Ultradistribution Spaces: Superprocesses
and Nonlinear Differential Problems

R. Vilela Mendes

Abstract From branching particle systems one obtains, in the scaling limit,
measure-value processes called superprocesses. In addition to providing models for
evolving populations, superprocesses provide probabilistic representations of the
solutions of nonlinear partial differential equations (PDE’s). However, the class
of PDE’s that can be handled by measure-valued superprocesses is rather lim-
ited. This suggests an extension of the configuration space of superprocesses to
ultradistribution-valued processes which have a wider range of applications in the
solution of PDE’s. The relevance of the superprocess representation of PDE’s to deal
with nonlinear singular problems is also discussed.

Keywords Ultradistributions + Superprocesses * Nonlinear PDE’s

1 Distributions and Ultradistributions

One of the motivations to develop distribution theory arose from the need to deal with
non-smooth entities in differential equations. In particular the generalization of the
notion of derivative led to the spaces of distributions (") and tempered distributions
(). However, the theory of distributions is not just 2’ and .#”’. There are many other
interesting spaces of “generalized functions”. In the Figs. 1 and 2 (adapted from [1])
are displayed some other test function spaces, their dense embeddings and Fourier
maps (Fig. 1) as well as their corresponding duals (distribution spaces) (Fig.?2).

As 2" and . are a tool of choice to deal with linear differential and partial
differential equations, some of the other spaces might be more appropriate to deal
with other types of mathematical problems. The main properties of the spaces listed
in the figures are summarized here:
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Fig. 2 Distribution spaces (adapted from [1])

#9=Ux{Px ¢ € C® supp(p) C K}; loll, x) =maxo< <, {sup|p®|}
# o = ﬂ;ozo%; 7 = completion of & for the norm |[l¢|| = maxo<¢<p {sup ’ep‘)"(p@ }}
#S =0, ={p € C¥:¢ll,, =sup|xPp®}
# & = ¢ € C* with uniform convergence on compacts
# 2 =¢: Flp} €D, ¢ (2)entire: |2¢ ()| < Cre!™O)
U =00 Ups Uy = {9+ T o} € )5 N0l , = sup,eq {0+ 1217) o (D)1}
# 7 = Entire functions with topology of uniform convergence on compacts of C
# Qpexp = m?il«gpexp,j; %Xp,j = {(P : ”(p”exp,j = MmaXy<; {elee(Z)l ‘(p(k) (Z)|}}

Distribution Spaces

# 9' = Schwartz distributions; locally u (x) = D* (f (x))

# ¢ = Distributions of exponential type, u (x) = D* (e*"! f)
# . = Tempered distributions

# &' = Subspace of 2’ of distributions of compact support
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# % = Ultradistributions, &’ Z AN ”g—; 74

# 7' = Tempered ultradistributions

# %, = Dual of ., ultradistributions of compact support

# Qixp = Topological dual of Z¢,, contains 27" and %" as proper subspaces

Of particular relevance is the relation of the upper and lower lines in the figures
through the Fourier transform. In particular the fact that the Fourier transform of 2
has compact support endows the ultradistribution space 2’ with a rich analytical
structure. Ultradistributions not only have derivatives of all orders, like the distribu-
tions, but also have Taylor series expansions. This fact, among other things, makes
them more convenient than distributions in some application problems.

These generalized function spaces emphasize the role of the Fourier transform.
Other techniques have been used to define test function spaces smaller than & and
therefore distribution spaces larger than 2. Among them are the test function spaces
defined through weight functions or weight sequences. Given an integrable function
of compact support ¢, the condition for infinite differentiability (¢ € &) is expressed
through the Fourier transform by

/ﬁ {p} (x) "D gy < o0 Vn.

Replacing log (1 + |x|) by a larger function o (|x|)

/ﬁ{go} (x) gy < oo

one obtains a smaller test function space. With different definitions of projective
limit on A and inductive limit on the compacts, one obtains ultradistribution spaces
of class w of Beurling [2] or Roumieu [3] type.

