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In finite-dimensional dissipative dynamical systems, stochastic stability provides the se-

lection of the physically relevant measures. That this might also apply to systems defined
by partial differential equations, both dissipative and conservative, is the inspiration for

this work. As an example, the 2D Euler equation is studied. Among other results this

study suggests that the coherent structures observed in 2D hydrodynamics are associated
with configurations that maximize stochastically stable measures uniquely determined

by the boundary conditions in dynamical space.
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1. Introduction

The main purpose of this research is to extend the notion of stochastically stable

invariant measures to dynamical systems defined by partial differential equations, in

particular to conservative systems with many invariant measures where the notion

∗Corresponding author.
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of stochastic stability may provide a selection criteria for the physically relevant

measures. In the following subsections and also partly in Secs. 2 and 3, some stan-

dard material is formulated in a notation appropriate for further developments.

The main, original results are contained in Secs. 4 and 5. The most direct physical

implication would be the interpretation of the coherent structures observed in two-

dimensional and quasi-two-dimensional fluid motion as configurations maximizing

stochastically stable invariant measures. According to the results, the stochastically

stable invariant measures would be unique for each choice of boundary conditions

in the dynamical variables.

1.1. The physical relevance of stochastically stable

invariant measures

For finite-dimensional systems, the notions of physical measure and stochastically

stable measure are closely related. Let M be the state space, f : M →M a dynam-

ical system defined by a smooth transformation and µ a positive Borel measure on

M such that

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))→
∫
M

ϕdµ (1)

for a positive measure set A of initial points x and any continuous function ϕ :

M → R. It means that time averages of continuous functions are given by the

corresponding spatial averages computed with respect to µ, at least for a large set

of initial states x. Such measure µ, when it exists, is called a physical measure (or

Sinai–Bowen–Ruelle, SBR measure).1–4

For uniformly hyperbolic systems, there is a complete theory concerning ex-

istence and uniqueness of physical measures and partial results for nonuniformly

hyperbolic and partially hyperbolic systems.5,6

Consider now the stochastic process fε obtained by adding a small random

noise to the deterministic system f . Under very general conditions, there exists a

stationary probability measure µε such that, almost surely,

lim
n→∞

1

n

n−1∑
j=0

ϕ(f jε (x))→
∫
ϕdµε. (2)

Stochastic stability of the µ measure means that µε converges to the physical mea-

sure µ when the noise level ε goes to zero. There is stochastic stability for uniformly

hyperbolic maps, for Lorenz strange attractors, Hénon strange attractors and also

general results for partially hyperbolic systems.7–12 Existence and uniqueness of the

invariant measure µε under general conditions provides a powerful tool to obtain

the relevant physical measure of the dynamical system f , by randomly perturbing

it and then letting the noise level ε→ 0.

In the past, stochastic stability of the physical measures has been considered

mostly relevant for dissipative systems or for Hamiltonian systems with small
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dissipative perturbations. That the same notion might also be useful for strictly

conservative systems follows from our results, with the choice of boundary con-

ditions in the dynamical space leading to uniqueness of the stochastically stable

measure.

1.2. The 2D Euler equation and persistent large-scale structures

in (quasi) two-dimensional fluid motion

For definiteness, our study concentrates on the stability of invariant measures for

the 2D Euler equation, an issue of current physical interest for the understanding of

geophysical phenomena.13,14 A striking feature of (quasi) two-dimensional turbulent

fluid motion13 is the emergence of large scale structures which persist for long

time intervals. Another feature is the relaxation of the flow to a small number of

patterns, as if they were attractors of the dynamics, a feature not to be expected

in conservative or small dissipation systems. This last feature, is also contrary to

the idea that viscosity is required to explain irreversibility in turbulent flows. These

phenomena should hopefully be explained by the 2D Euler equation or by its quasi-

geostrophic variants.

