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Abstract. The existence of a fundamental length (or fundamental time) has been conjectured in many
contexts. Here we discuss some consequences of a fundamental constant of this type, which emerges as
a consequence of deformation-stability considerations leading to a non-commutative space-time structure.
This mathematically well defined structure is sufficiently constrained to allow for unambiguous experi-
mental predictions. In particular we discuss the phase-space volume modifications and their relevance for
the calculation of the Greisen–Zatsepin–Kuz’min sphere. The (small) corrections to the spectrum of the
Coulomb problem are also computed.
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1 Introduction

The idea of modifying the algebra of space-time coordi-
nates, in such a way that they become non-commuting op-
erators, appeared several times in the literature. Probably,
the first proposal goes back to Snyder [1] and some field
theories in such spaces were studied by Kadishevsky and
collaborators [2,3]. Motivated by string theory and quan-
tum gravity or in the mathematical framework of “quan-
tum spaces”, these structures have recently been rediscov-
ered and generalized in several ways (see for example [4–7]
and references therein).

Associated to the non-commutative space-time effects
is also the role played by a fundamental length (or funda-
mental time) as a new constant of nature. In my opinion,
the most satisfactory and model-independent way to ap-
proach these problems is through deformation theory and
considerations of structural stability of the physical theo-
ries.

To study the stability of physical theories one studies
the stability (also called rigidity) of its defining Lie alge-
bra. A Lie algebra is said to be stable (or rigid) if any
infinitesimal deformation of its structure constants leads
to an isomorphic algebra [8–10]. In this setting, the transi-
tion from non-relativistic to relativistic and from classical
to quantum mechanics may be interpreted as the replace-
ment of two unstable theories by two stable ones; that is,
by theories that do not change in a qualitative manner
under a small change of parameters. The deformation pa-
rameters are 1

c (the inverse of the speed of light) and h (the
Planck constant). Stability arises from the fact that the al-
gebraic structures are all equivalent for non-zero values of
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c and h. The zero value is an isolated point corresponding
to the deformation-unstable classical theories.

A similar stability analysis of relativistic quantum me-
chanics [11,12] leads to a non-commutative space-time al-
gebra ��,∞ (on the tangent space)

[Mµν ,Mρσ] = i(Mµσηνρ +Mνρηµσ

−Mνσηµρ −Mµρηνσ),
[Mµν , pλ] = i(pµηνλ − pνηµλ),
[Mµν , xλ] = i(xµηνλ − xνηµλ),

[pµ, pν ] = 0,

[xµ, xν ] = −iε�2Mµν ,

[pµ, xν ] = iηµν�,
[pµ,�] = 0

[xµ,�] = iε�2pµ,

[Mµν ,�] = 0, (1)

and to two new parameters (�, ε), � being a funda-
mental length (or fundamental time) and ε a sign
(ε = −1 or ε = +1). In (1) ηµν = (1,−1,−1,−1), c = � =
1 and � is the operator that replaces the trivial center of
the Heisenberg algebra.

The non-commutative space-time geometry arising
from this algebra has been studied [13], as well as the
modification of the uncertainty relations [14].

Here I will concentrate on some consequences of this
non-commutative structure which might lead to simpler
experimental tests. In particular phase-space suppression
or enhancing effects will be discussed and their rele-
vance to the calculation of the Greisen–Zatsepin–Kuz’min
(GZK) sphere [15,16], defined in Sect. 3, as well as the
corrections to the spectrum of the Coulomb problem.
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Notice that the modifications introduced on the cal-
culation of the GZK sphere do not arise from violation
of Lorentz invariance, which is well preserved, but from a
change on the cross sections due to a phase-space volume
suppression at high energies. The phase-space suppression
only occurs if ε = +1. If ε = −1 there would be a phase-
space enhancing. The ε = −1 and ε = +1 cases are also
quite different as far as the spectrum of the space-time
coordinates is concerned. In the first case it is a space co-
ordinate that has a discrete spectrum, whereas the time
spectrum is continuous. In the second, it is time that is
discrete, space always having a continuous spectrum.

