
9 November 1998 

ELSEVIER Physics Letters A 248 (1998) 167-171 

PHYSICS LETTERS A 

Conditional exponents, entropies and a measure 
of dynamical self-organization 

R. Vilela Mendes ’ 

Grupo de Fkica-Matema’tica, Complex0 Interdisciplinar, Universidade de Lisboa, Av. Gatno Pinto, 2, 1699 Lisbon Codex. Portugal 

Received 17 June 1998; accepted for publication 30 July 1998 
Communicated by A.R. Bishop 

Abstract 

In dynamical systems composed of interacting parts, conditional exponents, conditional exponent entropies and cylindrical 
entropies are shown to be well-defined ergodic invariants which characterize the dynamical self-organization and statistical 
independence of the constituent parts. An example of interacting Bernoulli units is used to illustrate the nature of these 
invariants. @ 1998 Elsevier Science B.V. 

1. Conditional exponents 

The notion of conditional Lyapunov exponents 

(originally called sub-Lyapunov exponents) was in- 
troduced by Pecora and Carroll in their study of 

synchronization of chaotic systems [ 1,2]. It turns 
out, as I will show below, that, like the full Lyapunov 

exponent, the conditional exponents are well defined 
ergodic invariants. Therefore they are reliable quan- 

tities to quantify the relation of a global dynamical 
system to its constituent parts and to characterize 
dynamical self-organization. 

Given a dynamical system defined by a map f : 
M -+ M, with M c IW” the conditional exponents as- 
sociated to the splitting I@ x lR”ldk are the eigenvalues 
of the limit 

(1) 
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where Dkfn is the k x k diagonal block of the full 

Jacobian. 

Lemma 1. The existence of the conditional expo- 
nents as well-defined ergodic invariants is guaranteed 

under the same conditions that establish the existence 

of the Lyapunov exponents. 

Proo$ Let p be a probability measure in M c Iw” 
and f a measure-preserving M + M mapping such 
that p is ergodic. Oseledec’s multiplicative ergodic 

theorem [ 31, generalized for non-invertible f [4], 
states that if the map T : M + M,, from M to the 
space of m x m matrices is measurable and 

J cL(dx) log+ IIT(x> II < 00 
(with log+ g = max( 0, log g) ) and if 

T,=T(f”-lx) . ..T(fx)T(x). 

then 

(2) 

(3) 
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lim (T;*TJ) 1’2n = AX 
n-co 

exists ,u almost everywhere. 

If 7” is the full Jacobian Df( x) and if Df( x) satis- 
fies the integrability condition (2) then the Lyapunov 

exponents exist p almost everywhere. But if the Jaco- 

bian satisfies (2), then the M x m matrix formed by 

the diagonal k x k and m - k x m - k blocks also satis- 

fies the same condition and the conditional exponents 

too are defined a.e. Furthermore, under the same con- 
ditions as for Oseledec’s theorem, the set of regular 
points is Bore1 of full measure and 

(5) 

with 0 # u E Ei/Eii’, Ei being the subspace of lRk 

spanned by eigenstates corresponding to eigenvalues 

6 exp([jk’). 

2. Conditional entropies and dynamical 
self-organization 

For measures /1 that are absolutely continuous with 

respect to the Lebesgue measure of h4 or, more gen- 
erally, for measures that are smooth along unstable 
directions (SBR measures) Pesin’s [ 51 identity 

h(p) = C Ai (6) 

A\i>O 

holds, relating the Kolmogorov-Sinai entropy h( ,u) 

to the sum of the Lyapunov exponents. By analogy 
we may define the conditional exponent entropies as- 

sociated to the splitting lRk x TW”-k as the sum of the 
positive conditional exponents counted with their mul- 

tiplicity, 

hk&) = c ‘fjk’, 

fj”>O 

h,,_k(/L) = c (yk). 

(7) 

(8) 
Y)>O 

The Kolmogorov-Sinai entropy of a dynamical system 
measures the rate of information production per unit 
time. That is, it gives the amount of randomness in the 

system that is not explained by the defining equations 
(or the minimal model [ 61). Hence, the conditional 

exponent entropies may be interpreted as a measure 

of the randomness that would be present if the two 
parts Sck) and S(m-k) were uncoupled. The difference 

hk( ,U) + hm_k( pu> - h(p) represents the effect of the 
coupling. 

Given a dynamical system S composed of N parts 

{Sk} with a total of m degrees of freedom and invariant 

measure p, one defines a measure of dynamical self- 
organization I (S, 2, p) as 

I(S, -% CL) = &hc(& + hm--k(p) - h(/‘)}. (9) 
k=l 

Of course, for each system S, this quantity will de- 

pend on the partition 2 into N parts that one consid- 
ers. hm_k ( ,u) always denotes the conditional exponent 

entropy of the complement of the subsystem Sk. Be- 

ing constructed out of ergodic invariants, I( S, 2, p) is 

also a well-defined ergodic invariant for the measure 
p. I (S, _Z, p) is formally similar to mutual informa- 
tion. However, not being strictly mutual information, 
in the information theory sense, I( S, 2, ,u) may take 
negative values. 

