Qudit states are identified with
maps of the unitary group into the simplex. The image of the unitary group on the simplex provides a
geometrical characterization of the nature of the quantum states. Generalized measurements, typical
quantum channels, entropies, and entropy inequalities are discussed in this setting.
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1. Introduction

Algebras of Hilbert space operators may be mapped onto algebras of ordinary functions on linear
spaces with an associative but non-commutative star product (see, e.g., [1,2]). The images of the Hilbert
space operators are called operator symbols. Weyl maps [3–5], s-ordered operator symbols [6], their partial
cases [7–11], and tomograms [12–14] are examples of this correspondence between Hilbert space operator
algebras and function algebras [15, 16]. In the case of tomograms, the operator symbols of the density
operators of quantum mechanics are families of ordinary probability distributions [15,17–19].

A unified framework for operator symbols is presented in Sec. 2 and their main properties are reviewed.
Many of the results in Secs. 2 and 3 are scattered in previous publications and are collected here to
make the paper reasonably self-contained. For proofs and detailed derivations, we refer to the original
references.

Finite-dimensional systems (spin tomograms) are studied in Sec. 3. These operator symbols are then
proposed as a framework for quantum information problems. Qudit states are identified with maps
of the unitary group into the simplex. The image of the unitary group on the simplex provides a
geometrical characterization of the nature of the quantum states. In the remaining sections, generalized
measurements, typical quantum channels, entropies, and entropy inequalities are discussed in this setting.

In contrast with Secs. 2 and 3, the remaining sections contain almost exclusively new results or a
reinterpretation of known results within the operator symbol framework.
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2. Operator Symbols for Quantum Mechanical Observables

In quantum mechanics, observables are self-adjoint operators acting on the Hilbert space of states H.
Operators may be mapped onto functions in a vector space X in the following way:

Given the Hilbert space H and a trace-class operator Â acting on this space, let Û(x) be a family of
operators on H labeled by vectors x ∈ X. We construct the c-number function

{
fÂ(x) : X → C

}
(and

call it the symbol of the operator Â) by

fÂ(x) = Tr
[
ÂÛ(x)

]
. (1)

Let us suppose that relation (1) has an inverse, i.e., there is a set of operators D̂(x) acting on the Hilbert
space such that

Â =
∫
X
fÂ(x)D̂(x) dx, Tr Â =

∫
X
fÂ(x) Tr D̂(x) dx. (2)

Equations (1) and (2) define an invertible map from the operator Â onto the function fÂ(x). Multiplying
both sides of Eq. (2) by the operator Û(x′) and taking the trace, one obtains a consistency condition for
the operators Û(x′) and D̂(x)

Tr
[
D̂(x)Û(x′)

]
= δ

(
x− x′

)
.

For two functions fÂ(x) and fB̂(x) corresponding to two operators Â and B̂, a star-product is defined
by

fÂB̂(x) = fÂ(x) ∗ fB̂(x) := Tr
[
ÂB̂Û(x)

]
. (3)

Since the standard product of operators on a Hilbert space is associative, Eq. (3) also defines an associative
product for the functions fÂ(x), that is,

fÂ(x) ∗
(
fB̂(x) ∗ fĈ(x)

)
=
(
fÂ(x) ∗ fB̂(x)

)
∗ fĈ(x). (4)

Let us suppose that there is another map, analogous to the one in (1) and (2), defined by the operator
families Û1(y) and D̂1(y). Then one has

φÂ(y) = Tr
[
ÂÛ1(y)

]
(5)

and the inverse relation

Â =
∫
φA(y)D̂1(y) dy. (6)

The function fÂ(x) will be related to the function φÂ(y) by

φÂ(y) =
∫
fÂ(x) Tr

[
D̂(x)Û1(y)

]
dx (7)

with the inverse relation

fÂ(x) =
∫
φÂ(y) Tr

[
D̂1(y)Û(x)

]
dy. (8)

508



Volume 27, Number 6, 2006 Journal of Russian Laser Research

The functions fÂ(x) and φÂ(y) corresponding to different maps are connected by the invertible integral
transform given by Eqs. (7) and (8) with the intertwining kernels

K1(x,y) = Tr
[
D̂(x)Û1(y)

]
(9)

and

K2(x,y) = Tr
[
D̂1(y)Û(x)

]
. (10)

Using formulas (1) and (2), one writes a composition rule for two symbols fÂ(x) and fB̂(x) determining
their star-product

fÂ(x) ∗ fB̂(x) =
∫
fÂ(x′′)fB̂(x′)K(x′′,x′,x) dx′ dx′′. (11)

The kernel in (11) is determined by the trace of the product of the operators used to construct the map

K(x′′,x′,x) = Tr
[
D̂(x′′)D̂(x′)Û(x)

]
. (12)

Equation (12) can be extended to the case of the star-product of N symbols of operators Â1, Â2, . . . , ÂN

fÂ1
(x) ∗ fÂ2

(x) ∗ · · · ∗ fÂN
(x) =

∫
fÂ1

(x1)fÂ2
(x2) · · · fÂN

(xN )

×K (x1,x2, . . . ,xN ,x) dx1 dx2 · · · dxN (13)

with kernel

K (x1,x2, . . . ,xN ,x) = Tr
[
D̂(x1)D̂(x2) · · · D̂(xN )Û(x)

]
. (14)

The trace of an operator ÂN is determined by

Tr ÂN =
∫
fÂ(x1)fÂ(x2) · · · fÂ(xN )Tr

[
D̂(x1)D̂(x2) · · · D̂(xN )

]
dx1 dx2 · · · dxN . (15)

Consider now a linear superoperator L acting in linear space of operators. The map of operators
Â→ LÂ induces a corresponding map of their symbols

fÂ(x) → L̂fÂ(x) = fLÂ(x). (16)

The integral form of this map

L̂fÂ(x) =
∫

ΠL(x,x′)fÂ(x′) dx′ (17)

is determined by the kernel

ΠL(x,x′) = Tr
[
Û(x)

(
LD̂(x′)

)]
. (18)
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2.1. The Weyl Operator Symbols

As operator family Û(x), we take the Fourier transform of the displacement operator d(ξ)