Another trend defines ultradifferentiable functions [3-6] of class (M) (or {M,})
by VA > 03C > 0 (or 32 > 0 and C > 0) such that

sup }(p(”) (x)| <Ch'M, Vn e N
on compacts, M, being a sequence of positive numbers.

In this paper I will be mainly concerned with the space %’ of Silva tempered
ultradistributions [7, 8] and the space %, of ultradistributions of compact support.

1.1 Silva Tempered Ultradistributions

U C .&,isthe space of functions in . that may be extended into the complex plane
as entire functions of rapid decrease on strips. Namely % (C) consists of all entire
functions ¢ for which
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lell, = sup {(1+1z1")l¢ (@)} <0 VpeN (1

[Imz|<p

% topologized by the norms ||| » 1s a Fréchet space and for each ¢ (z) € v,
¢ (2)Ig € 7 (R).

%', the dual of % is Silva space of tempered ultradistributions [7, 8]. It may also
be characterized as the space of all Fourier transforms of distributions of exponential
type, that is

U =7 {x'} 2)

"' being the space of finite order derivatives of some exponentially bounded contin-
uous function, i.e. foreach f € %" thereisb > 0, m € N and abounded, continuous
function g such that

f(6) = (g (r))™

However, the representation of tempered ultradistributions by analytical functions is
the most convenient one for practical calculations. Define B, as the complement in
C of the strip A, = {z : Im (z) < n}

B, ={z:Im(2) > n} (3)
and H, as the set of functions which are holomorphic and of polynomial growth in
B,

()€ Hy=3IM,a:lp ()| <Ml|z|*,Vz € By. “4)

Let H, be the union of all such spaces

H,= UH, (5)
n>0

and in H,, define the equivalence relation & by

0 ~ Y if ¢ — ¢ is a polynomial.
Then, the space of tempered ultradistribution is
%' =H,/E (6)

and [¢ (z)] will denote the equivalence class. The vectorial operations as well as
derivation and multiplication by polynomials, defined on H,,, are compatible with
the equivalence relation and %/’ becomes a vector space with these operations.

The Schwartz space .’ of tempered distributions may be identified with a sub-
space of %/’ by the Stieltges transform, that is, a linear mapping of .%” on a subspace
"™ of 7/'. Namely, given v (x) € .’



Ultradistribution Spaces: Superprocesses and Nonlinear ... 251

@ v (1)
w@*‘%i/puxx—m“+P@) (7

[¢(z)] € %'. Here p(z) is a polynomial such that v/p ~ O (x™') in the
Silva-Cesaro sense and P (z) is an arbitrary polynomial [4, 9, 10].

Operations on tempered ultradistributions f € %' are performed using their ana-
lytical images ¢ (7). For example f is integrable in R if there is an yp € Rand a ¢ (z)
in [ (z)] € %’ such that ¢ (x 4+ iyy) — ¢ (x — iyp) is integrable in R in the sense of
distributions. Then

mm:f@@m&Mz ®)

Iy,
@ € %', g € % and the integral runs around the boundaries of the strip Im (z) < yy.

An ultradistribution vanishes in an openset A € Rif ¢ (x +iy) — ¢ (x —iy) —
0 for x € A when y — 0 or, equivalently, if there is an analytical extension of ¢ to
the vertical strip Re z € A, being of at most polynomial growth there. The support
of v is the complement in R of the largest open set where v vanishes.

All these notions are easily generalized to R” [8, 11] by considering products of
semiplans as in (3) and the corresponding polynomial bounds. For the equivalence
relation = one uses pseudopolynomials, that is, functions of the form

Z A k
/0 Zl"“’zj""’zn ZJa

J.k

zAj meaning that this variable is absent from the arguments of p.

An ultradistribution v in R” has compact support if there is a disk D such that any
@ in [¢ (z)] € %’ has an analytic extension to (C/D)", being of at most polynomial
growth there. Then the integral in (8) is around a closed contour containing the support
of the ultradistribution. In particular for a tempered ultradistribution of compact
support there is a unique representative function ¢° (z) vanishing at co. Then from
its Laurent expansion it follows

- 1 > 2
[1°] = [Zcm} - —;(—1) —ed"” 2= a) )

i=1

showing that any ultradistribution of compact support has a representation as a series
of multipoles [8]. The space of tempered ultradistributions of compact support will
be denoted 7. %, may be identified with .7#”, the space of analytic functionals,
dual of the space .77 of entire functions with the topology of uniform convergence
on compacts of C.

