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Chapter 6

The Stability of Physical
Theories Principle
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1. Introduction: Physical Models and Structural
Stability

When models are constructed for the natural world, it is reasonable to
expect that only those properties of the models that are robust have a
chance to be observed. Models or theories being approximations to the
natural world, it is unlikely that properties that are too sensitive to small
changes (that is, that depend in a critical manner on particular values
of the parameters) will be well described in the model. If a fine tuning
of the parameters is needed to reproduce some natural phenomenon, then
the model is basically unsound and its other predictions expected to be
unreliable. For this reason a good methodological point of view, in the con-
struction of physical theories, consists in focusing on the robust properties
of the models or, equivalently, to consider only models which are stable,
in the sense that they do not change, in a qualitative manner, when some
parameter changes. This is what will be called the stability of physical the-
ories principle (SPTP).

The stable-model point of view had a large impact in the field of
nonlinear dynamics, where it led to the rigorous notion of structural sta-
bility [1, 2]. As already pointed out by Flato [3] and Faddeev [4] the same
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pattern seems to occur in the fundamental theories of Nature. In fact, the
two physical revolutions of the last century, namely the passage from non-
relativistic to relativistic and from classical to quantum mechanics, may be
interpreted as transitions from two unstable theories to two stable ones.

Because a theory is a mathematical model for the natural world, stabil-
ity of a theory is stability of its mathematical structure. A mathematical
structure is said to be stable (or rigid) for a class of deformations, if any
deformation in this class leads to an equivalent (isomorphic) structure. The
idea of stability of the structures provides a guiding principle to test either
the validity or the need for generalization of a physical theory. Namely, if
the mathematical structure of a given theory is not stable, one should try
to deform it until one falls into a stable one, which has a good chance of
being a generalization of wider validity.

When a mathematical structure is deformed, the deformation depends
on a certain number of parameters. Typically, if one starts from an unsta-
ble theory Tα0 , that corresponds to a particular value α0 of the parameter
α, α0 will be an isolated point, in the sense that for any other value α
of the parameter in a neighborhood of α0, the theory Tα is not equiva-
lent to Tα0 . Conversely a stable theory would be one for which α0 has a
neighborhood of theories all of them equivalent to Tα0 . Therefore when one
deforms an unstable theory and falls into a stable one, the exact value of
the deformation parameter that corresponds to the actual physical theory
cannot be obtained from deformation theory because, from this point of
view, all values for which the theory is stable are equivalent. The defor-
mation parameters are therefore the natural fundamental constants that
have to be obtained from experiment. In this sense deformation theory not
only is the theory of stable theories, it is also the theory that identifies the
fundamental constants.

The construction of physical theories operates at several distinct struc-
tural levels and, at each level, distinct mathematical structures are involved.
Therefore the application of the ideas of stability and deformation to the
distinct structural levels requires a precise formulation of deformation the-
ory in several mathematical disciplines. Analyzing the existing physical the-
ories one identifies an hierarchy of structural levels. In the first, which one
may call the logical level, are the basic hypothesis about what is observable
and what is not, what kind of questions can be settled by experiment and
how these questions are interrelated. At this level it is that one finds the dis-
tinction between classical and quantum physics. In the literature dedicated
to the foundations of science one finds, at times, some confusion concerningFOR A
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what distinguishes classical from quantum mechanics. For example, one
finds the statement that classical mechanics is deterministic whereas non-
determinism is the hallmark of quantum physics. In fact quantum mechanics
is as deterministic as classical mechanics, in the sense that the Schrödinger
equation is as deterministic as Hamilton’s equations. Determinism is a prop-
erty of the equations that define the time evolution and therefore it is a
dynamical question, not a question concerning the logical structure of the
theory. What happens in quantum theory is that, as in any logical struc-
ture, there are questions that can be raised and questions that cannot. As
Feshbach and Weisskopf [5] said: “If you make a silly question, you obtain
a silly answer”.