It has been suggested by many authors that the behavior of turbulent two-

dimensional flows should be understood by the methods of equilibrium or nonequi-

librium statistical mechanics (see, Refs. 13, 15–19 and references therein). Modern

studies in this direction concentrate in construction of microcanonical or more gen-

eral invariant Young measures, on their relation to the small viscosity limit of

the invariant measures of Navier–Stokes, relaxation of the dynamics and phase

transitions.

Here, following the inspiration provided by the results on physical measures,

as described above, we study the stochastic stability of the invariant measures.

The plan of the paper is as follows: in Sec. 2, infinitesimally invariant measures of

partial differential equations are related to the generator of the flow and in Sec. 3

the 2D Euler equation with periodic boundary conditions is written as a differential

equation for its Fourier modes and it is shown that it has infinitely many invariant

measures.

In Sec. 4.1 we revisit the question already addressed by other authors20,21 of

whether an invariant measure of the 2D Euler equation remains invariant when

the deterministic flow is replaced by an Ornstein–Uhlenbeck process. Some such

measures are found, which however correspond both to a noise perturbation and to

a change of the deterministic vector field. Therefore, they are not candidates for the

stochastically stable measures in the sense described before. Then in Sec. 4.2, we add

a noise perturbation to the deterministic dynamics and show that once a boundary

condition on the dynamical space is fixed, there is a unique measure which converges

in the sense of viscosity solutions to a measure density of the deterministic equation.

This result is obtained for the 2D Euler equation truncated to arbitrarily large N

Fourier modes. How to generalize it to the infinite-dimensional case is indicated.
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The result obtained in 4.2 provides a reasonable interpretation of the sta-

bility of the large scale structures in two-dimensional fluid motion. Because the

stochastically stable invariant measure depends on the boundary conditions (for

example a cut-off at large modes), we also understand why, depending on the par-

ticular physical environment, the structures display not a unique but several dif-

ferent shapes. It also provides a plausible explanation for the relaxation of the flow

to selected structures, not as an effect of some residual viscosity but as a result

of the noise always present in a physical system. In addition the dependence of

the stochastically stable measure on the dynamical boundary conditions might also

provide an explanation of why the same basic equation may lead to different large

scale patterns depending on the physical environment.

Finally, in Sec. 5, we briefly rephrase our results in configuration space and

using a recently developed stable algorithm perform a few illustrative numerical

simulations of a finite mode 2D Euler equation perturbed by noise that show the

emergence of the stochastically stable patterns.

Most of the results in the paper refer to a truncated system, therefore to an

arbitrarily large, but finite, dynamical system. The actual extension to an infinite

system is sketched but not worked out in detail.

2. Infinitesimally Invariant Measures of Partial

Differential Equations

Let Γt be the flow of a partial differential equation and Γ∗t the push-forward semi-

group acting on measures. A measure µ is invariant if

Γ∗t (µ) = µ (3)

and infinitesimally invariant if ∫
Bϕdµ = 0 (4)

for any differentiable function ϕ, B being the generator of the flow Γt. Equivalently

B∗1 = 0.

Let the generator B be a first or second-order differential operator on a discrete

set of coordinates φ = {φi},

B =
∑
i,j

uij(φ)
∂2

∂φi∂φj
+
∑
i

bi(φ)
∂

∂φi
(5)

and consider a measure of the forma

dµ = R(φ)
∏
i

dφi. (6)

aHere, and throughout most of the paper
∏

i dωi stands for
∏N

i=1 dωi with N an arbitrarily large

integer. The infinite dimensional case will be discussed in the last part of Sec. 4.
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To obtain the condition (4) ∫
(Bϕ)R(φ)

∏
i

dφi = 0

one computes the adjoint of B obtaining

B∗ = − 1

R

∑
i

∂

∂φi
(Rbi)−

∑
i,j

∂2

∂φi∂φj
(Ruij)


+
∑
i

−bi +
1

R

∑
j

∂

∂φj
[R(uij + uji)]