Û(x) =
∫

exp
(
x1 + ix2√

2
ξ∗ − x1 − ix2√

2
ξ

)
d(ξ)π−1 d2ξ, (19)

where ξ is a complex number, ξ = ξ1 + iξ2, and the vector x = (x1, x2) may be interpreted as x = (q, p),
with q and p being the position and momentum. One sees that Tr Û(x) = 1. The displacement operator
(creating coherent states from the vacuum) may be expressed through creation and annihilation operators
in the form

d(ξ) = exp(ξâ† − ξ∗â), (20)

â =
q̂ + ip̂√

2
, â† =

q̂ − ip̂√
2
. (21)

The operator â and its hermitian conjugate â† satisfy the boson commutation relation [â, â†] = 1̂.
The Weyl symbol for an operator Â reads

WÂ(x) = Tr
[
ÂÛ(x)

]
, (22)

Û(x) being given by Eq. (19). The Weyl symbols of the identity operator 1̂, the position operator q̂, and
the momentum operator p̂ are

W1̂(q, p) = 1, Wq̂(q, p) = q, Wp̂(q, p) = p. (23)

The inverse transform, which expresses the operator Â through its Weyl symbol, is

Â =
∫
WÂ(x)Û(x)

dx
2π

. (24)

That is, the operator D̂(x) in formula (2) is related to Û(x) by

D̂(x) =
Û(x)
2π

. (25)

The star-product of the Weyl symbols of two operators Â1 and Â2 expressed through Weyl symbols by

Â1 =
∫
WÂ1

(x′)Û(x′)
dx′

2π
, Â2 =

∫
WÂ2

(x′′)Û(x′′)
dx′′

2π
, (26)

with vectors x′ = (x′1, x
′
2) and x′′ = (x′′1, x

′′
2), is the operator Â with Weyl symbol

WÂ(x) = WÂ1
(x) ∗WÂ2

(x) =
∫
dx′ dx′′

π2
WÂ1

(x′)WÂ2
(x′′)

× exp
{

2i
[
(x′2 − x2)(x1 − x′′1) + (x′1 − x1)(x′′2 − x2)

]}
. (27)
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2.2. The s-Ordered Operator Symbols

The s-ordered symbol [6] WÂ(x, s) of the operator Â is

WÂ(x, s) = Tr
[
ÂÛ(x, s)

]
, (28)

with a real parameter s, real vector x = (x1, x2), and operator Û(x, s)

Û(x, s) =
2

1− s
d(αx) qâ

†â(s) d(−αx), (29)

the displacement operator being

d(αx) = exp
(
αxâ

† − α∗xâ
)
. (30)

Also
αx = x1 + ix2, α∗x = x1 − ix2, x1 =

q√
2
, x2 =

p√
2

(31)

and

q(s) =
s+ 1
s− 1

. (32)

The coefficient in Eq. (29) leads to Tr
[
Û(x, s)

]
= 1, meaning that the symbol of the identity operator

equals 1.
The operator Â is obtained from

Â =
1
π

1 + s

1− s

∫
WÂ(x, s)Û(x,−s) d(x). (33)

This means that, for s-ordered symbols, the operator D̂(x) in the general formula (2) takes the form

D̂(x) =
1
π

1 + s

1− s
Û(x,−s). (34)

If Â is a density operator ρ̂ [20–22], for the values of the parameters s = 0, 1,−1, the corresponding
symbols are, respectively, the Wigner, Glauber–Sudarshan, and Husimi quasidistributions.

For the explicit form of the kernel for the product of N operator symbols, we refer to [15].

2.3. The Tomographic Operator Symbols

Density operators may be mapped onto probability distribution functions (tomograms) of one random
variable X and two real parameters µ and ν. This map has been used to provide a formulation of
quantum mechanics, in which quantum states are described by a parametrized family of probability
distributions [17, 18], alternative to the description of the states by wave functions or density operators.
The tomographic map has been used to reconstruct the quantum state, to obtain the Wigner function by
measuring the state tomogram, to define quantum characteristic exponents [23], and for the simulation
of nonstationary quantum systems [24].
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Here we discuss the tomographic map as an example of the general operator symbol framework. The
operator Â is mapped onto the function fÂ(x), where x ≡ (X,µ, ν), which we denote as wÂ(X,µ, ν)
depending on the coordinate X and the reference frame parameters µ and ν

wÂ(X,µ, ν) = Tr
[
ÂÛ(x)

]
. (35)

The function wÂ(X,µ, ν) is the symbol of the operator Â. The operator Û(x) is

Û(x) ≡ Û(X,µ, ν) = exp
(
iλ

2
(q̂p̂+ p̂q̂)

)
exp

(
iθ

2
(
q̂2 + p̂2

))
| X〉〈X |

× exp
(
− iθ

2
(
q̂2 + p̂2

))
exp

(
− iλ

2
(q̂p̂+ p̂q̂)

)
= Ûµν | X〉〈X | Û †

µν , (36)

where q̂ and p̂ are position and momentum operators and the angle θ and parameter λ are related to the
reference frame parameters by

µ = eλ cos θ, ν = e−λ sin θ.

Moreover,
X̂ | X〉 = X | X〉 (37)

and |X〉〈X| is a projection density. One has the canonical transform of quadratures

X̂ = Ûµν q̂ Û
†
µν = µq̂ + νp̂,

P̂ = Ûµν p̂ Û
†
µν =

1 +
√

1− 4µ2ν2

2µ
p̂− 1−

√
1− 4µ2ν2

2ν
q̂.

Using the approach of [25] one obtains the relation

Û(X,µ, ν) = δ(X − µq̂ − νp̂).

In the case we are considering, the inverse transform determining the operator in terms of the tomogram
symbol will be of the form

Â =
∫
wÂ(X,µ, ν)D̂(X,µ, ν) dX dµdν, (38)

where [12,26]

D̂(x) ≡ D̂(X,µ, ν) =
1
2π

exp (iX − iνp̂− iµq̂) , (39)

that is,

D̂(X,µ, ν) =
1
2π

exp(iX)d
(
ξ(µ, ν)

)
. (40)

The unitary displacement operator in (40) now reads

d
(
ξ(µ, ν)

)
= exp

(
ξ(µ, ν)â+ − ξ∗(µ, ν)â

)
,

where ξ(µ, ν) = ξ1 + iξ2 with ξ1 = Re (ξ) = ν/
√

2 and ξ2 = Im (ξ) = −µ/
√

2 .
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The trace of the above operator provides the kernel determining the trace of an arbitrary operator in
the tomographic representation

Tr D̂(x) = eiXδ(µ)δ(ν).