At the second level, which may be called the kinematical level, one
defines what are the observable quantities (the observables) and what are
the relations between them. At this level one also defines what are the
mathematical quantities that in the theory correspond to each one of the
experimental apparatus. Finally, in the third level, called the dynamics, one
includes all the hypothesis relating to time evolution of the physical systems
and their interactions. The three levels of the theoretical structure define
an hierarchy of hypothesis. Hence, with one logic several kinematics may be
used and many different dynamics may be associated to each kinematics.
The hypothesis of the theory include a certain number of manipulation rules
which are needed to predict the results that are to be expected from the
experiments. These results (in general numbers) are then compared with
the corresponding results obtained in the experiments. This comparison
establishes the agreement or disagreement between the theoretical predic-
tions and the experimental results. Notice that it is only at this stage that
the theory (a mathematical entity) establishes its contact with the physical
world. In particular it is not essential, and sometimes not even desirable, for
all the entities in the model to have a direct physical interpretation. The
“external” physical world may contain many variables to which we have
no direct access, or that we do not care about, when we restrict ourselves
to a certain set of experiments and apparatus. Likewise the mathematical
model may have parameters and internal entities which have no direct rela-
tion to external observable quantities. The only criterion of validity of the
theory is the agreement of its output (that is, the measurable predictions)
with the experimentally observed quantities. It is only at this level that
the theory, a mathematical entity, comes into contact with what is called
“reality”, whatever it means. One should also bear in mind the nature of
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Fig. 1. The hierarchy of hypothesis in the construction of physical theories.

this precarious contact and never be misled into confusing the model with
the object that is being modelled.

As suggested in the Fig. 1 above,a the evolution of the theoretical models
operates by loops, with the signal of the theory-experiment comparison
being fed back into the model, leading to changes in the dynamics which
lead to new predictions, which are compared once more, etc. If after a
number of such steps a reasonable agreement is not obtained, one may
be led to broaden the scope of the feedback loop, that is, one might be
led to change the kinematical or even the logical structure of the theory.
The scientific revolutions that led from Galilean to Lorentzian mechanics
and from classical to quantum mechanics are examples of a change of the
kinematics and a change of the logics.

The separation between theoretical construction and experimental ver-
ification is however not so clear-cut as one might be led to believe from
the discussion above. The experimental results, which serve as a control for
the theoretical framework, are never pure empirical data in the sense that,
when experiments are designed to test a theoretical model, they are them-
selves contaminated by the prejudices of the theory. The following remark
by Misner, Thorne and Wheeler [6] is particularly relevant:

“All the laws and theories of physics have this deep and subtle charac-
ter, that they both define the concepts they use and make statements about
these concepts. Contrariwise, the absence of some body of theory, law and
principle deprives one of the means properly to define or even use concepts.

aAdapted from unpublished lecture notes of Prof. F. A. Matsen at University of Texas
(Austin).FOR A
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Any forward step in human knowledge is truly creative in this sense: that
theory, concept, law and method of measurement — forever inseparable —
are born into the world in union”

The structuring effect of the theory is an important instrument in the
interpretation of the experimental data. On the other hand, prejudices are
thereby introduced in the analysis which may lead to neglecting some infor-
mation contained in data for which there is as yet no theoretical interpre-
tation.

Concerning the SPTP which is the main concern in this paper, one sees
that to be able to discuss stability issues at all levels of the theoretical
construction one has to identify the nature of the mathematical framework
that is relevant at each one of the levels. For the structural stability of
nonlinear dynamics the needed mathematical framework is the theory of
stable vector fields and differentiable maps. To discuss stability of the kine-
matical level one notices that after the definition of a certain number of
observables, the structure of kinematics is the structure of the algebra of
these observables. For the logical level because logical questions may some-
times also be framed in an algebraic setting the mathematical framework
is also an algebraic one. Notice however that to frame the logical issues in
algebraic form some choice of observables is in general needed and the dis-
cussion of stability is no longer a purely logical question. It would be more
appropriate to consider the lattice of propositions and discuss the stability
issue in the framework of lattice theory. However, as far as I know, there is
not yet a well developed deformation theory for lattices. Therefore, for the
time being, it seems appropriate to discuss the stability issues both for the
kinematical and the logical levels using algebraic tools.

The fact that semisimple algebras are deformation-stable, led Segal [7]
to propose in 1951 that, in its evolution, physical theories would tend to be
framed in terms of such algebras. However the stability principle is more
general than the simplicity criterion because not all stable algebras are
semisimple [8] and, for example, dynamical stability issues are not neces-
sarily algebraic. Nevertheless the algebraic simplicity principle is a powerful
one, which led to interesting developments (see Finkelstein and collabora-
tors [9–13]).

Section 2 contains a short review of the stabilizing deformations that
lead from Galilean to relativistic dynamics and from classical to quantum
mechanics. Also discussed is the finite versus infinite dimensional issue when
dealing with algebraic deformation questions.
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Section 3 examines the stability of the algebra that is obtained by com-
bining the algebras of relativistic and quantum mechanics, that is, the
Heisenberg–Poincaré algebra. One finds that the combined algebra of rel-
ativistic quantum mechanics is not stable and its stabilization by a defor-
mation forces the introduction of two length parameters, one of which
will probably have the status of a new fundamental constant. In the new
deformed algebra the space-time coordinates no longer commute and, at
the scale where the effects of a non-zero fundamental length may be felt,
the geometry of space-time is necessarily a non-commutative geometry. The
consequences of this non-commutativity of the space-time coordinates, their
geometric aspects and experimental tests have been discussed in several
publications. The main results are summarized and some new consequences
are explored.