Another ergodic invariant that may be associated to 
the splitting of a dynamical system into its constituent 
parts is the notion of cylindrical entropies. 

Consider, as before, a p-preserving and ,u-ergodic 
mapping f : M + A4 and a splitting W” = Rk x Wn*-k. 
A measure in IRm induces a measure in lRk by 

v(x) = I d/&x), (10) 
J 

p-k 

n E lRk and y E IRYk. 
Given a r+measurable partition P(Rk) in Rk, 

(11) 

Pi E P ( Wk) , it induces a partition in IX”’ by the asso- 
ciated cylinder sets 

P*=UP;, ( 12) 

Pi’ = Pi x lR”-k E PC(lP). 
Let P”(M) = P”( IV”) n M be the correspond- 

ing partition of M. Denote by P’(x) the element of 
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P”(M) that contains x. If all powers off are ergodic, 

for any nontrivial partition 

lim p(Pi(x)) = 0, 
U--r00 

where 

(13) 

P,‘(X) = i‘lf-.‘(P’(f’(x))), 

.;=o 
( 14) 

then the Shannon-MacMillan-Breiman theorem states 

that if 

c /A(PjF) log/X(Pj~) < 0, (15) 
I 

the limit 

h’(f,PC,X) = -J~m_~log~(Pj(x)) (16) 

exists p a.e. and converges in L’. This limit is the 
entropy at x associated to the cylindrical partition PC. 

The cylindrical entropy relative to the splitting Rk x 

RYk may be defined as the integral of the supremum 
of this limit over all finite cylindrical partitions 

he(f) = - 
s 

dp(X) stjpJi%; logAP;(x 

M 

(17) 

The full Kolmogorov-Sinai entropy is a similar limit 
where now the supremum would be taken over all fi- 

nite partitions. Therefore, for a smooth measure, if the 
parts of a composite dynamical system ye all uncou- 
pled, the full entropy is simply the sum of the cylin- 

drical entropies. In the uncoupled case each cylindri- 
cal entropy is determined by the corresponding con- 
ditional exponents. However, for coupled mixing sys- 
tems, the cylindrical partitions may, by themselves, al- 

ready generate the full entropy of the coupled system. 

Therefore the relation of the cylindrical entropies to 
the total entropy is simply a measure of the statistical 
independence of the constituent parts. The conditional 

exponent entropies defined in (7)) I: 8) seem to be a 
better quantitative characterization of dynamical self- 
organization. 

3. An example 

Consider a fully coupled system defined by 

06 

44. 

Fig. 1. Coupling dependence of the self-organization invariant 
I (.S, I, p) in the coupled Bernoulli system. 

Xi(t+,)=(l-C)f(Xi(t))+C- ,i+; N” , f(Xj(t)) 

(18) 

with f(x) =2x (mod 1). 

The Lyapunov exponents are At = log 2 and A; = 
log[2(1 - N/(N - l)c)] with multiplicity N - 1. 

Therefore, for an absolutely continuous measure 

h(p)=log2+(N- l)log(2- $$) 

N-l 
fort 6 - 

2N 

N-l 
=log2 fort> - 

2N ’ 
(19) 

The conditional exponents associated to the splitting 
R’ x RN-* are 

[(I) = log( 2 - 2c) (20) 

gj%og(2-A). 

,;%log(2_ZE) (21) 

with multiplicity N - 2. Therefore, for a partition 2 

of a system with N parts one obtains 

W,W=N{1og(l-&) 

+ max( log( 2 - 2c), 0) 

-max[log(2-g),O]}. (22) 

which in the limit of large N becomes 
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Fig. 2. The fin St 5000 time steps for c = 0.495 (maximum I (S, 2, p)). The last column on the right is the color map. 

I(& -z/J) = 

= 

c‘ 

1-t 

-c. 

Fig. 3. The first 5000 time steps for c = 0.51. 

123) 

Fig. 1 shows the variation with c of I( S, 2, ,u) 
N = 100. 

At c = 0, and starting from a random initial c 
dition, the motion of the system is completely di: 
ganized. When c starts to grow the system shows 

for 

:on- 

the 
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coexistence of disorganized behavior with patches of References 

171 

synchronized clusters. At the point where Z( S, 2, p) 
is a maximum, c = 0.495, starting from a random ini- 

tial condition, the system settles rapidly in a state with 
many different synchronized clusters. Fig. 2 shows the 

first 5000 time steps. It is indeed at this point that the 
system shows what intuitively we would call a large 

organizational structure. Above c = 0.5, after a short 

transition period, the system becomes fully synchro- 

nized (Fig. 3 for c = 0.5 1) . 
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