The operators a† and a are creation and annihilation operators. The function wÂ(X,µ, ν) satisfies the
relation

wÂ (λX, λµ, λν) =
1
|λ|

wÂ(X,µ, ν) (41)

meaning that the tomographic symbols are homogeneous functions of three variables.
For the density operator of a pure state | ψ〉〈ψ |, the tomographic symbol reads [27]

wψ(X,µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(
iµ

2ν
y2 − iX

ν
y

)
dy

∣∣∣∣2 . (42)

If one takes two operators Â1 and Â2

Â1 =
∫
wÂ1

(X ′, µ′, ν ′)D̂(X ′, µ′, ν ′) dX ′ dµ′ dν ′,

(43)
Â2 =

∫
wÂ2

(X ′′, µ′′, ν ′′)D̂(X ′′, µ′′, ν ′′)dX ′′ dµ′′ dν ′′,

the tomographic symbol of the product Â = Â1Â2 is the star-product

wÂ(X,µ, ν) = wÂ1
(X,µ, ν) ∗ wÂ2

(X,µ, ν),

that is,

wÂ(X,µ, ν) =
∫
wÂ1

(x′′)wÂ2
(x′)K(x′′,x′,x) dx′′ dx′, (44)

with kernel given by

K(x′′,x′,x) = Tr
[
D̂(X ′′, µ′′, ν ′′)D̂(X ′, µ′, ν ′)Û(X,µ, ν)

]
. (45)

The explicit form of the kernel reads

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

4π2
δ
(
µ(ν1 + ν2)− ν(µ1 + µ2)

)
× exp

(
i

2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2 −

[
1
ν

(ν1 + ν2) +
1
µ

(µ1 + µ2)
]
X
})

, (46)

and the kernel for the star-product of N operators is

K (X1, µ1, ν1, X2, µ2, ν2, . . . , XN , µN , νN , X, µ, ν) =
1

(2π)N
δ

µ N∑
j=1

νj − ν
N∑
j=1

µj


× exp

 i

2


N∑

k<j=1

(νkµj − νjµk) + 2
N∑
j=1

Xj −

1
ν

 N∑
j=1

νj

+
1
µ

 N∑
j=1

µj

X

 . (47)
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3. Operator Symbols for Spin Systems

Of particular importance for quantum information purposes are finite-dimensional spin systems (qubits,
qutrits, etc.). Therefore, we describe here the tomographic operator symbols for spin systems. Further
details may be obtained from [13,14,16,28–30]. In this case, the physical interpretation of the symbol is
as the set of measurable mean values of the operator in a state with a given spin projection in a rotated
reference frame.

3.1. Tomogram Spin Symbol and Reconstruction Formula

For arbitrary values of spin, let the observable Â(j) be represented by a matrix in the standard basis
of angular momentum generators Ĵi, i = 1, 2, 3. The tomogram symbol of the observable Â(j) is

w (m1, β, γ) = Tr
[
Â(j)R†(g) |jm1〉〈jm1|R(g)

]
=

j∑
m′

1=−j

j∑
m′

2=−j

D
(j)
m1m′

1
(α, β, γ)A(j)

m′
1m

′
2
D

(j)∗
m1m′

2
(α, β, γ) , (48)

where
A

(j)
mm′ = 〈jm | Â(j) | jm′〉, m = −j,−j + 1, . . . , j − 1, j, (49)

R(g) is a rotation operator of the SU(2) irreducible representation with spin j and the matrix elements
D

(j)
m1m′

1
(α, β, γ) (Wigner D-functions) are the matrix elements of the operator

R(g) = e−iαĴ3e−iβĴ2e−iγĴ3 .

From (48), one sees that the tomogram depends only on two Euler angles, i.e., the tomogram depends
on the spin projection and on a point on the Bloch sphere.

The tomogram can be presented in another form using a Kronecker delta-function, which is the general
form for tomograms of arbitrary observables suggested in [25]

w(m1, β, γ) = Tr Â(j)δ
(
m1 −R†(g)Ĵ3R(g)

)
. (50)

It is obvious that the tomogram of the identity operator is the unit.
To derive the inverse of (48), we multiply by the Wigner D-function Dj′

µ′m′(α, β, γ) and integrate over
the volume element of the SU(2) group, to arrive at the result [16]

A(j)
µ1µ2

=
2j∑
j′=0

j′∑
m′=−j′

j∑
m1=−j

(−1)m1−µ1 〈jm1; j −m1|j′0〉〈jµ1; j − µ2|j′µ′〉

×
∫
dΩw(m1, β, γ)D

j′

0−m′(α, β, γ) . (51)

We may write the observable operator Â(j) in terms of unitary irreducible tensors

T̂
(j)
LM =

j∑
m1,m2=−j

(−1)j−m1 〈jm2; j −m1|LM〉 |jm2〉 〈jm1| (52)
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as follows:

Â(j) =
j∑

µ1,µ2=−j

2j∑
L=0

L∑
M=−L

(−1)j−µ2〈jµ1; j − µ2|LM〉 T̂ (j)
LM A(j)

µ1µ2
. (53)

Substituting A(j)
µ1µ2 into (53), in view of the orthonormality of the Clebsch–Gordan coefficients, we obtain

the observable in terms of its tomogram

Â(j) =
2j∑
L=0

L∑
M=−L

j∑
m=−j

(−1)j−m+M 2L+ 1
8π2

〈jm; j −m|L0〉

×
(∫

dΩw(m,β, γ)DL
0−M (α, β, γ)

)
T̂

(j)
LM . (54)

One can express the operators determining the star-product of tomographic symbols in terms of
irreducible tensors. The operators Û(x) ≡ Û(m,Ω) and D̂ (x) ≡ D̂(m,Ω) are

