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Abstract

A stochastic solution is constructed for a fractional generalization of
the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses
a fractional generalization of the branching exponential process and propa-
gation processes which are spectral integrals of Levy processes.
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1. Introduction: The notion of stochastic solution

The solutions of linear elliptic and parabolic equations, both with Cauchy
and Dirichlet boundary conditions, have a probabilistic interpretation. These
are classical results which may be traced back to the work of Courant,
Friedrichs and Lewy [1] in the 1920’s and became a standard tool in poten-
tial theory [2],[3]. For example, for the heat equation,

∂tu(t, x) =
1
2

∂2

∂x2
u(t, x) with u(0, x) = f(x), (1)

the solution may be written either as

u (t, x) =
1

2
√

π

∫
1√
t
exp

(
−(x− y)2

2t

)
f (y) dy, (2)

or as



48 F. Cipriano, H. Ouerdiane, R. Vilela Mendes

u(t, x) = Exf(Xt), (3)

where Ex means the expectation value, starting from x, of the process

dXt = dWt,
Wt being the Wiener process.

Eq.(1) is a specification of a problem whereas (2) and (3) are solutions in
the sense that they both provide algorithmic means to construct a function
satisfying the specification. An important condition for (2) and (3) to be
considered as solutions is the fact that the algorithmic tools are independent
of the particular solution, in the first case an integration procedure and in
the second the simulation of a solution-independent process. This should
be contrasted with stochastic processes constructed from a given particular
solution, as has been done for example for the Boltzman equation [4].

In contrast with the linear problems, for nonlinear partial differential
equations, explicit solutions in terms of elementary functions or integrals
are only known in very particular cases. However, if a solution-independent
stochastic process is found that (for arbitrary initial conditions) generates
the solution in the sense of Eq.(3), a stochastic solution is obtained. In
this way the set of equations for which exact solutions are known would be
considerably extended.

The stochastic representations recently constructed for the Navier-Stokes
equations ([5], [6], [7], [8]) and for the Vlasov-Poisson equations ([9], [10]) de-
fine solution-independent processes for which the mean values of some func-
tionals are solutions to these equations. Therefore, they are exact stochastic
solutions.

In the stochastic solutions one deals with a process that starts from the
point where the solution is to be found, a functional being then computed
along the whole sample path or until it reaches a boundary. In all cases
one needs to average over many independent sample paths to obtain a ex-
pectation value of the functional. The localized and parallelizable nature of
the solution construction is clear. Provided some differentiability conditions
are satisfied, the process also handles equally well simple or very complex
boundary conditions.

The stochastic solutions also provide an intuitive characterization of
the physical phenomena, relating nonlinear interactions with cascading pro-
cesses. By the study of exit times from a domain they also sometimes pro-
vide access to quantities that cannot be obtained by perturbative methods,
see [11].
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One way to construct stochastic solutions is based on a probabilistic in-
terpretation of the Picard series. The differential equation is written as an
integral equation which is rearranged in a such a way that the coefficients
of the successive terms in the Picard iteration obey a normalization condi-
tion. The Picard iteration is then interpreted as an evolution and branching
process, the stochastic solution being equivalent to importance sampling of
the normalized Picard series. This method is used in this paper to obtain
a stochastic solution of a nonlinear partial differential equation, which is a
fractional version of the Kolmogorov-Petrovskii-Piskunov (KPP) equation,
see [12].

2. A fractional nonlinear partial differential equation

We consider the following equation

tD
α
∗ u (t, x) =

1
2 xDβ

θ u (t, x) + u2 (t, x)− u (t, x) . (4)

We use the same notations as in the study of the linear problem in [13].
here tD

α∗ is a Caputo derivative of order α,

tD
α
∗ f (t) =





1
Γ (m− α)

∫ t

0

f (m) (τ) dτ

(t− τ)α+1−m m− 1 < α < m,

dm

dtm
f (t) α = m,

(5)

with m integer, and xDβ
θ is a Riesz-Feller derivative defined through its

Fourier symbol by

F
{

xDβ
θ f (x)

}
(k) = −ψθ

β (k)F {f (x)} (k) , (6)

with ψθ
β (k) = |k|β ei(signk)θπ/2.

Eq. (4) is a fractional version of the KPP equation, studied by proba-
bilistic means by McKean [14]. Physically it describes a nonlinear diffusion
with growing mass and in our fractional generalization it would represent
the same phenomenon taking into account memory effects in time and long
range correlations in space.

As outlined in the introduction, the first step towards a probabilistic
formulation is the rewriting of Eq. (4) as an integral equation including the
initial conditions. For this purpose we take the Fourier transform (F) in
space and the Laplace transform (L) in time obtaining
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sα˜̂u (s, k) (s, k) = sα−1û
(
0+, k

)− 1
2
ψθ

β (k) ˜̂u (s, k)− ˜̂u (s, k)

+
∫ ∞

0
dte−stF (

u2 (t, x)
)
, (7)

where
û (t, k) = F (u (t, x)) =

∫ ∞

−∞
eikxu (t, x) dx,

ũ (s, x) = L (u (t, x)) =
∫ ∞

0
e−stu (t, x) dt.