 ∂

∂φi
+
∑
i,j

uij
∂2

∂φi∂φj
. (7)

Therefore, to have B∗1 = 0, the first term in (7) should vanish leading to

Proposition 1. A generator B of the form in Eq. (5), uij and bi being differen-

tiable functions, has

dµ = R(φ)
∏
i

dφi

(R(φ) differentiable) as an infinitesimally invariant measure if and only if∑
i

∂

∂φi
(Rbi)−

∑
i,j

∂2

∂φi∂φj
(Ruij) = 0. (8)

Equivalently

bi =
1

R

∑
j

∂

∂ωj
(Ruij) +

Xi

R
, (9)

where Xi is an arbitrary function satisfying
∑
i
∂Xi
∂φi

= 0.

A similar result has been obtained in Ref. 22.

3. The 2D Euler Equation on the Torus

Consider the 2D Euler equations for an inviscid incompressible fluid
∂v

∂t
= −(v · ∇)v −∇p,

div v = 0,

(10)

subjected to periodic boundary conditions and initial data

v(x, 0) = v0(x), (11)

where v(x, t) = (v1(x1, x2, t), v2(x1, x2, t)) is the velocity field of the fluid and p =

p(x, t) is the pressure.
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Since div v = 0 and div v0 = 0, there is a function ψ(x, t) (the stream function)

such that

v = ∇⊥ψ = (−∂x2
ψ, ∂x1

ψ) (12)

and the Euler equation becomes

∂t∆ψ = −∇⊥ψ · ∇∆ψ. (13)

As in Ref. 20 we consider solutions of (13) on the 2-dimensional flat torus, a square

in R2 with periodic boundary conditions, T 2 = [0, 1]× [0, 1],

ψ(0, x2, t) = ψ(1, x2, t), ψ(x1, 0, t) = ψ(x1, 1, t) (14)

∀x = (x1, x2) ∈ T 2,∀t ∈ [0, T ]. Let us denote by ek(x) = ei 2πk·x, k ∈ Z2 the

eigenfunctions for the operator −∆ with eigenvalues 4π2(k21 + k22), where k · x =

k1x1 + k2x2. They form a complete set of orthonormal functions in L2(T 2). We

expand the solution ψ(x, t) of (13) as a Fourier series

ψ(x, t) =
∑
k

φk(t)ek(x).

Since ψ is a real function and we can assume
∫
T 2 ψdx = 0, then φ−k = φk (z being

the complex conjugate of z) and

ψ(x, t) =
∑
k∈Z2

+

φk(t)ek(x), (15)

where Z2
+ denotes the set {k ∈ Z2 : k1 > 0, k2 ∈ Z or k1 = 0, k2 > 0}.

By (15), the function ψ is identified with an infinite vector of Fourier coefficients

ψ = {φk}k∈Z2
+
,

where k ∈ Z2
+. We define C∞ = {φ = {φk}k∈Z2

+
: φk ∈ C}.

Substituting (15) in Eq. (13) and introducing the operator20,21,23

B(φ) = {Bk(φ)}k∈Z2
+

=
∑
k

Bk(φ)
∂

∂φk

with coefficients Bk = Bk(ω)

Bk(φ) =
4π2

k2

∑
h6=k

h,k∈Z2
+

(k⊥ · h)(k − h)2φhφk−h, (16)

where k⊥ = (−k2, k1), the system (10) becomes the following infinite dimensional

ordinary differential equation

d

dt
φk = Bk(φ) k ∈ Z2

+ (17)

and

∂Bk
∂φk

= 0. (18)
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We may now find the (infinitesimally) invariant measures of the Euler equation

on the torus. For the measure (6) we see from (5) that with uij(φ) = 0, the condition

(8) is simply ∑
i

∂

∂φi
(Rbi) = 0

that is, ∑
i

∂

∂φi
(RBi) = 0

or from (18) ∑
i

Bi
∂

∂φi
R =

∑
i

d

dt
φi

∂

∂φi
R =

d

dt
R = 0.