Section 4 describes structural stability of maps, its use in nonlinear
dynamics as well as the possible relevance to universality and critical phe-
nomena.

Finally, Appendix A is a review of structural stability in dynamical
systems theory, which is the field where the importance of stable theories
was first emphasized and Appendix B contains a summary of results on
deformation theory of algebras. The mathematical results contained in these
appendices, which are spread over many texts, are included here to provide
a first working knowledge on deformation tools for the reader interested in
pursuing stability explorations in his domain.

2. From Galilean to Relativistic Dynamics and From
Classical to Quantum Mechanics

Within the deformation theory of algebras, the transitions from Galilean
to relativistic and from classical to quantum mechanics may be interpreted
as the stabilizing deformations of two unstable theories.

The Lie algebra of the homogeneous Galilean group, the kinematical
group of non-relativistic mechanics, is:

[Ji, Jj ] = iεijkJk, (1)

[Ji,Kj] = iεijkKk, (2)

[Ki,Kj] = 0 (3)

the angular momenta Ji being the generators of rotations and the boostsKi

the generators of velocity transformations. The second cohomology groupFOR A
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(Appendix B) does not vanish because, for example, φ1(Ki,Kj) = iεijkJk
and φ1 = 0 for all other arguments, is a 2-cocycle that is not a 2-coboundary.
The deformation

[Ki,Kj ] = −i 1
c2
εijkJk, (4)

leads to the Lorentz algebra which, being semisimple, has vanishing second
cohomology group and is stable. The deformation parameter 1

c (the inverse
of the speed of light) is a fundamental constant.

For the deformation leading from classical to quantum mechanics, recall
that the phase space of classical mechanics is a symplectic manifold W =
(T ∗M,ω) where T ∗M is the cotangent bundle over configuration space M
and ω is a symplectic form. In local (Darboux) coordinates {pi, qi} the
symplectic form is

dω =
∑

dpi ∧ dqi

The Poisson bracket gives a Lie algebra structure to the C∞-functions on
W , namely

{f, g} =
∑
i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(5)

in local coordinates.
The transition to quantum mechanics is now regarded as a deforma-

tion of this Poisson algebra [14]. Let for example T ∗M = R2n. Then
ω =

∑
1≤i,j≤2n ωijdx

i ∧ dxj =
∑

1≤i≤n dx
i ∧ dxi+n.

Consider the following bidifferential operator

P r(f, g) =
∑

i1...ir ,j1...jr

ωi1j1 . . . ωirjr∂i1 . . . ∂irf ∂j1 . . . ∂jrg, (6)

where P 1(f, g) is the Poisson bracket. P 3(f, g) is a non-trivial 2-cocycle and,
barring obstructions, one expects the existence of non-trivial deformations
of the Poisson algebra.

Existence of non-trivial deformations has been proved in a very general
context [15–18]. They always exist if W is finite-dimensional and for a flat
Poisson manifold they are all equivalent to the Moyal bracket [19]

[f, g]M =
2
�
sin

(
�

2
P

)
(f, g) = {f, g} − �

4.3!
P 3(f, g) + · · · . (7)
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Moreover [f, g]M = 1
i� (f ∗� g − g ∗� f) where f ∗� g is an associative star-

product

f ∗� g = exp
(
i
�

2
P (f, g)

)
. (8)

Correspondence with quantum mechanics formulated in Hilbert space is
obtained by the Weyl quantization prescription. Let f(p, q) be a function
in phase space and f̃ its Fourier transform. Then, if to the function f we
associate the Hilbert space operator

Ω(f) =
∫
f̃(xi, yi) exp

(
−i
∑
xiQi + yiPi

�

)
dxidyi

with QiΨ = xiΨ and PiΨ = −i� ∂
∂xi

Ψ , one finds

[Ω(f),Ω(g)] = −i�Ω([f, g]M).

In the left-hand side is the usual commutator of Hilbert space operators.
Therefore quantum mechanics may be described either by associating self-
adjoint operators in Hilbert space to the observables or, equivalently, by
staying in the classical setting of phase-space functions but deforming their
product to a ∗�product and the Poisson bracket to the Moyal bracket.