This equation holds for 0 < α ≤ 1 or for 0 < α ≤ 2 with ∂
dtu (0+, x) = 0.

Solving for ˜̂u (s, k) one obtains an integral equation

˜̂u (s, k) =
sα−1

sα + 1 + 1
2ψθ

β (k)
û

(
0+, k

)
+

∫ ∞

0
dt

e−st

sα + 1 + 1
2ψθ

β (k)
F (

u2 (t, x)
)
.

(8)
Taking the inverse Fourier and Laplace transforms (see e.g. [15]), we have

u (t, x) = Eα,1 (−tα)
∫ ∞

−∞
dyF−1


Eα,1

(
−

(
1 + 1

2ψθ
β (k)

)
tα

)

Eα,1 (−tα)




× (x− y) u
(
0+, y

)
+

∫ t

0
dτ (t− τ)α−1 Eα,α (− (t− τ)α)

∫ ∞

−∞
dyF−1


Eα,α

(
−

(
1 + 1

2ψθ
β (k)

)
(t− τ)α

)

Eα,α (− (t− τ)α)


 (x− y) u2 (τ, y) , (9)

where Eβ,ρ is the generalized Mittag-Leffler function (see e.g. [15])

Eα,ρ (z) =
∞∑

j=0

zj

Γ (αj + ρ)
.

We define the following propagation kernel

Gβ
α,ρ (t, x) = F−1


Eα.ρ

(
−

(
1 + 1

2ψθ
β (k)

)
tα

)

Eα,ρ (−tα)


 (x) (10)

and from the normalization relation,
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Eα,1 (−tα) +
∫ t

0
dτ (t− τ)α−1 Eα,α (− (t− τ)α) = 1,

we may interpret Eα,1 (−tα) and (t− τ)α−1 Eα,α (− (t− τ)α), respectively
as a survival probability up to time t and as the probability density for the
branching at time τ in a branching process Bα. It is a fractional general-
ization of an exponential process. This provides a probabilistic sampling of
the Picard series obtained by iteration of Eq. (9). The solution is therefore
obtained by the expectation of the exit values of the following process:

Starting at time zero, a particle lives according to the process Bα. At
the branching time τ the initial particle dies and two new particles are born
at the dying point. The process continues in the same way with independent
evolution of each one of the newborn particles. At time t the solution is
obtained as a functional of the n existing particles at time t, namely as the
product of the initial condition propagated from the point where each one
of the n particles is at time t up to the initial position:

u(t, x) = Ex (ϕ1ϕ2 · · ·ϕn) , (11)
with

ϕi =
∫

dy
(i)
1 dy

(i)
2 · · · dy

(i)
k−1dy

(i)
k Gβ

α,α

(
τ1, x− y

(i)
1

)
Gβ

α,α

(
τ2, y

(i)
1 − y

(i)
2

)
· · ·

· · ·Gβ
α,α

(
τk−1, y

(i)
k−2 − y

(i)
k−1

)
Gβ

α,1

(
τk, y

(i)
k−1 − y

(i)
k

)
u

(
0+, y

(i)
k

)
, (12)

with
∑k

j=1 τj = t, k − 1 being the number of branchings leading to particle
i. Notice that the last propagator in (12) is different from the others.

Because of the normalization of the probabilities in the process Bα, the
probability of each one of the products in (11) corresponds to the weight
of the corresponding term in the Picard series. Therefore the expectation
value exists whenever the Picard series converges.

The solution (11) is not yet a purely stochastic solution because it in-
volves both the expectation value over the process Bα and a multiple inte-
gration of the initial condition with the propagation kernels Gβ

α,1 and Gβ
α,α.

To obtain a purely stochastic solution we notice that, for 0 < α ≤ 1, the
propagation kernels satisfy the conditions to be the Green’s functions of
stochastic processes in R (see the Appendix).

We denote the processes associated to Gβ
α,1 (t, x) and Gβ

α,α (t, x), respec-
tively by Πβ

α,1 and Πβ
α,α. Therefore the process leading to the solution is as

described before with all the particles until the last branching propagating
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according to the process Πβ
α,α and the last ones (that sample the initial con-

dition) propagating by the process Πβ
α,1. At time t the particle coordinates

x + ξi are recorded and the solution is given by

u(t, x) = Ex

(
u(0+, x + ξ1)u(0+, x + ξ2) · · ·u(0+, x + ξn)

)
. (13)

Eq. (13) is a stochastic solution of (4) and our main result is summarized
as follows:

Theorem. The nonlinear fractional partial differential equation (4),
with 0 < α ≤ 1, has a stochastic solution given by (13), the coordinates
x+ξi in the arguments of the initial condition obtained from the exit values
of a propagation and branching process, the branching being ruled by the
process Bα and the propagation by Πβ

α,1 for the particles that reach time t

and by Πβ
α,α for all the remaining ones.