In conclusion, any constant of motion of the Euler equation generates an

(infinitesimally) invariant measure. Among them we mention the energy E and

the enstrophy S (or functions thereof) which in this setting read

E =
1

2

∑
k

k2φ2k,

S =
1

2

∑
k

k4φ2k.

The Poisson structure of the Euler 2D equation being degenerate, there is a set

of Casimir invariantsb,24 which are invariant for any Hamiltonian flow with that

Poisson structure. In this case they are

Cf =

∫
f(4ψ)d2x,

where f being an arbitrary differentiable function. Therefore, there are infinitely

many invariant measures for the 2D Euler equation. The enstrophy is the Casimir

invariant for f(x) = x2.

4. Stochastic Perturbations of the 2D Euler Equation

and Invariant Measures

Here, we discuss stochastic stability of invariant measures in two different settings.

First, given an invariant measure of the deterministic equation, we find the stochas-

tic perturbation which preserves that measure when also the deterministic part is

allowed to change. Second, we discuss the invariant measures of the stochastically

perturbed system, with the deterministic part kept fixed and also the convergence

of the perturbed measure when the perturbation tends to zero. It is this second

study that is in the spirit of the identification of the physical measure by stochastic

perturbations as it is done for finite-dimensional dissipative systems.

bRelated by Noether theorem to relabelling invariance of the fluid elements.25
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4.1. Stochastic perturbations preserving a deterministic

invariant measure

A similar such study has been performed before and we use the same setting and

notation as in Refs. 20 and 21. We introduce the Sobolev spaces of order β ∈ R on

the torus T 2

Hβ =

{
φ =

∑
k

φkek :
∑
k

|k|2β |φk|2 < +∞, φ−k =
−
φk

}

≡

φ = (φk)k∈Z2
+
∈ C∞ :

∑
k∈Z2

+

|k|2β |φk|2 < +∞

 . (19)

The spaces Hβ are complex Hilbert spaces with inner product and norm given by

〈φ(1), φ(2)〉Hβ =
∑
k∈Z2

+

|k|2βφ(1)k φ
(2)

k , ‖φ‖2Hβ = 〈φ, φ〉Hβ .

Definition. An arbitrary complex function f = f(φ) : C∞ → C is a cylindrical

function if, for some integer N , we have f = f(φ) ≡ F (φα1
, . . . , φαd(N)

), where F is

a C1
0 (CN ) — smooth function depending only on the components φαi , αi ∈ Z2

+,d(N).

Let us consider the following infinite-dimensional parametric Ornstein–

Uhlenbeck operator εQ defined by

εQf(φ) = ε
∑
k

{
ak(φ)

∂

∂φk
f(φ) + σk(φ)

∂2

∂φ2k
f(φ)

}
(20)

for every cylindrical function.

If we consider the operator

Lf(φ) = εQf(φ) +
∑
k

Bk(φ)
∂

∂φk
f(φ) (21)

we can see this operator as the infinitesimal generator for a stochastically perturbed

Euler flow.

Let W (t) =
∑
k

1
|k|bk(t)ek be a normalized cylindrical brownian motion on

H1−δ, bk(t) being independent copies of a complex brownian motion. To the gen-

erator (21) corresponds the following perturbed Euler equation:

Xk(t) = Xk(0) +

∫ t

0

{Bk(X(s)) + εa(Xk(s))}ds

+

∫ t

0

√
2εσk(Xk(s))dbk(s), ∀k ∈ Z2

+. (22)
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Proposition 2. If dµ = R(φ)
∏
i dφi is an invariant measure for the (truncated)

unperturbed Euler equation, then this is also an invariant measure for the perturbed

equation (22) if ak(φ) and σk(φ) in (20) satisfy∑
k

{(
ak − 2

∂σk
∂φk

)
∂R

∂φk
+R

(
∂ak
∂φk

− ∂2σk
∂φ2k

)
− σk

∂2R

∂φ2k

}
= 0. (23)