The quantization-by-deformation program initiated in [14] was later on
considerably extended to general Poisson manifolds which are not neces-
sarily sympletic manifolds [20–22]. One of the main results states that
there is a canonical correspondence between deformations of an algebra
A of C∞ functions on a Poisson manifold M and formal Poisson structures
(πt = tπ1 + t2π2 + · · · ) on A [23]. Furthermore an explicit deformation
formula is provided for M = R

n and the product of the deformed algebra is
a star product, that is, in ∗ = ΣtnBn the Bn’s are bidifferential operators.

There is a basic difference in the deformations leading from non-
relativistic to relativistic and from classical to quantum mechanics. In the
first case one deals with the deformation of a finite-dimensional algebra and,
in the second, with the more complex case of deformation of an infinite-
dimensional algebra of functions. With the benefit of hindsight one may
simplify the presentation by using for classical mechanics, instead of the
Poisson algebra in phase space, a formulation in Hilbert space. Then the
transition appears in both cases as a deformation of a finite-dimensional
Lie algebra. This not only simplifies the presentation but is the appro-
priate setting for further analysis of the stability of relativistic quantum
mechanics.FOR A

UTHOR C
HECKIN

G

e star-

FOR A
UTHOR C

HECKIN
G

e star-

(8)

FOR A
UTHOR C

HECKIN
G

(8)

Hilbert spac

FOR A
UTHOR C

HECKIN
G

Hilbert
(p, q

FOR A
UTHOR C

HECKIN
G

p, ) be a fun

FOR A
UTHOR C

HECKIN
G

) be a fu
to the functi

FOR A
UTHOR C

HECKIN
G

o the func

+ y

FOR A
UTHOR C

HECKIN
G

yi

FOR A
UTHOR C

HECKIN
G

iP

FOR A
UTHOR C

HECKIN
G

Pi

FOR A
UTHOR C

HECKIN
G

iP

FOR A
UTHOR C

HECKIN
G

Pi

FOR A
UTHOR C

HECKIN
G

P

�

)

FOR A
UTHOR C

HECKIN
G

)
dx

FOR A
UTHOR C

HECKIN
G

dxi

FOR A
UTHOR C

HECKIN
G

id

FOR A
UTHOR C

HECKIN
G

d

finds

FOR A
UTHOR C

HECKIN
G

finds

�

FOR A
UTHOR C

HECKIN
G

�Ω([

FOR A
UTHOR C

HECKIN
G

Ω f, g]M

FOR A
UTHOR C

HECKIN
G

M)

FOR A
UTHOR C

HECKIN
G

)

mmutator of

FOR A
UTHOR C

HECKIN
G

utator of
y be describe

FOR A
UTHOR C

HECKIN
G

y be
ace to

FOR A
UTHOR C

HECKIN
G

ce the ob

FOR A
UTHOR C

HECKIN
G

the o
of phase-spac

FOR A
UTHOR C

HECKIN
G

f phase
the Poisson

FOR A
UTHOR C

HECKIN
G

the Poisson
eformation pr

FOR A
UTHOR C

HECKIN
G

ormation
o general Po

FOR A
UTHOR C

HECKIN
G

o general Po
ifolds [20–22]

FOR A
UTHOR C

HECKIN
G

folds [20–2
l corresponde

FOR A
UTHOR C

HECKIN
G

correspond
s on a Poisso

FOR A
UTHOR C

HECKIN
G

on a Poisso
π

FOR A
UTHOR C

HECKIN
G

π2

FOR A
UTHOR C

HECKIN
G

2 +

FOR A
UTHOR C

HECKIN
G

+ · · ·

FOR A
UTHOR C

HECKIN
G

· ) on

FOR A
UTHOR C

HECKIN
G

vided for

FOR A
UTHOR C

HECKIN
G

vided for M

FOR A
UTHOR C

HECKIN
G

M

uct

FOR A
UTHOR C

HECKIN
G

, that is, in

FOR A
UTHOR C

HECKIN
G

hat i
is a basic

FOR A
UTHOR C

HECKIN
G

is a basic
stic to relativ

FOR A
UTHOR C

HECKIN
G

relativ
case one deals

FOR A
UTHOR C

HECKIN
G

se one deal
the second, w

FOR A
UTHOR C

HECKIN
G

econd, w
imensional a

FOR A
UTHOR C

HECKIN
G

mensional a
simplify the

FOR A
UTHOR C

HECKIN
G

simplify t
Poisson a

FOR A
UTHOR C

HECKIN
G

Poisson a
transitio

FOR A
UTHOR C

HECKIN
G

transit
Lie a

FOR A
UTHOR C

HECKIN
G

Lie a
pria

FOR A
UTHOR C

HECKIN
G

pri
mFOR A

UTHOR C
HECKIN

G



February 4, 2016 9:29 Beyond Peaceful Coexistence 9in x 6in FA b2362-ch06 page 161