For all practical purposes an analytic representative ¢ (z) in C\A, of a
tempered ultradistribution corresponds (up to a common polynomial) to a pair of
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functions [g0+ (2), ¢— (z)] which are holomorphic and of polynomial growth respec-
tively above and below some strip A, = {z : Im (z) < n}.

For comparison, it is perhaps useful to recall the corresponding analytic repre-
sentation of distributions and tempered distributions. The Cauchy representation of
a distribution of compact support f € 2’ ()

1 1
C(f) (Z)=T<f(f),—> (10)
Tl 1 —z
is analytic in C\R and f is recovered by
f(X)=yli)I{)1+{C(f) (x +iy) —C(f) (x —iy)} (11)

For a general distribution on an open interval /, the Cauchy representation cannot
be defined as above. Nevertheless, for A; = {I + iR}, there is a function F analytic
in A7\ such that the jump operator as in (11) recovers the distribution. One has the
isomorphism

7' (1) = Aoy (AN]) | Ay (Ar)

g (A[\I) being the space of functions analytic in A;\/ and for which 3N such
that
sup|Imz|N F(z) <o

on vertical strips contained on A;\ /. The kernel of the homomorphism is the space
of such functions which are analytic in the whole of A;.
For .’ (R) one has

S (R) = Ay (C\R) / (A (C\R) N Ay (C))
s (C\R) being the functions analytic in C\R such that VR > 0 3m, N € N

[Imz|N|F (2)]
sup ————
zeAR\R (1 + |Rez|)™

and 77 (C) all such functions which are analytic in the whole of C.

2 Superprocesses on Ultradistributions

A superprocess describes the evolution of a population, without a fixed number of
units, that evolves according to the laws of chance. It involves both propagation and
branching of paths. They have been extensively used to model population dynamics
and, more recently, as a tool for the construction of solutions of nonlinear partial
differential equations [12-14].
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Given a countable dense subset Q of [0, c0) and a countable dense subset F of a
separable metric space E, the countable set

M1={Zaiéxi:xl---x”EF;Otr-'OlnEQ;”Zl} (12)
i=1

is dense (in the topology of weak convergence) on the space M (E) of finite Borel
measures on E [14]. This is at the basis of the interpretation of the limits of evolving
particle systems as measure-valued superprocesses. The representation of an evolving
measure as a collection of measures with point support is useful for the construction
of solutions of nonlinear partial differential equations as rescaling limits of measure-
valued superprocesses.

However, as far as representations of solutions of nonlinear PDE’s, superprocesses
constructed in the space M (E) of finite measures have serious limitations. The set
of nonlinear terms that can be handled is limited (essentially to powers u® (x) with
o < 2) and derivative interactions cannot be included as well. The first obvious gen-
eralization would be to construct superprocesses on distributions of point support,
because any such distribution is a finite sum of deltas and their derivatives [15].
However, because in a general branching process the number of branches is not
bounded, one really needs a framework that can handle arbitrary sums of deltas and
their derivatives. This requirement leads naturally to the space of ultradistributions
of compact support % , by virtue of the multipole expansion property (9) mentioned
before.

The limitations of superprocesses on measures and the generalization to super-
processes on ultradistributions are described in detail in Refs. [ 16—18]. Here the main
results will be summarized.