Û(m,Ω) =
2j∑
L=0

L∑
M=−L

(−1)j−m+M 〈jm; j −m|L0〉 DL
0−M (α, β, γ) T̂ (j)

LM , (55)

D̂(m,Ω) =
2j∑
L=0

L∑
M=−L

(−1)j−m+M 2L+ 1
8π2

〈jm; j −m|L0〉 DL
0−M (α, β, γ) T̂ (j)

LM . (56)

3.2. The Kernel of the Star-Product

Using formulas (55) and (56), one can write down a composition rule for two symbols fÂ(x) and
fB̂(x) determining the star-product of these symbols. The composition rule is

fÂ(x) ∗ fB̂(x) =
∫
fÂ(x′′)fB̂(x′)K(x′′,x′,x) dx′ dx′′. (57)

The kernel in the integral of (57) is the trace of the product of the operators used to construct the map

K(x′′,x′,x) = Tr
[
D̂(x′′)D̂(x′)Û(x)

]
. (58)

Within this framework, one has two equivalent expressions for the operator Û(x)

Û(x) = δ
(
m1 −R†(g)Ĵ3R(g)

)
= R(g)† | jm1〉〈jm1 | R(g) (59)

or, due to the structure of this equation,

Û(x) = δ(m1 − n · Ĵ), n = (sinβ cos γ, sinβ sin γ, cosβ) . (60)

The dual operator reads

D̂(x) =
2j∑
L=0

L∑
M=−L

(−1)j−m+M 2L+ 1
8π2

D
(L)
0−M (α, β, γ)〈jm; j −m|L0〉 T̂ (j)

LM , (61)
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where T̂ (j)
LM is given by Eq. (52).

Inserting the expressions for the operators Û(x) and D̂(x) in (58) and using the properties of irre-
ducible tensors, one obtains an explicit form for the kernel of the spin star-product [30]

K(x2,x1,x) ≡ K(m2,Ω2,m1,Ω1,m,Ω)

= (−1)j−m−m1−m2

2j∑
L=0

2j∑
L1=0

2j∑
L2=0

(2L1 + 1)(2L2 + 1)
64π4

×〈jm; j −m|L0〉 〈jm1; j −m1|L10〉 〈jm2; j −m2|L20〉

×
L∑

M=−L

L1∑
M1=−L1

L2∑
M2=−L2

(−1)L+L1+L2
√

(2L+ 1)(2L1 + 1)(2L2 + 1)

×

(
L1 L2 L

j j j

) (
L1 L2 L

M1 M2 M

)
D

(L)
0−M (Ω)D(L1)

0−M1
(Ω1)D

(L2)
0−M2

(Ω2) . (62)

3.3. Unitary Spin Tomography

One can extend the construction by introducing a unitary spin tomogram [31] of the multiqudit state
with density matrix ρ. For this, one uses the joint probability distribution

w(m1,m2, . . . ,mM , u) = 〈m1,m2, . . . ,mM | u†ρu | m1,m2, . . . ,mM 〉, (63)

where u is a unitary operator in the Hilbert space of multiqudit states.
For a simple qudit state, the tomogram unitary symbol is

w(m1, u1) = 〈m1 | u†1ρu1 | m1〉, (64)

where u1 is a (2j + 1)× (2j + 1) matrix.
Since it is possible to reconstruct the density matrix using only spin tomograms, the unitary spin

tomogram also determines the density matrix completely. One can integrate the unitary spin tomo-
gram w(m,u) using the Haar measure d̃u instead of dΩ and adding the delta-function term δ

(
u −

D
(L)
0−M (α, β, γ)

)
. This construction means that the spin quantum state is defined by a map of the unitary

group to the simplex.
The following are the properties of the unitary spin tomograms of multiqudit systems:
(i) Normalization ∑

~m

w(~m, u) = 1, w(~m, u) ≥ 0; (65)

(ii) Group normalization
From the Haar measure on the unitary group d̃u divided by the group volume V =

∫
d̃u, one obtains

the measure du = d̃u/V with
∫
du = 1. Then,∫

duw(~m, u) = 1. (66)
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This property follows from the orthogonality condition for matrix elements of unitary matrices as elements
of an irreducible representation of a compact group. Another property is∑

~m2

w(~m, ~m2, u1 ⊗ u2) = w(~m1, u1), ~m = (~m1, ~m2), (67)

where the tomogram w(~m1, u1) is a tomogram for the subsystem density matrix ρ̂1 = Tr2 ρ̂12.
An analogous unitary group integration property follows from the relation∫

ujsA...sm...u
†
mk du = δjkA...ss..., (68)

yielding ∫
w(~m1, ~m2, u1 × u2) du2 = w(~m1, u1), (69)

which corresponds to ∫
u†2ρ12u2 du2 = Tr2 ρ12. (70)

4. Operator Symbols as Maps from the Unitary Group to the Simplex

The unitary spin symbol (63) defines, for each density matrix ρ, a mapping from the unitary group
U (N), N =

∏M
k=1(2jk + 1), to a N − 1 dimensional simplex. The nature of the image of U (N) on the

simplex depends on the nature of the density matrix.

Theorem 1 The unitary spin symbol image of U (N) on the simplex for most density matrices ρ (ρ′s
with at least two different eigenvalues) has dimension N − 1. For pure states, it is the whole simplex and
for mixed states, a volume bounded by the hyperplanes

λmin ≤ xi ≤ λmax, i = 1, · · · , N − 1,

λmin ≤
(
1−

∑N−1
i=1 xi

)
≤ λmax,

(71)

where {λk} are the eigenvalues of the density matrix.
Proof : ∃u such that u†ρu = (λ1, λ2, . . . λN ) is diagonal. Then by another u′

w(m1,m2, . . . ,mN , uu
′) =

{∑
k

∣∣u′kj∣∣2 λk, j = 1, . . . , N

}
. (72)

If ρ is a pure state, only one λi 6= 0. Then

w(m1,m2, . . . ,mN , uu
′) =

{∣∣u′1j∣∣2 , j = 1, . . . , n
}
,

that is, all points in the simplex are obtained. Therefore, for a pure state, the unitary tomographic
symbol maps the unitary group on the whole simplex.
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To obtain the dimensionality of the image for a general (mixed) state, we consider the elementary
U (N) transformations:

dk (ϕ) = diag
(
1, 1, eiϕ, 1, 1

)
,

gij (θ) =

(
cos θ sin θ
− sin θ cos θ

)
in coordinates ij,

gCij (θ) =

(
cos θ i sin θ
i sin θ cos θ

)
in coordinates ij.