From (1), Lorentz symmetry is preserved in the sense
that the commutation relations of the Mµν ’s are preserved
as well as the four-vector nature of both xµ and pµ. Notice
however that, the coordinates being a non-commutative
operator set, they cannot all be diagonalized at the same
time. Statements about continuity or discreteness of the
spectrum of space or time coordinates only apply when
a single component is diagonalized. Therefore it does not
make sense to think of Lorentz transformations as mix-
ing the spectrum of different components, because they
cannot be simultaneously diagonalized. Lorentz transfor-
mations act on the operator space of the xµ’s , generating
linear combinations of these operators defining the new
coordinate operators in a different frame. Then these new
operators will have a continuous or discrete spectrum de-
pending on their time-like or space-like nature and the
sign of ε.

2 Phase-space effects arising
from non-commutativity

Here we see that depending on the sign of ε, the available
phase-space volume at high momentum contracts or ex-
pands. First, this will be shown in the framework of a full
representation of the algebra and then, to obtain a simple
analytical estimate of the effect, a simpler representation
of a subalgebra will be used.

Let

pµ = i
∂

∂ξµ
,

� = i�
∂

∂ξ4
,

xµ = i�
(
ξµ

∂

∂ξ4
− εξ4

∂

∂ξµ

)
,

Mµν = i
(
ξµ

∂

∂ξν
− ξν

∂

∂ξµ

)
(2)

be a representation of the ��,∞ algebra (1) by differential
operators in a 5-dimensional commutative manifold M5 =
{ξa} with metric ηaa = (1,−1,−1,−1, ε)

We will now treat the two cases of the sign of ε.

Case ε = −1

Changing to polar coordinates in the
(
ξ1, ξ4

)
plane (ξ1 =

r cos θ, ξ4 = r sin θ) we have

p1 = −i
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)
,

x1 = i�
∂

∂θ
. (3)

Eigenstates of the x1 coordinate, with eigenvalue α,
are

|α〉 = Cα (r) exp
(

− i
�
αθ

)
; (4)

θ ∈ S1 and Cα (r) an arbitrary L2 function of r. Single-
valuedness requires α ∈ �Z. That is, each space coordinate
has a discrete spectrum.

The eigenstates of p1 (with eigenvalue k) are

|k〉 = exp (ikr cos θ) . (5)

They have a wave function representation in the position
basis:

〈α|k〉 =
∫ ∞

0
dr

∫ π

−π
dθC∗

α (r) ei(α
� θ+kr cos θ) (6)

= 2π (i)
α
�

∫ ∞

0
drC∗

α (r)Jα
�

(kr) .

To obtain the density of states one imposes periodic
boundary conditions in a box of size L, leading to

J0 (kr) = (i)
L
� JL

�
(kr) , (7)

and C∗
0 (r) = C∗

L (r).
For large k, using the asymptotic expansion for Bessel

functions, (7) leads to√
2
kr

{
cos

(
kr − π

4

)
− (i)

L
� cos

(
kr − L

2�
π − π

4

)

+ O
(
|kr|−1

)}
= 0. (8)

Asymptotically, this is satisfied both for L
� = 2n, n ∈ Z

and odd or L
� = 4n, n ∈ Z. Therefore, for very large k,

no restrictions are put on the k values. It means that the
phase volume required for any new k state shrinks as k
becomes large. The density of states diverges for large k.

Case ε = +1

With hyperbolic coordinates
(
ξ1 = r sinhµ, ξ4 = r coshµ

)
in the

(
ξ1, ξ4

)
plane,

p1 = i
(

sinhµ
∂

∂r
− coshµ

r

∂

∂µ

)
,

x1 = i�
∂

∂µ
. (9)
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The eigenstates of the x1 coordinate, with eigenvalue
α, are

|α〉 = Cα (r) exp
(

− i
�
αµ

)
(10)

Because µ ∈ R, in this case the space coordinates have a
continuous spectrum. It is the time coordinate that has a
discrete spectrum.