Let the underlying space of the superprocess be R"and denote by (X ' PO,,)) a
branching stochastic process with values in %, and transition probability P, , starting
from time 0, x € R" and v € %. The process is assumed to satisty the branching
property, that is, given v = v| + v,

PO,v == PO,v1 * PO,vz- (13)
After the branching (X, Py, ) and (X7, P ,,) are independent and X + X7 has the

same law as (X ty Po,v)- In terms of the transition operator V; operating on functions
on 7% this would be

Vifivi+v2) = (Vif,v) + (Vi f, v2) (14)
with V; defined by e=V/*") = Py e~ /X0 or
(Vi f.v) = —log Py ye” /X (15)

fet,ve,.
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In M = [0, oo) x R”" consider an open regular set O C M and the associated exit
process & = (s,, HO,x) with parameter k defining the lifetime. The process starts from
x € R” carrying along an ultradistribution in %, indexed by the path coordinate. At
each branching point (ruled by I7j ) of the & —process there is a transition ruled by
a P probability in %, leading to one or more elements in %,,. These %, elements are
then carried along by the new paths of the & —process. By construction, in each path,
the process never leaves %,;. The whole process stops at the boundary 9 Q, finally
defining an exit process (X g, Py,,) on % . If the initial v is § and f € % a function
on d Q one writes

u(x) = (Vo f,8,) = —log Py e fXe) (16)

( L X Q) being computed on the (space-time) boundary with the exit ultradistribution
generated by the process.

The connection with nonlinear PDE’s is established by defining the whole process
to be a (&, Y) —superprocess if u (x) satisfies the equation

M+GQW (M)ZKQf (17)

where G o is the Green operator,

Gof 0.x) =M. [ f(s.8)ds 18)
0
and Ky the Poisson operator

KQf()C) =Ty licoo f () (19)

¥ (u) means ¥ (0, x; u (0, x)) and 7 is the first exit time from Q, Eq. (17) being
recognized as the integral version of a nonlinear partial differential equation with
the Green operator determined by the linear part of the equation and ¥ (1) by the
nonlinear terms. If the equation does not possess a natural Poisson clock for the
branching one has to introduce an artificial lifetime for the particles in the process
(e~%), which in the end must vanish (k — oo) through a rescaling method.

The superprocess is constructed as follows: Let ¢ (s, x; z) be the branching func-
tion at time s and point x. Then denoting Py ye~{/¥2) as e©%) one has

e—w(O,x) = Iy, |:e—f(t,§r) 4 k/’ s [(p (s, £ e—w(t—s,&)) _ e—w(r—s,és)]i| (20)
0

where 7 is the first exit time from Q and f (t, §;) = (f, X) is computed with the
exit boundary ultradistribution. Existence of { f, X o) and hence of e™***) is insured
if f € % and the branching function is such that the exit Xy € %.

Equation (17) is then obtained by a limiting process. Let in (20) replace w (0, x)
by Bwg (0, x) and f by Bf.In a branching particle interpretation of the superprocess
B may be interpreted as the mass of the particles and when the %-valued process
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Xo — BXp then P, — Pu.

T
e PO0X) _ Iy, [e_ﬂf(‘[ssr) + kﬁ/ ds [(pﬁ (S, £ e—ﬂw(r—s,és)) _ e—ﬂw(t—s,fs)]:|
0

(2D
With
uy =(1—e ) /p o £V =(1-eP)/p
or | 1
ul(gz) = ﬁ (eﬂwﬁ — e—ﬂwﬁ) : fﬂ(Z) _ ﬁ (eﬂf . e_ﬂf)
and

) : k . .
0 (0. ?) = 2 o (0.1 = pug)) = 14 )

ul(si) — wg and flg(i) — f when 8 — 0, Eq.(17) being obtained in this limit.

Letz = e A =58) = P, e~ {#/X) For the branching function ¢ (s, x; z), in con-
trast with the measure-valued case, in addition to branchings of deltas into other deltas
one also has:

(1) A change of sign in the point support ultradistribution

eWBL8) — GBI _y olBf=8) — p—Bf)

which corresponds to

and
(2) A change from §™ to 81 for example

o\BI8) — GBF) _y S(BIES) _ ,FAF ()

which corresponds to
7 — e:Fat 1Og Z .

Case (1) corresponds to an extension of superprocesses on measures to super-
processes on signed measures and the second to superprocesses in 7.