(73)

Consider these elementary transformations acting on the diagonalized matrix u†ρu. The dk (ϕ) does not
change the diagonal elements and both gij (θ) and gCij (θ) have a similar action:

λi → λi cos2 θ + λj sin2 θ,

λj → λi sin2 θ + λj cos2 θ.
(74)

A general infinitesimal transformation would be

λi → λi +
∑

k 6=i αik (λk − λi) (αik = αki)

and the dimension of the simplex image of U (N) is the rank of the Jacobian ∂λ/∂α. If ρ has at
least two different eigenvalues, the rank is N − 1, this being the dimension of the simplex image. The
hyperplanes (71) bounding this simplex volume follow from the convex nature of the eigenvalues linear
combination (72). The situation where all eigenvalues are equal is exceptional, the image being a point
in this case. �

Figure 1 shows an example for a mixed state of a two-qubit state, when λ1 = 0.4, λ2 = 0.3, λ3 = 0.2,
and λ4 = 0.1.

For a bipartite system of dimension N1×N2, the distinction between factorized and entangled states
refers to the behavior under transformations of the factorized group U(N1) ⊗ 1 + 1 ⊗ U(N2). We call a
state factorized if the density matrix is

ρ = ρ(1) ⊗ ρ(2),

and classically correlated if

ρ =
n∑
k=1

ckρ
(1)
k ⊗ ρ

(2)
k ,

with
∑n

k=1 ck = 1.

Theorem 2 The simplex symbol image under G12 = U(N1) ⊗ 1 + 1 ⊗ U(N2) of a generic factorized or
classically correlated state has dimension (N1 − 1) + (N2 − 1).

Proof : For a classically correlated state, if n > 1 it is not, in general, possible to find an element of
G12 diagonalizing ρ. Therefore, one has to consider the action of the elementary unitary transformations
(73) on a general matrix. The dk (ϕ) does not change the diagonal elements whereas the gij (θ) action
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Fig. 1. Simplex image of a mixed two qubit state λ1 = 0.4, λ2 = 0.3, λ3 = 0.2, and λ4 = 0.1.

for 1⊗ U(N2) is

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
(
ρ
(2)
k

)
ii

→

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
{(
ρ
(2)
k

)
ii

cos2 θ

+
(
ρ
(2)
k

)
jj

sin2 θ − 2Re
(
ρ
(2)
k

)
ij

sin θ cos θ
}
,

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
(
ρ
(2)
k

)
jj

→

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
{(
ρ
(2)
k

)
ii

sin2 θ

+
(
ρ
(2)
k

)
jj

cos2 θ + 2Re
(
ρ
(2)
k

)
ij

sin θ cos θ
}
,

and for gCij (θ) is

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
(
ρ
(2)
k

)
ii

→

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
{(
ρ
(2)
k

)
ii

cos2 θ

+
(
ρ
(2)
k

)
jj

sin2 θ − 2Im
(
ρ
(2)
k

)
ij

sin θ cos θ
}
,

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
(
ρ
(2)
k

)
jj

→

∑n
k=1 ck

(
ρ
(1)
k

)
aa
⊗
{(
ρ
(2)
k

)
ii

sin2 θ

+
(
ρ
(2)
k

)
jj

cos2 θ + 2Im
(
ρ
(2)
k

)
ij

sin θ cos θ
}
.
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For generic ρ matrices, U(N1) ⊗ 1 and 1 ⊗ U(N2) operate independently, therefore, infinitesimal trans-
formations explore (N1 − 1) + (N2 − 1) independent directions. �

The generalization to classically correlated multipartite systems is immediate, implying that the image
dimension under

∑
i 1⊗ · · · ⊗ U(Ni)⊗ · · · ⊗ 1 is

∑
i (Ni − 1).

As an example, we compute explicitly the equation for the two-dimensional surface image in the
two-qubit case for a factorized state. In this case, one has to consider mappings from U(2)⊗1+1⊗U(2)
to the simplex.

Let ρ = ρ1 ⊗ ρ2. Here, without lose of generality, ρ may be considered as diagonal. Then(
u(a)⊗ 1 + 1⊗ u′(b)

)†
(ρ1 ⊗ ρ2)

(
u(a)⊗ 1 + 1⊗ u′(b)

)
is (

|a11|2 λ1 + |a21|2 λ2 . . .

. . . |a12|2 λ1 + |a22|2 λ2

)

⊗

(
|b11|2 µ1 + |b21|2 µ2 . . .

. . . |b12|2 µ1 + |b22|2 µ2

)
.

Hence
w
(
m1,m2;u(a)⊗ 1 + 1⊗ u′(b)

)
is

w (00) =
(
λ1 cos2

θ

2
+ λ2 sin2 θ

2

)(
µ1 cos2

α

2
+ µ2 sin2 α

2

)
,

w (01) =
(
λ1 cos2

θ

2
+ λ2 sin2 θ

2

)(
µ1 sin2 α

2
+ µ2 cos2

α

2

)
,

w (10) =
(
λ1 sin2 θ

2
+ λ2 cos2

θ

2

)(
µ1 cos2

α

2
+ µ2 sin2 α

2

)
,

w (11) =
(
λ1 sin2 θ

2
+ λ2 cos2

θ

2

)(
µ1 sin2 α

2
+ µ2 cos2

α

2

)
,

implying

w (10) =
w (00)

w (01) + w (00)
− w (00) .

Figure 2 shows this two-dimensional surface in the three-dimensional simplex.
For a pure state, this would be the image of the U(2)⊗ 1 + 1⊗ U(2) group.
For a mixed state, the image is the intersection of the surface with the spanned volume, as in Fig. 1.
Theorem 2 suggests a notion of geometric correlation, namely,

Definition 1 A state of a multipartite system is called geometrically correlated if the symbol image under∑
i 1⊗ · · · ⊗ U(Ni)⊗ · · · ⊗ 1 has dimension less than

∑
i (Ni − 1).