This is a direct consequence of Eq. (8). As an example, for the Gaussian measure

constructed from the enstrophy

dµS = e−
1
2

∑
k k

4φ2
k

∏
j

dφj . (24)

Equation (23) is satisfied by

ak = −k2φk, σk =
1

k2
(25)

and for the Gaussian measure constructed from the renormalized energy

dµE = e−:E:
∏
j

dφj , (26)

ak = −φk, σk =
1

k2
, (27)

where : E := 1
2 (
∑
k k

2φ2k − E[
∑
k k

2φ2k]).

Notice that in (24) and (26) we are considering a truncation of the 2D Euler

equation to arbitrarily large N modes. In the N →∞ limit the flat measure
∏
j dφj

makes no sense and another reference measure should be used.

One sees that for these invariant measures of the unperturbed Euler equation,

there are specific Ornstein–Uhlenbeck perturbations that preserve it as an invariant

measure. However, in each case we are not only adding noise but also modifying

the deterministic part. In the first (enstrophy) case we are actually adding noise to

a Navier–Stokes equation

∂t∆ψ = −∇⊥ψ · ∇∆ψ + ε42ψ,

∂v

∂t
= −(v · ∇)v + ε4v −∇p,

and in the renormalized energy case

∂t∆ψ = −∇⊥ψ · ∇∆ψ − ε4ψ,
∂v

∂t
= −(v · ∇)v − εv −∇p.

Therefore, because invariance of these measures requires a fine tuning with both

the deterministic and the stochastic components being modified with the same

intensity ε, they do not seem to be the right candidates for the physical measures

of the 2D Euler equation. The same applies to the results of Kuksin26 who, using a

viscosity of intensity ε and a
√
ε noise, shows that the collection of unique invariant
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measures so obtained is tight and converges in the ε→ 0 limit to a measure of the

deterministic Euler equation.

Incidentally, also the microcanonical measures, that have been studied by a

number of authors, do not seem to qualify as stochastically stable measures even

with reasonable modifications of the deterministic part of the equation.

That the selection of a unique invariant measure requires a fine tuning, of both

the noise and the deterministic terms, makes these, otherwise interesting, results

irrelevant for the interpretation of physical phenomena, where such fine tuning is

not to be expected.

4.2. The zero noise limit of the invariant measure

of a stochastic system

In the previous subsection, we have dealt with stochastic perturbations which pre-

serve invariant measures of (17). As stated before, of more interest for the charac-

terization of the physical measures would be to find noise-perturbed systems with a

unique invariant measure and to construct the zero-noise limit of that measure. This

we discuss now, not for the infinite dimensional system but again for its Galerkin

approximations of arbitrary order N27

d

dt
φk = BNk (φ), k ∈ Z2

0, |k| ≤ N (28)

BNk (φ) =
4π2

k2

∑
0<|h|≤N

0<|k−h|≤N

(k⊥ · h)(k − h)2φhφk−h. (29)

When noise is added to (28), without changing the deterministic part, the equation

for the density R(φ) of the invariant measure becomes∑
k

BNk (φ)
∂

∂φk
R− εσk

∂2

∂φ2k
R = 0. (30)

Two cases are of physical interest, namely σk = 1 and σk = 1
k2 , corresponding,

respectively to a uniform noise in all Fourier modes or to a decreasing noise intensity

in higher modes. However, by the change of variables zk = |k|φk and BN
′

k (φ) =

|k|BNk (φ) the second case becomes identical to the first one and we have to deal

with ∑
k

BN
′

k (z)
∂

∂zk
R− ε ∂

2

∂z2k
R = 0, (31)

which we recognize as an elliptic regularization of a first-order Hamilton–Jacobi

equation. As shown before, this Hamilton–Jacobi equation (ε = 0) has at least

as many generalized solutions as the number of constants of motion of the

N -Galerkin approximation to the Euler equation. Hence, existence and unique-

ness of a stochastically-stable solution for R is equivalent to the establishment of
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a viscosity solutionc for this Hamilton–Jacobi problem,28–30 in particular in its

vanishing viscosity modality.30,31

However, the solution of this problem strongly depend on the domain, where

the R function is defined, therefore on the dynamical boundary conditions. What

this means in practical terms is that the fluid under study might not be exploring

all possible intensities in all modes. In Eq. (31) this would be coded by particular

boundary conditions on the R function.