Existence of the superprocess is existence of a unique solution for the Eq. (21) and
its rescaling limit. It will depend on the appropriate choice of the branching function
¢ (s, y; 7). Suppose that such a ultradistribution branching is specified. Associated to
the ultradistribution superprocess I with branching function ¢ there is an enveloping
measure superprocess I with branching function ¢ that has the same branching
topology as I" but without any derivative change in the original delta measure nor on
its sign. General existence conditions for measure-valued superprocesses have been
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found in the past [19-21]. Namely ¢ should have the form
oo
p(s,y:2)= —b(s,y)z—c(s,y)z2+/ (e_AZ + Az — l)n(s,y;dk). (22)
0

Suppose that the branchmg ¢ for the process I is of the form (22). This insures almost
sure existence of e~ (/%) X being the exit measure generated by the r process. Then,
for the corresponding ultradlstrlbutlon I'" superprocess one has

(f,X)fM/aQZ‘f(n)}.
n=0

and the following result is obtained [18]:

Proposition 1 A 7% ultradistribution-valued exit superprocess I' exists if the
branching function ¢ of the associated enveloping exit measure process I is as in
Eq. (22) and the boundary function f is such that the integral over the exit boundary
of X, |f(")| is finite.

3 Nonlinear Differential Problems, Distributions
and Superprocesses

3.1 Nonlinear Theories of Generalized Functions

The general treatment of derivatives in distribution theory provides a powerful sym-
bolic calculus for linear differential problems. However, when modeling natural
phenomena, the most interesting problems are very often nonlinear. Of course, if
the solutions of a nonlinear problem are known to be smooth, there is no problem
because many nice algebras can be found in the domain of smooth functions. How-
ever in cases where the solutions are singular or the sources are concentrated (point,
line or sheet charges, for example) the application of distribution theory becomes
problematic. The problem was identified long ago by Schwartz in his impossibility
result [22] which implies that &’ cannot be linearly embedded into a differential
algebra with the unit function as unit, with a derivation D satisfying Leibnitz rule,
D|¢1 (g, being the usual derivative and containing C (R) as a subalgebra.

The need to deal with systems of PDE’s without classical solutions, shock waves
and singular sources led to many attempts to embed the space of distributions into
an algebra, of course violating in a minimal way, one or more of the conditions of
Schwartz result. They may be broadly classified into sequential and complex analysis
methods and the type of products that are defined are either intrinsic, in the sense
that the product of two distributions is still a distribution, or products which may
lead to generalized functions different from distributions. For reviews see [23] and
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[1]. Colombeau’s algebra of generalized functions, which is of the second type, has
found a widespread use in the applications. It has been applied to singular shock
problems [24, 25], to symmetric hyperbolic systems with discontinuous coefficients
[26], to equations with distributions as initial conditions [27], to generalized stochas-
tic processes [28, 29], to general relativity [30, 31], etc.

Colombeau’s approach [30, 32—-34], in line with the sequential approach to distrib-
ution theory [35], considers a distribution as an equivalence class of weakly converg-
ing sequences of smooth functions and choosing the appropriate quotient constructs
a differential algebra o7 with a product o that satisfies the desired conditions except
that instead of having C (R) as a subalgebra it is o|c~c~ that corresponds to the
usual pointwise product of smooth functions.

Given some @ € Z(R") with integral one, a family of functions

®,(x) = 8%@ (f) (23)

e
has the property @, — 8 in &’ as ¢ — 0. @ is called a molifier. Convolution of

f € C®°(R") with @, yields a family

1 y—x
fe(x) = ;/f(y)‘l5 (T) d"y. (24)

of smooth functions that converge to f in &’ as ¢ tends to zero. Using a Taylor series
expansion to compare the difference between two such sequences they are said to
be equivalent if they differ by a negligible function. To define a differential algebra
¢ as the quotient by negligible functions one needs to restrict the set of functions
to moderate functions. The canonical choice introduces a grading on the space of
molifiers

2y ={® € 2(R") /@(x)dx: 1}
%::{@e%:/@(x)x“dx:O,lflalfq} (g e N) (25)

taking the basic function space to be
& ={f: o xR"—> R", fsmooth } (26)
and defines as moderate functions