Deviations from geometrical genericity occur when the systems are entangled or the density matrix
has special symmetry properties.

As an example, consider the entangled state

c0 | 00〉+ c1 | 11〉.
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Fig. 2. The two-dimensional surface image of U(2)⊗1+1⊗U(2) in the two-qubit case for a factorized pure state.

A simple computation shows that the image under U(2)⊗ 1 + 1⊗ U(2) is defined by

w (00)
|c0|2

=
w (11)
|c1|2

,

w (10)
c1c∗0

=
w (01)
c0c∗1

,

implying that the image is one-dimensional (Fig. 3).
However, the dimension reduction of the image of U(2) ⊗ 1 + 1 ⊗ U(2) does not coincide with the

notion of entanglement. As an example, consider the Werner state

ρW =
1
4


1− q 0 0 0
0 1 + q −2q 0
0 −2q 1 + q 0
0 0 0 1− q

 ,

q ≤ 1, which is known to be entangled only for q > 1/3. In this case, because of the highly symmetric
nature of the state, the orbit of the tomgraphic symbol is the same for both U(2) ⊗ 1 and 1 ⊗ U(2),
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Fig. 3. The simplex image of an entangled state.

namely,

w =
1
4


(1− q) cos2 θ + (1 + q) sin2 θ

(1 + q) cos2 θ + (1− q) sin2 θ

(1 + q) cos2 θ + (1− q) sin2 θ

(1− q) cos2 θ + (1 + q) sin2 θ

 ,

implying that the image is always one-dimensional.
Incidentally, the Peres separability criterion [32] applied to the partial transpose

ρtBW =
1
4


1− q 0 0 −2q
0 1 + q 0 0
0 0 1 + q 0
−2q 0 0 1− q


expressed in tomographic operator symbols would be∑

{mi}

∣∣∣w
ρ

tB
W

({mi} , u)
∣∣∣ = 1 ∀u,
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the state being entangled when there is a u for which this identity is violated.

5. Measurements and Generalized Measurements

In the standard quantum formulation, measurements are realized by von Neumann “instruments”
which are orthogonal projectors P̂j onto eigenstates of the variables being measured. The projectors
applied to the pure state | ψ〉 yield

| ψ〉j = P̂j | ψ〉, P̂j =| ψj〉〈ψj |, (75)

or in terms of density matrix | ψ〉〈ψ |, one has the result

| ψ〉j j〈ψ |= P̂j | ψ〉〈ψ | P̂j = P̂j ρ̂ψP̂j = |〈ψ | ψj〉|2 | ψj〉〈ψj | . (76)

For a mixed state ρ̂, the measurement provides the state density operator after measurement

ρ̂j = P̂j ρ̂P̂j . (77)

Generalized measurements use positive operator-valued measures (POVM), that is, positive operators
P̂k with the property ∑

k

P̂k = 1̂, (78)

the index k being either discrete or continuous. In the latter case, one has an integration in (78).
Within the framework of operator symbols and star-products, instead of (77), we have after the

measurement a symbol for the density operator of the state

fρ̂j
(x) = fP̂j

(x) ? fρ̂(x) ? fP̂j
(x), (79)

fρ(x) being the symbol of the density operator of the measurable state and fP̂j
(x), the symbol of the

instrument.
In the tomographic-probability representation, the result of measurements is described by a map of

the probability distributions, namely,

wj(X,µ, ν) = wP̂j
(X,µ, ν) ? w(X,µ, ν) ? wP̂j

(X,µ, ν), (80)

with the kernel of the star-product of tomograms given by Eq. (46).
For the case of spin (or unitary spin) tomograms, the linear map of tomographic-probability distri-

butions is realized by the formula

wj(m,~n) = wP̂j
(m,~n) ? w(m,~n) ? wP̂j

(m,~n), (81)

the kernel of the star-product being given by Eq. (62). One sees that, in the probability representation,
the process of measurement, both with von Neumann instruments and with POVM, is described by a
map of points in the simplex.
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6. Time Evolution of Quantum States and Superoperators

In the standard representation of quantum mechanics, states (state vectors | ψ, t〉 or density operators
ρ̂(t)) of a closed system evolve according to the unitary change

| ψ, t〉 = Û(t) | ψ, 0〉, (82)

or
ρ̂(t) = Û(t)ρ̂(0)Û †(t). (83)

This evolution is a solution to the Schrödinger or von Neumann equations

∂

∂t
ρ̂(t) + i[Ĥ, ρ(t)] = 0, (84)

Ĥ being the Hamiltonian of the system.
The evolution can be cast into operator symbol form.
Let fA(x) be the symbol of an operator Â. We do not specify at the moment what kind of symbols

are used, considering them as generic ones with quantizer–dequantizer pair D̂(x) and Û(x). Then, the
operator equation (84) for density operator reads

∂

∂t
wρ(x, t) + i

(
fH(x, t) ? wρ(x, t)− wρ(x, t) ? fH(x, t)

)
= 0. (85)

We denote the symbol of the density operator ρ̂(t) by wρ(x, t). The solution of Eq. (85) has a form
corresponding to (83)

wρ(x, t) = fU (x, t) ? wρ(x, 0) ? fU†(x, t). (86)

One can rewrite the solution (83) as a superoperator L acting in a linear space of operators, namely,

ρ̂(t) = L(t)ρ̂(0). (87)

In matrix form, Eq. (87) reads
ρ̂(t)αβ =

∑
γδ

L(t)αβ γδρ̂(0)γδ. (88)

For unitary evolution, the superoperator is expressed in terms of the unitary matrix U(t) as a tensor
product

L(t)αβ γδ = U(t)αβ ⊗ U∗(t)γδ. (89)

One rewrites the solution (86) for the symbol introducing the propagator

wρ(x, t) =
∫

Π(x,y, t)wρ(y, 0) dy. (90)

For the unitary evolution (83), the propagator reads

Π(x1,x2, t) =
∫
k(y1,x2,y2,x1)fU(t)(y1)fU†(t)(y2) dy1 dy2, (91)
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where

k(y1,x2,y2,x1) =
∫
K(y1,x2,x3)K(x3,y2,x1) dx3.