The SPTP 161

A description of classical mechanics by operators in Hilbert space was
proposed, soon after the discovery of quantum mechanics, by Koopman [24]
and von Neumann [25]. A constant energy surface ΩE in the phase space of
N particles carries an invariant measure μE , which is the restriction of the
Liouville measure d3Nxd3Np to ΩE . In the space of square-integrable func-
tions L2(ΩE , μE), the Hamiltonian flow Tt induces an unitary operator by

(Utf)(w) = f(Ttw), (9)

where w ∈ ΩE and f ∈ L2(ΩE , μE). Unitarity is a consequence of the
invariance of the measure, that is μ(T−1

t F ) = μ(F ) for a measurable set
F ∈ ΩE .

In the Hilbert space L2(ΩE , μE), classical mechanics has an operator
formulation. The time evolution is induced by the unitary operator Ut as
in quantum mechanics and the observables are smooth functions on ΩE ,
which act as multiplicative operators in L2(ΩE , μE).

Considered as multiplicative operators in Hilbert space, the functions
of coordinates and momenta are an infinite-dimensional abelian algebra.
However, in the Hilbert space formulation we need not consider explicitly
the infinite-dimensional algebra because the full content of the theory is
obtained by selecting a finite set of paired observables (pi, xi) or (pi, yi =
eixi) and defining its transformation properties under Ut and its algebraic
properties which, in classical mechanics, are

[pi, xj ] = [pi, pj ] = [xi, xj ] = [pi, yj ] = 0. (10)

The transition to quantum mechanics is now done by the replacement of
this Abelian algebra by the Heisenberg algebra

[pi, pj ] = [xi, xj ] = 0, (11)

[xi, pj] = i��δij , (12)

� is the identity operator, a trivial center of the algebra of observables.
The infinite-dimensional Moyal algebra is therefore replaced by the simpler
finite-dimensional Heisenberg algebra. The role of the Heisenberg algebra,
in the context of deformation theory, has however to be discussed carefully.
Consider the one-dimensional case of a classical abelian algebra [x, p] = 0.
This abelian algebra is clearly not stable and in its neighborhood there is
the algebra

[x, p] = iεx (13)FOR A
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or the Heisenberg algebra

[x, p] = i�� (14)

which is the central extension of the abelian algebra. The algebra (13)
is a stable algebra. Indeed the only stable algebra in two dimensions is
isomorphic to [26]

[Y,X1] = X1 (15)

but the Heisenberg algebra itself is not stable.
There are two ways of looking at the instability of the Heisenberg alge-

bra. First if we consider it as a tridimensional algebra, [X2, X3] = X1 (all
the other commutators being zero), the complete structure of its neighbor-
hood, in the space of Lie algebra laws, is known [27]. Namely, the Heisenberg
algebra is a contraction of any algebra of the same dimension that carries a
linear contact form. Conversely any perturbation of the Heisenberg algebra
supports a linear contact form. For example from the Lie algebra of SO(3)

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2

which is semisimple and therefore stable, with the following linear change
of coordinates

Y1 = εX1, Y2 =
√
εX2, Y3 =

√
εX3,

one obtains

[Y1, Y2] = εY3, [Y2, Y3] = Y1, [Y3, Y1] = εY2

and in the ε→ 0 limit one obtains the Heisenberg algebra.
We could also have considered the Heisenberg algebra as a two-

dimensional algebra with a trivial center. That is, we restrict our defor-
mations to those that preserve the zero commutator of X1 with the other
two elements. Consider in this case the deformation

[X2, X3] = X1 + αX2 + βX3.

With the linear change of variables

Y2 = αX2 +X1 + βX3, Y3 = α−1X3,

we now fall on the stable two-dimensional algebra (15), [Y2, Y3] = Y2.
We conclude in both cases that the Heisenberg algebra is unstable and

has a stable algebra in its neighborhood. Therefore it would seem, at first
sight, that the Hilbert space construction leads to conclusions differentFOR A
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from the phase space construction described before, which interprets the
transition from classical to quantum mechanics as a deformation from an
unstable Poisson algebra to the stable Moyal-Vey algebra. A simple rea-
soning shows however that this is not the case and that the constructions
are indeed equivalent and they are both the transition from an unstable
classical algebra to a stable quantum algebra. The apparent difference is
merely an artifact of the singling out of x as the observable, when in fact
the observables are all the smooth functions of x (and p). Consider the
explicit representation

p =
�

i

d

dx
, x = x.