The eigenstates of p1 are

|k〉 = exp (ikr sinhµ) , (11)

with a wave function representation in the position basis

〈α|k〉 =
∫ ∞

0
dr

∫ ∞

−∞
dµC∗

α (r) ei(α
� µ+kr sinh µ) (12)

= 2
∫ ∞

0
drC∗

α (r)Ki α
�

(kr)

×
(
cosh

(απ
2�

)
− sinh

(απ
2�

))
.

To obtain the density of states one imposes periodic
boundary conditions in a box of size L, leading to

K0 (kr) = Ki L
�

(kr)
(

cosh
(
Lπ
2�

)
− sinh

(
Lπ
2�

))
(13)

and C∗
0 (r) = C∗

L (r).
Using the (large z) asymptotic expansion

Kν (z) =
√

π
2z

e−z

(
1 +

4ν2 − 1
8z

+O
(
z−2)) (14)

leads for large k to

1 − cosh
(
Lπ
2�

)
+ sinh

(
Lπ
2�

)
+O

(
(kr)−1

)
= 0. (15)

This cannot be satisfied in the k → ∞ limit. It means that
the density of states vanishes for large k.

For arbitrary values of k the exact density of states
may be obtained from (7) or (13). However, to obtain
a simpler, approximate, form for the density of states it
is convenient to use the representation of a subalgebra.
Namely, for the subalgebra

{
xi, pi,�}

(i fixed = 1, 2 or 3)
one may use

xi = x,

pi =
1
�

sin
(
�

i
d
dx

)
,

� = cos
(
�

i
d
dx

)
(16)

for the ε = −1 case and

xi = x,

pi =
1
�

sinh
(
�

i
d
dx

)
,

� = cosh
(
�

i
d
dx

)
(17)

for the ε = +1 case.
Treating each space dimension independently from the

others is not guaranteed to lead to an exact result. How-
ever, the simple closed form analytical expressions ob-
tained for the density of states are qualitatively identical
to the results obtained from (7) and (13) and easier to
handle in practical calculations.

The states
|p〉 = exp (ikx) (18)

are eigenstates of pi corresponding to the eigenvalues

p (k) =
1
�

sin (k�) for ε = −1,

p (k) =
1
�

sinh (k�) for ε = +1. (19)

Posing periodic boundary conditions for |p〉 on a box of
size L implies

k =
2π
L
n, n ∈ Z. (20)

From dp = dp
dndn one obtains for the density of states

dn =
L

2π
dp√

1 − �2p2
for ε = −1,

dn =
L

2π
dp√

1 + �2p2
for ε = +1. (21)

The density of states vanishes when p → ∞ in the ε =
+1 case and for ε = −1 it diverges at p = 1

� (which is
the upper bound of the momentum in this case). This
result is consistent with what has been obtained from the
asymptotic form of (7) and (13). However, the density of
states in (21) is not exact because it is derived from a
subalgebra representation, which cannot be lifted in this
simple form to a full representation of the algebra .

The modification of the phase-space volume implies
corresponding modifications of the cross sections. As an
example, to be used in the calculations of the next section,
consider the reaction

γ + p → π +N (22)

at high incident proton energy.
Here and in Sect. 3, simple letters are used to denote

quantities in the laboratory frame, primed letters for the
rest frame of the incident proton and starred letters for
the center of mass. Using (21), the modified part of the
phase-space integration in the cross section is

I (�) =
∫ ∫

k2
πdkπ

ωπ

√
1 + ε�2k2

π

p2
NdpN

EN

√
1 + ε�2p2

N

(23)

×dΩπdΩNδ
4 (pγ + pp − kπ − pN ) .

At high energies, with quantities in the rest frame of the
incident proton, one obtains

I (�) ∼
∫ ω′

γ

0

k′ (ω′
γ − k′) dk′

√
1 + ε�2k′2

√
1 + ε�2

(
ω′

γ − k′)2
. (24)
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Fig. 1. The phase-space suppression function (ε = +1 case)

Changing variables and dividing by I (0) one obtains the
following suppression (ε = +1) or enhancing (ε = −1)
function:

g (α, ε) =
I (�)
I (0)


 6
∫ 1

0

x (1 − x) dx
√

1 + εαx2
√

1 + εα (1 − x)2
,

(25)
with α = ω′2

γ �
2. Figure 1 is a plot of this function in the

ε = +1 (suppression) case.