The kernels under the integral are given by Eq. (58).
In the case of superoperators describing the evolution of an open system [33,34]

ρ̂(0) → ρ̂(t) =
∑
s

V̂s(t)ρ̂(0)V̂ †
s (t),

∑
s

V̂ †
s (t)V̂s(t) = 1, (92)

the propagator reads

Π(x,y, t) =
∫ ∑

s

f
(s)
V (t)(y1)f

(s)

V †(t)
(y2)k(y1,y,y2,x) dy1 dy2. (93)

The propagator corresponds to a superoperator, which in matrix form reads(
L(t)

)
αβ γδ

=
∑
s

(Vs)αβ ⊗ (V ∗
s )γδ. (94)

For the case of continuous variables and symplectic tomograms, Eq. (85) takes the form of a deformed
Boltzman equation for the probability distribution.

For unitary spin tomograms, one has

wρ(m,u, t) = wρ

(
m,U †(t)u, 0

)
, (95)

the unitary evolution matrix being determined by an Hamiltonian matrix

U(t) = e−itH . (96)

This means that the unitary spin tomogram, a function on the unitary group, evolves according to the
regular representation of the unitary group. This means that the partial differential equation for the
infinitesimal action is the standard equation for matrix elements of the regular representation, that is,

i
∂

∂t
w(m,u, t) =

∑
ik

(
HikL̂ik(u)

)
w(m,u, t),

Hik being the Hamiltonian hermitian matrix and L̂ik(u), the infinitesimal hermitian first-order differential
operators of the left regular representation of the unitary group in the chosen group parametrization.

7. Examples of Quantum Channels

In this section, we consider the unitary spin representation of some typical quantum channels.
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7.1. Depolarizing Channel

Consider bit flip, phase flip and both with equal probability

| ψ〉 → σ1 | ψ〉 =

(
0 1
1 0

)
| ψ〉,

| ψ〉 → σ3 | ψ〉 =

(
1 0
0 −1

)
| ψ〉,

| ψ〉 → σ2 | ψ〉 =

(
0 −i
i 0

)
| ψ〉.

The Kraus representation is

ρ0 → ρ = (1− p) ρ+
p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) .

For the unitary spin symbol representation, choosing the axis one has

ρ0 =
1
2
(1 + σ3)

and with an arbitrary unitary group element

u = cos
θ

2
− iσ · n sin

θ

2

one obtains

w (+, u) =
1
2

{
1 +

(
1− 4

3
p

)(
cos2

θ

2
+
(
2n2

3 − 1
)
sin2 θ

2

)}
,

w (−, u) =
1
2

{
1−

(
1− 4

3
p

)(
cos2

θ

2
+
(
2n2

3 − 1
)
sin2 θ

2

)}
.

When p→ 1 the image in the simplex contracts to a segment between
(

2
3
,
1
3

)
and

(
1
3
,
2
3

)
.

7.2. Phase-Damping Channel

| 0〉 | 0〉E →
√

1− p | 0〉 | 0〉E +
√
p | 0〉 | 1〉E ,

| 1〉 | 0〉E →
√

1− p | 1〉 | 0〉E +
√
p | 1〉 | 2〉E .

The Kraus representation is
ρ0 → ρ =

∑
µ

Kµρ0K
†
µ,

with

K0 =
√

1− p

(
1 0
0 0

)
, K1 =

√
p

(
1 0
0 0

)
, K2 =

√
p

(
0 0
0 1

)
.
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For the unitary spin symbol representation, consider the example

| ψ〉 =
1√
2

(| 0〉+ | 1〉) , ρ0 =

 1
2

1
2

1
2

1
2

 .

Then

w (+, u) =
1
2

{
1 + 2 (1− p) sin

θ

2

(
n2 cos

θ

2
+ n1n3 sin

θ

2

)}
,

w (−, u) =
1
2

{
1− 2 (1− p) sin

θ

2

(
n2 cos

θ

2
+ n1n3 sin

θ

2

)}
,

and when p→ 1 the image in the simplex contracts to a point.

7.3. Amplitude Damping Channel

|0〉 |0〉E → |0〉 |0〉E ,
|1〉 |0〉E →

√
1− p |1〉 |0〉E +

√
p |0〉 |1〉E .

The Kraus representation is
ρ0 → ρ =

∑
µ

Kµρ0K
†
µ,

with

K0 =

(
1 0
0

√
1− p

)
, K1 =

(
0

√
p

0 0

)
.

For the unitary spin representation, consider an excited initial state

| ψ〉 =| 1〉, ρ0 =

(
0 0
0 1

)
.

Then
w (+, u) = p cos2

θ

2
+
(
pn2

3 + (1− p)
(
1− n2

3

) )
sin2 θ

2
,

w (−, u) = (1− p) cos2
θ

2
+
(

(1− p)n2
3 + p

(
1− n2

3

) )
sin2 θ

2
.

When p varies from 0 to 1, the image in the simplex first contracts to a point (p = 1/2) and then expands
again to the whole simplex when p→ 1.

The operator symbols that are functions on the rotation or unitary groups are highly redudant
descriptions of qudit states. As expected from the number of independent parameters in the density
matrix, also here

(
d2 − 1

)
numbers are enough to characterize a d-dimensional qudit. This is easy to

check. Consider the operator symbol (63) for an arbitrary d-dimensional density matrix ρ. A general ρ
may be diagonalized by d (d− 1) independent unitary transformations and this, together with the (d− 1)
independent diagonal elements, gives the desired result.

Alternatively we may consider (d+ 1) independent elements of the unitary group and compute the
associated operator symbols. Then, the qudit state would be described by their diagonal elements.
Therefore, a discrete quantum state (qudit) is coded by (d+ 1) probability distributions.
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For each u in the group, the elements in the operator symbol w({mi} , u) are the probabilities to obtain
the values {mi} in a measurement of the quantum state ρ by an apparatus oriented along u. Therefore the
problem of reconstructing the state ρ from the set of (d+ 1) (d− 1) operator symbol elements is identical
to the reconstruction of the density matrix of a spin through Stern–Gerlach experiments, already discussed
in the literature [35–37].