Associated to the uniformly elliptic equation (31) there is a diffusion process

Xε(t) with diffusion coefficient
√
ε and drift BN

′

k (z). In each bounded domain D of

z-space, the drift, being a quadratic polynomial, is uniformly Lipschitz continuous.

Therefore, the Dirichlet problem of Eq. (31) has a unique solution with stochastic

representation

Rε(z)|D = Ez{f(Xε(τ))}, (32)

where f being the boundary condition at ∂D and τ the first exit time from D (see,

Chap. 6 of Ref. 33).

For a bounded smooth boundary condition, the solution Rε in (32) is bounded

and continuous on compact subsets of D. Then, when ε → 0 Rε converges locally

uniformly to a function R. This function is not necessarily a classical solution of∑
k B

N ′

k (z) ∂
∂zk

R = 0, but a standard construction (see, Chap. 10 of Ref. 31) shows

that it is a viscosity solution, in the sense that, given a C∞ function g, if R − g
has a local maximum at a point z0 then

∑
k B

N
k (z0) ∂

∂zk
g(z0) ≤ 0 and if it is a local

minimum
∑
k B

N
k (z0) ∂

∂zk
g(z0) ≥ 0. Hence,

Proposition 3. For each choice of boundary conditions in z-space and noise level

(ε), one has a unique measure density Rε(z), solution of (31). Furthermore, in the

ε→ 0 limit, Rε converges to a viscosity solution of
∑
k B

N ′

k (z) ∂
∂zk

R = 0.

For consistency with the ε = 0 case, it is convenient to have the boundary func-

tion at each ∂Dn constructed from a constant of motion of the 2D Euler equation,

for example the enstrophy (fn|∂Dn = e−
1
2

∑
k k

4φ2
k) as in (24). Then the viscosity

solution would provide a measure density which for very large mode amplitudes be-

haves like the enstrophy measure. In this construction the measures may be made

to coincide in the boundary with one of the infinitely many invariant measures

discussed in Sec. 2. However, in the interior of the specified domain the stochas-

tically stable solution will not in general coincide with the solution chosen for the

boundary. Also, the solution that is obtained is not in a strict sense an invariant

measure for the original equation because of the limitations put on the domain by

the boundary conditions. However, it follows from (32) that, for a positive boundary

condition, R is a positive density.

cA viscosity solution is a weak solution which need not be everywhere differentiable (see, Ref. 28).
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So far we have dealt with N -dimensional Galerkin approximations to the 2D

Euler equation. When N → ∞ several modifications are needed. The first one is

in Eq. (6) because it makes no sense to define R(φ) as a density of the nonexistent

flat measure in infinite dimensions. Instead, R(φ) should be defined as the Radon–

Nykodim derivative for some other measure, for example the Gaussian enstrophy

measure. Then the equation for the density R(φ) would be∑
k

{
Bk(φ)

∂

∂φk
− k4φkBk(φ)

}
R(φ) = 0 (33)

a Hamilton–Jacobi equation in infinite dimensions. Such equations have been ex-

tensively studied34 and given the appropriate boundary condition, for example

R(φ) → 1 for large |φ|, the construction of the density as a limiting viscosity

solution of ∑
k

{
Bk(φ)

∂

∂φk
− k4φkBk(φ)− ε ∂

2

∂φ2k

}
R(φ) = 0 (34)

would follow similar steps as in the finite-dimensional case.