3 The GZK sphere

In the sixties, Greisen [15], Zatsepin and Kuz’min [16]
have shown that the cosmic microwave background radia-
tion should make the Universe opaque to protons of ener-
gies � 1020 eV. At these energies the thermal photons are
sufficiently blue-shifted in the proton rest frame to excite
baryon resonances and drain the proton’s energy via pion
production. This led to the notion of the GZK sphere, the
sphere within which a source has to lie to supply us with
protons at 1020 eV. Later, more accurate calculations, us-
ing state-of-the-art particle physics data, placed the en-
ergy limit of cosmic (not arising from local sources) pro-
tons at around 5.1019 eV. That is, if the proton sources
are at cosmological distances (� 100 Mpc), the observed
spectrum should display a (GZK) cutoff around this en-
ergy. A similar limit applies to the nuclei component of
the cosmic ray flux.

This situation was upset by the detection of a number
of events above 1020 eV without any plausible local sources
[17,18] [19]. Discrepancies between the fluxes measured
by different groups [20,21] and analysis of the combined
data [22] do not yet allow for a clear-cut statement as
to whether the GZK cutoff is indeed violated, a question
that will hopefully be clarified by the forthcoming Auger

observatory. Meanwhile a number of possible explanations
for the violation of the GZK cutoff has appeared on the
literature (for a review see [23]). Here I analyze the effect
of the space-time non-commutativity on the calculation
of the GZK cutoff and, when (and if) such cutoff is con-
firmed, what inferences can be made concerning the value
of � and the sign ε.

Simple letters are used to denote quantities in the lab-
oratory (earth) frame, primed letters for the rest frame
of the proton and starred letters for the center of mass.
The fractional energy loss due to interactions with the
cosmic background radiation (at zero redshift) is given
by the integral of the nucleon energy loss per collision
multiplied by the probability per unit time for a nucleon–
photon collision in an isotropic gas of photons at temper-
ature T = 2.7 K. Therefore the lifetime of a cosmic ray of
energy E is [24] (� = c = 1)

τ0 (E) = 2Γ 2π2 (26)

×



∑
j

∫ ∞

ω
′
jth/2Γ

dω
eω/kT − 1

×
∫ 2Γω

ω
′
jth

dω
′
ω

′
σj

(
ω

′)
Kj

(
ω

′)}−1

,

where ω
′

is the photon energy in the nucleon rest frame
and the inelasticity Kj is the average energy lost by the

photon for the channel j with threshold ω
′
jth. σj

(
ω

′
)

is
the total cross section of the jth interaction channel and
Γ the Lorentz factor of the nucleon

(
Γ = E

mp

)
.

In (26) one may change the order of integration∫ ∞

ω
′
th/2Γ

dω
∫ 2Γω

ω
′
th

dω′ →
∫ ∞

ω
′
th

dω′
∫ ∞

ω′ /2Γ

dω

and compute one of the integrals. To obtain the cosmic ray
lifetime τ� (E) in the non-commutative case, one multiplies
the cross section by the suppression factor g (ω′, ε) (see
(25)). Finally, changing variables

ω′ → y = e−ω′/(2ΓkT )

one obtains the following ratio for each channel contribu-
tion:

rg =
τ� (E)
τ0 (E)

(27)

=
∫ 0

e
ω

′
th
β

dy
y

ln (1 − y) ln yσ (β ln y)K (β ln y)/∫ 0

e
ω

′
th
β

dy
y

ln (1 − y) ln yσ (β ln y)

×K (β ln y) g
(
β2�2 ln2 y, ε

)
,

with β = −2ΓkT .
This ratio was estimated for the single pion reaction

(22) using ω′
th = 145 MeV,

K (ω′) =
1
2

(
1 +

m2
π −m2

N

m2
p + 2mpω′

)
,
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Fig. 2. Cosmic ray lifetime increasing factors for 1/� in the
range 200 to 10 000 MeV (ε = +1 case)

and the following parametrization [25] for the cross sec-
tion:

σ (ω′) = A+B ln2 (ω′) + C ln (ω′) ,

with A = 0.147, B = 0.0022, C = −0.017, and the ω′
in GeV. This is a parametrization for the γp total cross
section in the range 3 GeV < ω′ < 183 GeV. Of course,
to compute the absolute value of τ� (E) this would not
be appropriate. Instead, due account should be taken of
all the resonance contributions. However for the ratio rg
it gives, at least, qualitative information on the order of
magnitude of the effect.

In Fig. 2 the results for rg are shown for ε = +1 and
1/� in the range 200 to 10 000 MeV, that is, � in the range
0.98–0.0197 Fermi or 329–6.58 × 10−26 s.

To estimate the effect that these lifetime extending
factors have on the energy attenuation of cosmic rays on
route to earth, I have used the (dD/dE)∞ values found in
[26] for a 1022 eV nucleon and computed the integration

D (E) = D0 (E0) +
∫ E

E0

rg (E) (dD/dE)∞ dE. (28)

The results are shown in Fig. 3. One sees that whereas the
value of the GZK cutoff is not much changed, the radius
of the GZK sphere is increased allowing for nucleons from
distances beyond 100 Mpc to reach earth at energies above
5.1019 eV.

If the observation of the ultra-high energy cosmic rays
is indeed a manifestation of the non-commutative struc-
ture two conclusions may be drawn.
(1) First, that the sign ε is +1, that is, space is continuous
and time discrete.
(2) Second, that for the effect to be significant at current
cosmic ray energies, the time quantum must be � 10−25 s,
much larger than Planck scale times.
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Fig. 3. Energy attenuation of a 1022 eV nucleon in route to
earth: 1/� = 200, 1000, 5000 MeV compared with the � = 0 case

It must be pointed out that the idea that modifications
to the GZK sphere calculation might arise from the quan-
tum properties of spacetime have already appeared in the
literature (see for example [27–31]). They mostly empha-
size a possible violation of Lorentz invariance whereas here
Lorentz invariance (in the operator sense) is not affected,
the modifications coming from changes in the phase-space
volume.

4 Corrections to the spectrum
of the Coulomb problem

Some experiments in atomic physics are now sensitive to
small frequency shifts below 1 mHz. With such sensitivity,
non-commutative space-time effects might be detected at
low energies, especially if small energy shifts have a quali-
tative impact. Here such a possibility is analyzed by look-
ing at the effect of the non-commutative algebra on the
spectrum of the Coulomb problem. Even if the correc-
tions turn out to be too small to be measurable in the
near future, the calculation by itself is of some interest to
illustrate how quantum mechanical spectra are computed
in the non-commutative framework.

Consider the Hamiltonian

H = − 1
2m

∆− e2

|−→x | , (29)

and use, for the non-commutative coordinates and mo-
menta, the representation listed in the appendix. Both
cases (ε = −1 and ε = +1) will be considered.
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ε = −1

From (A.3) one obtains (setting R = 1)

|−→p |2 =
1
�2

sin2 θ3,

|−→x |2 = �2
{
L2 cot2 θ3 − ∂2

∂θ23
− 2 cot θ3

∂

∂θ3

}
. (30)

Therefore

H =
1

2m�2
sin2 θ3

− e2

�

{
L2 cot2 θ3 − ∂2

∂θ23
− 2 cot θ3

∂

∂θ3

}− 1
2

. (31)

For small �, (small θ3) one obtains

H 
 1
2m

{
θ23
�2

− �2

3

(
θ3
�

)4
}

− e2
{
L2

(
�2

θ23
− 2�2

3

)
− �2

∂2

∂θ23

− 2�2
(

1
θ3

− θ3
3

)
∂

∂θ3

}− 1
2

. (32)