The physical content of the theory will be the same if instead of the coor-
dinate x we consider any linear or nonlinear function of x. In particular
considering y = exp(ix) one obtains the algebra

[p, y] = �y

which is isomorphic to the stable two-dimensional algebra (15). Hence the
Heisenberg algebra is equivalent, through a nonlinear coordinate transfor-
mation that preserves the physical content, to a stable algebra. In this
sense the transition from classical to quantum mechanics is again seen
to be a stabilizing deformation of an unstable algebra. The main reason
why the coordinate choice leading to the Heisenberg algebra is physically
convenient is that the observable p has then a simple interpretation as
the generator of translations in x. This example also shows that, when
selecting a finite subset of observables rather than an infinite-dimensional
space of functions, the notion of linear equivalence of algebras, in the
sense of (81), is not sufficient for the stability analysis and one should also
consider nonlinear transformations preserving the physical content of the
theory.

In both the Galilean and the Poisson algebra cases, the deformed alge-
bras are all equivalent for non-zero values of 1

c2 and of �. This means that
although we could have derived relativistic and quantum mechanics purely
from the stability of their algebras, the exact values of the deformation
parameters cannot be obtained from algebraic considerations. The defor-
mation parameters are therefore the natural fundamental constants to be
obtained from experiment. It is in this sense that deformation theory not
only is the theory of stable theories, it also is the theory that identifies the
fundamental constants.FOR A
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3. Stabilizing the Heisenberg–Poincaré algebra

In Section 2 both the transition from Galilean to Lorentzian and the transi-
tion from classical to quantum mechanics are cast as deformations of finite-
dimensional Lie algebras of operators in Hilbert space. A trivial point in
this construction, which however has non-trivial consequences, is the fact
that, to have both constructions in a finite-dimensional algebra setting,
it is essential to include the coordinates as basic operators in the defining
(kinematical) algebra of relativistic quantum mechanics. The full algebra of
relativistic quantum mechanics will contain the Lorentz algebra (1, 2, 4), the
Heisenberg algebra for the momenta and space-time coordinates (Pμ, xν) in
Minkowski space and also the commutators that define the vector nature
(under the Lorentz group) of Pμ and xν . Defining

Mij = εijkJk, M0i = Ki

and measuring velocities and actions in units of c and � (that is c = � = 1)
one obtains

[Mμν ,Mρσ] = i(Mμσηνρ +Mνρημσ −Mνσημρ −Mμρηνσ), (16)

[Mμν , Pλ] = i(Pμηνλ − Pνημλ), (17)

[Mμν , xλ] = i(xμηνλ − xνημλ), (18)

[Pμ, Pν ] = 0, (19)

[xμ, xν ] = 0, (20)

[Pμ, xν ] = iημν� (21)

with ημν = (1,−1,−1,−1). This algebra, the Heisenberg–Poincaré algebra,
is the algebra of relativistic quantum mechanics �0 = {Mμν , Pμ, xμ,�}.

We know that the Lorentz algebra, {Mμν}, being semi-simple, is stable
and that each one of the two-dimensional Heisenberg algebras {Pμ, xμ} is
also stable in the nonlinear sense discussed in Section 2. When the algebras
are combined through the covariance commutators (17–18), the natural
question to ask is whether the whole algebra is stable or whether there are
any non-trivial deformations.

The answer is that the algebra �0 = {Mμν , Pμ, xμ,�} defined by
Eqs. (16–21) is not stable [28]. This is shown by exhibiting a two-parameter
deformation of �0 to a simple algebra which itself is stable. To understand
the role of the deformation parameters consider first the Poincaré subalge-
bra P = {Mμν , Pμ}. It is well known that already this subalgebra is notFOR A
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stable and may be deformed [3] [29] to the stable simple algebras of the De
Sitter groups O(4, 1) or O(3, 2). Writing

Pμ =
1
R
Mμ4 (22)

the commutation relations [Mμν ,Mρσ] and [Mμν , Pλ] are the same as before,
that is (16–17), and [Pμ, Pν ] becomes

[Pμ, Pν ] = −i ε4
R2

Mμν . (23)

Equations (16), (17), and (23), all together, are the algebra

[Mab,Mcd] = i(−Mbdηac −Macηbd +Mbcηad +Madηbc) (24)

of the five-dimensional pseudo-orthogonal group with metric

ηaa = (1,−1,−1,−1, ε4), ε4 = ±1.

That is, the Poincaré algebra deforms to the stable algebras of O(3, 2) or
O(4, 1), according to the sign of ε4.