EyRY) = {fe VK CCR"Va e NyjIp e Ng VP € &7, :

sup |[D* f(®D,,x)| = O(e™ ") as ¢ — 0} 27)
xek
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and negligible functions

NRY) = {fef(R): VK CCR"Vae e NgVp e Ngdg VP € 7, :

sup | D f (D, x)| = O(e?) as ¢ — 0} (28)
xekK
Then the algebra is
GR") =&y R") J AR (29)

with the distributions being embedded into 4° by convolution with the molifiers
u(T) =1[T % D] (30)

¢° is a commutative differential algebra where &’ is embedded as a linear space
but not as an algebra. The results of multiplication in this algebra may frequently be
interpreted in terms of distributions by using the concept of association. A gener-
alized function f is said to be associated to a distribution 7 € &' if for one (hence
any) representative { f.} we have

v e, tim [ fstods = (T.9) @

Not all elements of ¢¢ are associated to distributions. Association is an equivalence
relation which respects addition and differentiation. It also respects multiplication
by smooth functions but by the Schwartz impossibility result cannot respect multi-
plication in general.

For hyperbolic systems with rapidly growing nonlinear terms or with time-
dependent nonregular coefficient the need arises of going beyond the nonlinear the-
ory of generalized functions to a nonlinear theory of ultradistributions. After several
other attempts, in a recent paper, Debrouwere, Vernaeve and Vindas have achieved
an embedding of ultradistributions into differential algebras [36] of the same type as
Colombeau algebra.

When applying these differential algebras to physical problems and in addition to
the fact that many potentially interesting products in the Colombeau algebra cannot
be associated to distributions, there is a problem of interpretation of the results
because of the departure from the notion of pointwise multiplication that is behind
the derivation of the physical equations. Instead the multiplication is a kind of tensor
product multiplication. For example, if a weak solution of an equation behaves locally
like a delta and if the equation has a term u? one has locally a 82, but in Colombeau-
type algebras deltas are multiplied as

6, 9) (3, 9)

which, even in a sequential approach, is very far from a pointwise multiplication and
leads to a nonlinear functional
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2 2
(8%, ¢) = ¢* (0)

therefore not a distribution.

3.2 Superprocesses and Nonlinear Differential Equations

The extension of superprocess from measures to ultradistributions, discussed in
Sect.2 allows to deal with a large class of nonlinear differential equations. When
solutions are constructed by superprocesses, nonlinear terms do not raise any spe-
cial problem. Let u be the solution of some equation. Existence of n—powers of u
in the equation means that there is a splitting of the stochastic path into n paths, a
derivative means a transition from 8§ to 8"+ etc. It all boils down to the choice of
the appropriate branching function and rescaling limit. No nonlinear operations on
distributions are required. In the end the boundary process, the ultradistribution X ¢,
need not have smooth properties. The only limitation to insure existence of ( L X Q)
is a sufficiently smooth boundary condition.

How superprocesses on ultradistributions provide solutions to nonlinear differen-
tial equations, which cannot be obtained by superprocesses on measures and avoid
any explicit use of the nonlinear theory of generalized functions, is illustrated by the
following results, proved in [18].

Proposition 2 The superprocess with branching function

¢ (0,x;:2) = p1e” %% 4 pre™ ™8 4 pyz?
provides a solution to the equation
du 10%u
= —— —2u’ — = (8,u)’

whenever the boundary function uly satisfies the condition of Proposition 1.

Proposition 3 The superprocess associated to the branching function

1
¢ (0,x:2) = piz*> + P2

provides a solution to the equation

0 192
u u 3

9 209x2

whenever the boundary function uly satisfies the condition of Proposition .
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Here the construction of solutions of nonlinear differential equations by stochastic
processes (stochastic solutions) has been discussed using superprocesses. There is
another method, which has been called the McKean method, which may also deal with
nonlinear terms and derivative interactions [37, 38]. Refer to [16] for a comparison
of the two methods. In general the superprocess method seems more appropriate for
Dirichlet boundary conditions and McKean’s for Cauchy conditions. A limitation of
this last method, in some cases, is that only finite time solutions may be constructed.
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