Proposition 3 establishes the existence of stochastically stable measures as vis-

cous solutions of an elliptic regularized Hamilton–Jacobi equation. The solutions

are defined once the boundary conditions at large φ′ks are fixed, for example, by

some invariant measure of the deterministic 2D Euler equation.

In conclusion, the present result provides an interpretation of the stability of

the large coherent structures in two dimensional fluid motion somewhat different

from what has been suggested in the past. Some past treatments start from the

fact that the stationary points of constants of motion are steady state solutions

and choose an appropriate linear combination G of the constants of motion as a

potential and adding to the equations a −αG term develop a dissipative Langevin

dynamics. Alternatively, other approaches look for maxima of the entropy, which

of course depend on a previous choice of measure. In particular the microcanon-

ical measure, that has been favored, is not a solution of the elliptic regulariza-

tion of the Hamilton–Jacobi equation for finite noise level ε. Whether it can, in

some sense, be identified with a viscosity solution in the ε → 0 limit is an open

question.

In contrast with previous interpretations, our analysis suggests that the co-

herent structures observed in 2D hydrodynamics are associated to configurations

that are stochastically stable measures uniquely determined by the boundary

conditions in {φ}-space. Some authors have suggested that the convergence of

two-dimensional fluid dynamics to stable or quasi-stable large scale structures

is associated to dissipative effects. Of course, a dissipative effect may be inter-

preted as a dynamical boundary condition, for example a suppression of the

high Fourier modes. But what our result shows is that uniqueness of the invari-

ant measure is associated to the dynamical boundary conditions, dissipative or

otherwise.
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5. Stochastically Stable Configurations: Numerical Illustrations

Here, instead of the Fourier mode decomposition and truncation we use configu-

ration space variables. Corresponding to the Fourier mode truncation, one has the

stream function defined at a grid of N × N points. Therefore, instead of Fourier

modes, one has values of the stream function at points in a grid and the same type

of results are expected. The truncated equation is

∂t(∆ψ)ij = −(∇⊥ψ · ∇)ik(∆ψ)kj , (35)

where ∆ and∇ stand for the discrete Laplacian and discrete gradient. The evolution

of the stream function is obtained by the inversion of a Poisson equation

ψij = (∆−1)ik(∆ψ)kj (36)

with the physically irrelevant condition∑
ij

ψij = 0. (37)

What has been proved in the previous section was the existence of unique stochas-

tically stable measures once the dynamical boundary conditions are fixed, not the

existence of unique stochastically stable solutions. However, it is to be expected

that, when perturbed by small noise, the solutions will be concentrated on the

regions where the measure is maximal. This is now illustrated with numerical sim-

ulations. To perform these simulations in a reliable way one should insure that

the observed effects come from the noise perturbations and not from round-off or

numerical instabilities of the algorithm. In this case the evolution operator M

M = ∇⊥ψ · ∇

a N2×N2 matrix, is problematic because for general values of ψ it may have both

singular values greater and smaller than one. Therefore, neither an explicit nor an

implicit scheme would be stable. The solution is found by splitting M into

M = M1 +M2

in such a way that the singular values of both (1 −M1) and (1 + M2)−1 are ≤ 1.

This provides a semi-implicit scheme35 which is stable or marginally stable.

The semi-implicit algorithm was used with initial condition corresponding to a

single Fourier mode (Fig. 1), which is a stationary solution of (35–37). However,

when noise is added, the solution becomes unstable and converges to an almost

stable pattern as shown in Fig. 2.

One sees that the pattern is close to the density of the first Fourier mode.

The configuration is not unique. For different runs of the simulation one obtains

essentially the same pattern but in different positions on the torus, always close

to a first Fourier mode with different phases. This condensation in the first mode,

first observed by Kraichnan and Montgomery,36 has been discussed before in the

framework of an energy-enstrophy microcanonical measure.14 However, although

1950185-13

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
9.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

E
O

R
G

IA
 o

n 
08

/2
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 23, 2019 17:32 IJMPB S0217979219501856 page 14

F. Cipriano, H. Ouerdiane & R. V. Mendes

Fig. 1. (Color online) Initial condition: a pure Fourier mode.