In this approximation p 
 θ3
� , therefore

H 
 1
2m

{
p2 − �2

3
p4

}

− e2
{
L2

(
1
p2 − 2�2

3

)
− ∂2

∂p2

− 2
(

1
p

− �2

3
p

)
∂

∂p

}− 1
2

,

which may be rewritten

H 
 1
2m

p2 − e2(∇2
p

) 1
2

+ �2


− 1

6m
p4 −

e2
(
L2 − p ∂

∂p

)
3

(∇2
p

) 3
2


 ,

(33)
with ∇2

p = L2

p2 − ∂2

∂p2 − 2
p

∂
∂p

Using the Fourier transform f (x) =
∫

eip.xF (p) d3p
and the relations∫

eip.xp2F (p) d3p = −∇2
xf (x) ,∫

eip.x∇2
pF (p) d3p = −x2f (x) ,∫

eip.xp
∂

∂p
F (p) d3p =

(
−r ∂

∂r
− 3

)
f (x) , (34)

one obtains a configuration space representation of (33),
namely

H 
 −∇2
x

2m
− e2

|x| −�
2

{
1

6m
∇4

x +
e2

3
L2 + r ∂

∂r + 3
r3

}
. (35)

The first two terms are the usual Coulomb Hamiltonian
and the third is the order �2 correction arising from the
non-commutative structure.〈

n′L
′
M

′ |H|nLM
〉


 δLL′ δMM ′ {Enδn′,n (36)

+ �2

〈
− 1

6m
∇4

x − e2

3
L (L+ 1) + r ∂

∂r + 3
r3

〉
n′,n


 ,

where r = |−→x |.

ε = +1

For the ε = +1 case one uses the same representation with
the replacements xν → ixν , pν → −ipν , θ3 → iµ, to obtain

|−→p |2 =
1
�2

sinh2 µ, (37)

|−→x |2 = �2
{
L2 coth2 µ− ∂2

∂µ2 − 2 cothµ
∂

∂µ

}
.

Then

H =
1

2m�2
sinh2 µ (38)

− e2

�

{
L2 coth2 µ− ∂2

∂µ2 − 2 cothµ
∂

∂µ

}− 1
2

,

and for small µ

H 
 1
2m

{
µ2

�2
+
�2

3

(µ
�

)4
}

− e2
{
L2

(
�2

µ2 +
2�2

3

)
− �2

∂2

∂µ2

−2�2
(

1
µ

+
µ

3

)
∂

∂µ

}− 1
2

,

H 
 1
2m

{
p2 +

�2

3
p4

}

− e2
{
L2

(
1
p2 +

2�2

3

)
− ∂2

∂p2

− 2
(

1
p

+
�2

3
p

)
∂

∂p

}− 1
2

, (39)

H 
 1
2m

p2 − e2(∇2
p

) 1
2

+ �2


 1

6m
p4 +

e2
(
L2 − p ∂

∂p

)
3

(∇2
p

) 3
2


 ,

H 
 −∇2
x

2m
− e2

|x| + �2

{
1

6m
∇4

x +
e2

3
L2 + r ∂

∂r + 3
r3

}
,

the conclusion being that for the ε = +1 case the order �2
correction differs from the ε = −1 case by a sign change.

Order �2 corrections to the spectrum, arising from non-
commutativity, have been obtained. Notice that exact re-
sults using the Runge–Lenz technique cannot be obtained
unless one changes the potential [32].
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From (35) and (39) one concludes that the relative
corrections to the Coulomb spectrum are of order

(
�2

L2

)
(L being a typical atomic length scale) with possible en-
hancements at high angular momentum states. Therefore,
for example, for a time quantum of 10−24 s ( 1

� 
 658), the
effect is only of order 10−10–10−11. Its experimental de-
tection would indeed be rather difficult but, on the other
hand, it is comforting to know that sizable effects in the
GZK sphere are not contradicted by present atomic ex-
periments.