A sufficient condition for the existence of the solution is
∣∣u(0+, x)

∣∣ ≤ 1. (14)

Remarks:

1) The condition |u(0+, x)| ≤ 1 imposes a finite value for all contri-
butions to the multiplicative functional. However, the solution may exist
under more general conditions, namely when the decreasing value of the
probability of higher order products in (13) compensates the growth of the
powers of the initial condition.

2) The stochastic solution may also be constructed by a backwards-
in-time stochastic process from time t to time zero. This is obtained by
rewriting Eq. (9) as

u (t, x) = Eα,1 (−tα)
∫ ∞

−∞
dyF−1


Eα,1

(
−

(
1 + 1

2ψθ
β (k)

)
tα

)

Eα,1 (−tα)




× (x− y) u
(
0+, y

)
+

∫ t

0
dττα−1Eα,α (−τα)

∫ ∞

−∞
dyF−1


Eα,α

(
−

(
1 + 1

2ψθ
β (k)

)
τα

)

Eα,α (−τα)


 (x− y) u2 (t− τ, y) , (15)

and noticing also that

Eα,1 (−tα) +
∫ t

0
dττα−1Eα,α (−τα) = 1.
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Then, we obtain the following stochastic construction of the solution:

Starting at time t a particle propagates backwards in time according to
the process Πβ

α,1 if it reaches time zero or according to Πβ
α,α if it branches at

time t− τ . The branching probability is controlled by the process Bα (that
is, the branching probability density is τα−1Eα,α (−τα)). When it branches,
two new particles are born which propagate independently and the process
is repeated until all surviving particles reach time zero.

Appendix: The Green’s functions
and the characterization of the processes

The processes Πβ
α,1 and Πβ

α,α:

F
{

Gβ
α,1 (t, x)

}
(t, k) =

Eα,1

(
−

(
1 + 1

2ψθ
β (k)

)
tα

)

Eα,1 (−tα)
, (16)

F
{

Gβ
α,α (t, x)

}
(t, k) =

Eα,α

(
−

(
1 + 1

2ψθ
β (k)

)
tα

)

Eα,α (−tα)
. (17)

For a propagation kernel G (t, x) to be the Green function of a stochastic
process, the following conditions should be satisfied:

(i) G (0, x− y) = δ (x− y) or F {G} (0, k) = 1 ∀k;
(ii)

∫
dxG (t, x) = 1 ∀t or F {G} (t, 0) = 1;

(iii) G (t, x) should be real and ≥ 0.

For the processes Πβ
α,1 and Πβ

α,α:

(i) F
{

Gβ
α,1

}
(0, k) = Eα,1(0)

Eα,1(0) = 1 and F
{

Gβ
α,α

}
(0, k) = Eα,α(0)

Eα,α(0) = 1;

(ii) F
{

Gβ
α,1

}
(t, 0) = Eα,1(−tα)

Eα,1(−tα) = 1 and F
{

Gβ
α,α

}
(t, 0) = Eα,α(−tα)

Eα,α(−tα) = 1;

(iii) If F {G} (t,−k) = (F {G} (t, k))∗, then G (t, x) is real.

Because ψθ
β (−k) =

(
ψθ

β (k)
)∗

, it follows

Eα,1

(
−

(
1 +

1
2
ψθ

β (−k)
)

tα
)

=
(

Eα,1

(
−

(
1 +

1
2
ψθ

β (k)
)

tα
))∗

and
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Eα,α

(
−

(
1 +

1
2
ψθ

β (−k)
)

tα
)

=
(

Eα,1

(
−

(
1 +

1
2
ψθ

β (k)
)

tα
))∗

implying that both Gβ
α,1 (t, x) and Gβ

α,α (t, x) are real.

Finally, for the positivity, one notices that for 0 < α ≤ 1 and ρ ≥ α,
Eα,ρ (−x) is a completely monotone function, see [16]. Therefore,

Eα,ρ (−x) =
∫ ∞

0
e−rxdF (r) ,

with F nondecreasing and bounded.

For Gβ
α,ρ (t, x) (ρ = 1 and ρ = α) one has

Gβ
α,ρ (t, x) =

1
2πEα,ρ (−tα)

∫ ∞

0
dF (r)

∫ ∞

−∞
dke−ikxe−rtα(1+ 1

2
ψθ

β(−k))

=
1

2πEα,ρ (−tα)

∫ ∞

0
dF (r) e−rtα

∫ ∞

−∞
dke−ikxe−

rtα

2
ψθ

β(−k).

We recognize the last integral (in k) as the Green’s function of a Levy
process. Therefore one has an integral in r of positive quantities implying
that Gβ

α,1 (t, x) and Gβ
α,α (t, x) are positive.

The process Bα:
The decaying probability in time dτ of this process is

τα−1Eα,α (−τα) .

From
∫ t

0
τα−1Eα,α (−τα) dτ = 1−Eα,1 (−tα)

it follows that Eα,1 (−tα) is the survival probability up to time t. The
process Bα is a fractional generalization of the exponential process.
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