Fig. 2. (Color online) Pattern obtained from the one in Fig. 1 after evolution with noise.

we are in a finite N setting, no hint of the microcanonical distribution is apparent.

For this first simulation no limitation is put on the dynamical variable, meaning

that the dynamical space is RN2

. Unique solutions of the measure equation (31) of

the type (32) do not apply. However, uniqueness of the solution in the RN2

case

are also to be expected.32
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To explore different boundary conditions in the dynamical space, we considered

a case, where the values of the stream functions are constrained to be in a box and

a case, where the stream function is constrained to be zero along two orthogonal

lines. We started again from a large mode solution which evolves under noise. The

results are shown in Figs. 3 and 4. Notice that for simplicity we have considered

Fig. 3. (Color online) Pattern obtained when the stream function magnitude has an upper bound.

Fig. 4. (Color online) Pattern obtained when the stream function is pinned down to zero at two

lines.
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boundary conditions on the stream function, not on physical velocities which are

related to the stream function by Eq. (E1.2a). Boundary conditions on the physical

velocities would correspond to boundary conditions on the derivatives of the stream

function.

In this paper we have argued for the relevance of stochastically stable measures

as the generators of the coherent structures observed in (quasi) two-dimensional

fluid flows. However, most of our results are based on Galerkin approximations of

arbitrary but nevertheless finite dimension. In spite of the intuition provided by

Eq. (34), the infinite dimension limit characterization remains, of course, an open

question.

An alternative approach to the establishment of invariant measures in 2D fluid

dynamics has been the Young measure and point vertex model with finite or variable

number of vortices,19,36–39 which goes back to the pioneering work of Onsager.15

In this approach, where infinite N limits have been established, Gibbs measures of

the vortex model may be identified with coherent structures, however, the selection

role of stochastic stability to choose among a basically infinite set of measures is

not so clear.
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27, 595 (2010).
13. F. Bouchet and A. Venaille, Phys. Rep. 515, 227 (2012).
14. F. Bouchet and M. Corvellec, J. Stat. Mechanics: Theory and Experiment, P08021

(2010).
15. L. Onsager, Nuovo Cimento Supl. 6, 249 (1949).
16. R. Robert, J. Stat. Phys. 65, 531 (1991).
17. R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991).
18. E. Caglioti et al., Commun. Math. Phys. 174, 229 (1995).

1950185-16

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
9.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

E
O

R
G

IA
 o

n 
08

/2
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 23, 2019 17:32 IJMPB S0217979219501856 page 17

Stochastic stability of invariant measures: The 2D Euler equation

19. R. Robert, Commun. Math. Phys. 212, 245 (2000).
20. S. Albeverio and A. B. Cruzeiro, Commun. Math. Phys. 129, 431 (1990).
21. F. Cipriano, Commun. Math. Phys. 201, 139 (1999).
22. H. Airault and H. Ouerdiane, Invariant Measure for Some Differential Operators

and Unitarizing Measure for the Representation of a Lie Group, Examples in Finite
Dimension, Vol. 96 (Banach Center Publications, 2012), pp. 11–34.

23. S. Albeverio, M. Ribeiro de Faria and R. Hoegh-Krohn, J. Stat. Phys. 20, 585 (1979).
24. P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).
25. R. Salmon, Lectures on Geophysical Fluid Dynamics (Oxford Univ. Press, 1998).
26. S. B. Kuksin, J. Stat. Phys. 115, 469 (2004).
27. S. Albeverio and B. Ferrario, Some methods of infinite dimensional analysis in

hydrodynamics: An introduction, in SPDE in Hydrodynamic: Recent Progress and
Prospects, eds. G. Da Prato and M. Röckner (Springer, Berlin, 2008).
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