This instability of the Poincaré algebra is well understood. It simply
means that flat space is an isolated point in the set of arbitrarily curved
spaces. Faddeev [4] points out that the Einstein theory of gravity may also
be considered as a deformation in a stable direction. This theory is based
on curved pseudo Riemann manifolds. Therefore, in the set of Riemann
spaces, Minkowski space is a kind of degeneracy whereas a generic Riemann
manifold is stable in the sense that in its neighborhood all spaces are curved.
However, as long as the Poincaré group is used as the kinematical group
of the tangent space to the space-time manifold, and not as a group of
motions in the manifold itself, it is perfectly consistent to take R→∞ and
this deformation would be removed.

For the full algebra �0 = {Mμν , Pμ, xμ,�} the situation is more inter-
esting. In this case the stabilizing deformation [28] is obtained by setting

Pμ =
1
R
Mμ4, (25)

xμ = �Mμ5, (26)

� =
�

R
M45, (27)FOR A
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to obtain

[Pμ, Pν ] = −i ε4
R2

Mμν , (28)

[xμ, xν ] = −iε5�2Mμν , (29)

[Pμ, xν ] = iημν�, (30)

[Pμ,�] = −i ε4
R2

xμ, (31)

[xμ,�] = iε5�
2Pμ (32)

with [Mμν ,Mρσ], [Mμν , Pλ] and [Mμν , xλ] being the same as before.
The stable algebra ��,R to which �0 has been deformed is the algebra

of the six-dimensional pseudo-orthogonal group with metric

ηaa = (1,−1,−1,−1, ε4, ε5), ε4, ε5 = ±1.

In addition to the signs ε4 and ε5, two deformation parameters, R and �,
with dimensions of length, characterize this stabilizing deformation.R, asso-
ciated to the non-commutativity of the generators of translations, must be
related to the local curvature. Therefore, because the curvature is not a
constant, R cannot have the status of a fundamental constant. However,
the other constant � might be a fundamental length, a new fundamental
physical constant.

As in the case of the Poincaré algebra discussed above, if one is mostly
concerned with the algebra of observables in the tangent space, one may
take the limit R→∞ and finally obtain

[Mμν ,Mρσ] = i(Mμσηνρ +Mνρημσ −Mνσημρ −Mμρηνσ), (33)

[Mμν , Pλ] = i(Pμηνλ − Pνημλ), (34)

[Mμν , xλ] = i(xμηνλ − xνημλ), (35)

[Pμ, Pν ] = 0, (36)

[xμ, xν ] = −iε5�2Mμν , (37)

[Pμ, xν ] = iημν�, (38)

[Pμ,�] = 0, (39)

[xμ,�] = iε5�
2Pμ, (40)

[Mμν ,�] = 0, (41)

as the stable algebra of relativistic quantum mechanics. The main features
are the non-commutativity of the xμ coordinates and the fact that �, previ-
ously a trivial center of the Heisenberg algebra, becomes now a non-trivialFOR A
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operator. These are however the minimal changes that seem to be required
if stability of the algebra of observables (in the tangent space) is a good
guiding principle. Two constants define this deformation. One is �, the
fundamental length, the other the sign of ε5. The “tangent space” algebra
(33–41) is the kinematical algebra appropriate for microphysics. However,
for physics in the large, it should be the full stable algebra (16–18, 28–32)
to play a role. In the last part of this section, I will discuss two important
roles that the non-vanishing of 1

R may play for the physical construction.
However, for the most part, the emphasis here will be in the tangent space
limit R→∞.

The stabilization of the Heisenberg–Poincaré algebra has been further
studied and extended in [30–32]. The idea of modifying the algebra of the
space-time components xμ in such a way that they become non-commuting
operators had already appeared several times in the physical literature.
Rather than being motivated (or forced) by stability considerations, the
aim of those proposals was to endow space-time with a discrete structure,
to be able, for example, to construct quantum fields free of ultraviolet
divergences. Sometimes they simply postulated a non-zero commutator,
others they were guided by the formulation of field theory in curved spaces.
Although the algebra arrived at in [28], Eqs. (33–41), is so simple and
appears in such a natural way in the context of deformation theory, it
seems that, strangely, it differed in some way or another from the past pro-
posals. In one scheme, for example, the coordinates were assumed to be the
generators of rotations in a five-dimensional space with constant negative
curvature. This possibility was proposed long ago by Snyder [33, 34] and the
consequences of formulating field theories in such spaces have been exten-
sively studied by Kadishevsky and collaborators [35, 36]. The coordinate
commutation relations [xμ, xν ] are identical to (37), however, because of the
representation chosen for the momentum operators, the Heisenberg algebra
is different and, in particular, [Pμ, xν ] has non-diagonal terms. Banai [37]
also proposed a specific non-zero commutator which only operates between
time and space coordinates, breaking Lorentz invariance. Many other dis-
cussions exist concerning the emergence and the role of discrete or quantum
space-time, which however, in general, do not specify a complete operator
algebra [38–51].