5 Conclusions

(1) A non-commutative space-time structure and two con-
stants of nature � and ε emerge as natural consequences of
deformation theory and stability of the fundamental phys-
ical theories. Among other effects, this structure implies
a modification of phase-space volume which, in particu-
lar, has a bearing on the calculation of the GZK sphere.
Lorentz invariance is preserved.
(2) Phase-space suppression effects occur only in the ε =
+1 case. In this case the time coordinate has a discrete
spectrum and space coordinates are continuous.
(3) In addition to changing the cross sections of elemen-
tary processes, phase-space counting rules have statistical
mechanics consequences which might have had a relevant
effect at the first stages of the evolution of the universe.
(4) Phase-space volume modifications, time and space co-
ordinates spectra and modifications of the uncertainty re-
lations are consequences of the non-commutative space-
time structure which depend only on its algebraic struc-
ture. In this sense they are very robust and provide un-
ambiguous tests of the theory. Other consequences might
depend on the particular geometric construction that is
built on top of the algebraic structure. For example, for
a particular geometrical construction [13] the existence
of additional components on gauge fields is an intriguing
consequence.

Appendix

For specific calculations it is convenient to use a repre-
sentation of the space-time algebra (ε = −1 case) in the
space of functions on the upper sheet of the cone C4, with
coordinates

ξ1 = R sin θ3 sin θ2 sin θ1,
ξ2 = R sin θ3 sin θ2 cos θ1,
ξ3 = R sin θ3 cos θ2,
ξ4 = R cos θ3,
ξ5 = R, (A.1)

the invariant measure for which the functions are square-
integrable being

dν(R, θi) = R2 sin2 θ3 sin θ2dRdθ1dθ2dθ3. (A.2)

On these functions the operators of ��,∞ act as follows:

�p0 = R,

� = R cos θ3,
�p1 = R sin θ3 cos θ2,
�p2 = R sin θ3 sin θ2 cos θ1,
�p3 = R sin θ3 sin θ2 sin θ1,

M23 = −i
∂

∂θ1
,

M12 = −i
(

cos θ1
∂

∂θ2
− sin θ1 cot θ2

∂

∂θ1

)
,

M31 = i
(

sin θ1
∂

∂θ2
+ cos θ1 cot θ2

∂

∂θ1

)
,

x0

�
= −i

(
− sin θ3

∂

∂θ3
+R cos θ3

∂

∂R

)
,

x1

�
= i

(
cos θ2

∂

∂θ3
− sin θ2 cot θ3

∂

∂θ2

)
,

x2

�
= i

(
cos θ1 sin θ2

∂

∂θ3
+ cos θ1 cos θ2 cot θ3

∂

∂θ2

− sin θ1
sin θ2

cot θ3
∂

∂θ1

)
,

x3

�
= i

(
sin θ1 sin θ2

∂

∂θ3
+ sin θ1 cos θ2 cot θ3

∂

∂θ2

+
cos θ1
sin θ2

cot θ3
∂

∂θ1

)
,

M01 = i
(

sin θ2
sin θ3

∂

∂θ2
− cos θ2 cos θ3

∂

∂θ3

−R cos θ2 sin θ3
∂

∂R

)
,

M02 = −i
(

cos θ1 cos θ2
sin θ3

∂

∂θ2
− sin θ1

sin θ2 sin θ3
∂

∂θ1

+ cos θ1 sin θ2 cos θ3
∂

∂θ3

+ R cos θ1 sin θ2 sin θ3
∂

∂R

)
,

M03 = −i
(

sin θ1 cos θ2
sin θ3

∂

∂θ2
+

cos θ1
sin θ2 sin θ3

∂

∂θ1

+ sin θ1 sin θ2 cos θ3
∂

∂θ3

+ R sin θ1 sin θ2 sin θ3
∂

∂R

)
. (A.3)

For the ε = +1 case, one may work out a similar rep-
resentation on the C3,1 cone with coordinates

ζ1 = R coshβ cosψ0,

ζ2 = R coshβ sinψ0,

ζ3 = R sinhβ sinψ1,

ζ4 = R sinhβ cosψ1,

ζ5 = R. (A.4)
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Alternatively we may use the above representation multi-
plying xµ by i, pµ by −i and replacing θ3 by iµ. It is easily
seen from (1) that the correct commutation relations, for
the ε = +1 case, are obtained.
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