8. Entropies

8.1. Operator Symbol Entropies

The tomographic operator symbols satisfy∑
{mi}

w({mi} , u) = 1;

therefore, they are probability distributions ∀u.
One defines the Shannon [38] operator symbol entropy by

Hu = −
∑
{mi}

w({mi} , u) lnw({mi} , u)

and the operator symbol Rényi entropies by

Ru =
1

1− q
ln

∑
{mi}

w({mi} , u)q
 .

Likewise, we may define the operator symbol relative q-entropy by

Hq(w1(u)|w2(u)) = −
∑
{mi}

w1({mi} , u) lnq
w2({mi} , u)
w1({mi} , u)

, (97)

with

lnq x =
x1−q − 1

1− q
, x > 0, q > 0, lnq→1 x = lnx. (98)

Because the operator symbols w ({mi} , u) are probability distributions, they inherit all the known prop-
erties of nonnegativity, additivity, joint convexity, etc. of classical information theory.

The relation of the operator symbol entropies to the von Neumann and the quantum Rényi entropies
is given by the following:

Theorem 3 The von Neumann S and the quantum Rényi Sq entropies are the minimum on the unitary
group of Hu and Ru.

Proof : From
w({mi} , u) = 〈{mi} | u†ρu | {mi}〉 (99)

there is a u∗ such that u∗†ρu∗ is a diagonal matrix {λ1, λ2, . . . λn}. Then

Hu∗ = −Tr ρ ln ρ = S = von Neumann entropy.
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For any other u, the diagonal elements in (99) are convex linear combinations of {λ1, λ2, ...λn}. By
convexity of w({mi} , u) lnw({mi} , u), the result follows for the von Neumann entropy.

The operator symbol Rényi entropy is not a sum of concave functions. However, the following function

Tu = −
∑
{mi}

w({mi} , u)q lnq w({mi} , u)

is called the Tsallis entropy [39] and related to the Rényi [40] entropy by

Ru =
1

1− q
ln
(
1 + (1− q)Tu

)
. (100)

The minimum result now applies to Tu by concavity and then one checks from (100) that it also holds
for Ru. Therefore Ru∗ = Ru min coincides with the quantum Rényi entropy

Sq =
1

1− q
ln(Tr ρq).

�
The entropy Hu varies from the minimum, which is the von Neumann entropy, to a maximum for the

most random distribution. For each given state ρ, one can also define the integral entropies

Hρ =
∫
Hu du, Rρ =

∫
R(u) du, Hq(ρ1, ρ2) =

∫
Hq(w1(u)|w2(u)) du,

where du is the invariant Haar measure on unitary group.
In some cases, the properties of the von Neumann entropy may be derived as simple consequences of

the classical-like properties of the operator symbol entropies. For example:
Subadditivity: S12 ≤ S1 + S2

Consider a two-partite system with density matrix ρ12

w(m1,m2, u) = 〈m1m2 | u†ρ12u | m1m2〉,

u being a (2j1 + 1)(2j2 + 1)× (2j1 + 1)(2j2 + 1) unitary matrix,

Hu (12) = −
∑
m1m2

w(m1,m2, u) lnw(m1,m2, u).

From the reduced symbols and density matrices

w(m1, u) =
∑
m2

w(m1,m2, u),

(ρ1)m1m′
1

=
∑
m2

(ρ12)m1m2m′
1m2

,

one writes the reduced symbol entropies

Hu(1) = −
∑
m1

w(m1, u) ln w(m1, u),
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Hu(2) = −
∑
m2

w(m2, u) ln w(m2, u).

For each fixed u, the tomographic symbols are ordinary probability distributions. Therefore, by the
subadditivity of classical entropy,

Hu(12) ≤ Hu(1) +Hu(2).

In particular, this is true for the group element in u∗ ∈ Uj1 ⊗ Uj2 that diagonalizes the reduced density
matrices ρ1 and ρ2. Therefore,

Hu∗(12) ≤ S1 + S2.

But, by the minimum property,
S12 ≤ S1 + S2.

Thus subadditivity for the von Neumann entropy is a consequence of subadditivity for the operator
symbol entropies.

The situation concerning strong subadditivity is different. Strong subadditivity also holds, of course,
for the operator symbol entropies for any u

Hu(123) +Hu(2) ≤ Hu(12) +Hu(23), (101)

but the corresponding relation for the von Neumann entropy is not a direct consequence of (101). The
strong subadditivity [41] for the von Neumann entropy

S (123) + S (2) ≤ S (12) + S (23) (102)

expressed in operator symbol entropies would be

Hu∗1
(123) +Hu∗2

(2) ≤ Hu∗3
(12) +Hu∗4

(23),

where u∗1 ∈ U (123), u∗2 ∈ 1 ⊗ U(2) ⊗ 1, u∗3 ∈ U (12) ⊗ 1, and u∗4 ∈ 1 ⊗ U(23) are the different
group elements that diagonalize the respective subspaces. Therefore strong subadditivity for the von
Neumann entropy (102) and strong subadditivity for the operator symbol entropies (101) are independent
properties. On the other hand, because of the invertible relation between the operator symbols and the
density matrix, Eq. (101) contains, in fact, a family of new inequalities for functionals of the density
matrix.

9. Conclusions

To conclude, we summarize the main results of this work:
(i) A unified formulation for an operator symbol formulation of standard quantum theory.
(ii) A (spin) operator symbol framework to deal with quantum information problems.
(iii) Evolution equations for qudit operator symbols are written in the form of first-order partial

differential equations with generators describing the left regular representation of the unitary group.
(iv) Measurements are discussed in the operator-symbol representation of qudits.
(v) A geometric interpretation of (spin) operator symbols of qudit states as maps of the unitary group

to the simplex.
(vi) In view of the probability nature of the operator symbols, the corresponding entropies inherit

the properties of classical information theory. Some of the properties of the von Neumann entropy and
quantum Rényi entropy are direct consequences of these properties. On the other hand, the properties
of the operator symbol entropies also imply new relations for functionals of the density matrix.
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