Notice that there other ways to deform the algebra �0 to the simple
algebra of the pseudo-orthogonal group in six dimensions. They correspond
to different physical identifications of the generators Mμ4,Mμ5, and M45.
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For example, putting

Pμ =
1
R′ (Mμ4 +Mμ5), (42)

xμ =
�
′

2
(Mμ4 −Mμ5), (43)

� =
�
′

R′M45 (44)

and ε4 = −ε5 = 1, the coordinates and momenta are now commuting
variables and the changes occur only in the Heisenberg algebra and the
nature of �, namely

[Pμ, xν ] = i

(
�
′

R′Mμν + ημν�
)
, (45)

[Pμ,�] = −i �
′

R′ Pμ, (46)

[xμ,�] = i
�
′

R′ xμ. (47)

However this identification of the physical observables in the deformed alge-
bra does not seem so natural as the previous one. In particular Eq. (45)
implies a radical departure from the Heisenberg algebra and the fundamen-
tal length scale is tied up to the large scale of the manifold curvature radius,
in the sense that, if we take R

′ →∞ , the whole deformation vanishes.
The ��,∞ algebra (33–41) has a simple representation by differential

operators in a five-dimensional space with coordinates (ξ0, ξ1, ξ2, ξ3, ξ4)

Pμ = i
∂

∂ξμ
+ iDPμ , (48)

Mμν = i

(
ξμ

∂

∂ξν
− ξν ∂

∂ξμ

)
+ Σμν , (49)

xμ = ξμ + i�

(
ξμ

∂

∂ξ4
− ε5ξ4 ∂

∂ξμ

)
+ �Σμ4, (50)

� = 1 + i�
∂

∂ξ4
+ i�Dξ4. (51)

The set (Σμν ,Σμ4) is an internal spin operator for the groups O(4, 1) (if
ε5 = −1) or O(3, 2) (if ε5 = +1) and DPμ and Dξ4 are derivations operating
in the space where (Σμν ,Σμ4) acts. In this representation the deformation
has a simple interpretation. The space-time coordinates xμ, in addition toFOR A
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the usual (continuous spectrum) component have a small angular momen-
tum component corresponding to a rotation (or hyperbolic rotation) in the
extra dimension. And the center of the Heisenberg algebra picks up a small
momentum in the extra dimension.

The algebra (33–41) is seen to be the algebra of the pseudo-Euclidean
groups E(1, 4) or E(2, 3), depending on whether ε5 is −1 or +1. For the
construction of quantum fields it might be convenient to use this repre-
sentation. Notice however that only the Poincaré part of E(1, 4) or E(2, 3)
corresponds to symmetry operations and only this part has to be imple-
mented by unitary operators.

Physical consequences of the non-commutative space-time structure
implied by the ��,∞ algebra have been explored in a series of publica-
tions [52–57]. Depending on the sign of ε5 the time (ε5 = +1) or one space
variable (ε5 = −1) will have discrete spectrum. In any case �, a new funda-
mental constant, sets a natural scale for time and length. If � is of the order
of Planck’s length, observation of most of the effects worked out in the cited
references will be beyond present experimental capabilities. However, if �
is much larger than Planck´s length (for example, of order 10−27−10−26

seconds) the effects might already be observable in the laboratory or in
astrophysical observations. I refer the reader to the references above for a
detailed analysis of the experimental predictions and just add here a few
remarks. Some of the most noteworthy effects arise from the modification
of the phase space volume and from interference effects. In addition, the
simple fact that the space-time coordinates do not commute already implies
that many notions currently used in the analysis of laboratory experiments
become ill-defined. For example, because the space and the time coordi-
nates cannot be simultaneously diagonalized, speed can only be defined in
terms of expectation values,

viψ =
1

〈ψt, ψt〉
d

dt

〈
ψt, x

iψt
〉
, (52)

ψ being a state with a small dispersion of momentum around a central
value p. This would imply a deviation from c (= 1) of the “effective speed”
of massless particles of order [55]

Δvψ = −3ε5�2
(
p0
)2
. (53)

The deviation would be negative for ε5 = +1 (� a fundamental time) or
positive for ε5 = −1 (� a fundamental length). In any case such deviationFOR A
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should not be confused with a modification of the value of the fundamental
constant c.

Most of the consequences worked out in the references [52–56] are rather
conservative, in the sense that they simply explore the non-vanishing of
the right-hand side of the commutators of previously commuting variables.
Deeper consequences are to be expected from the radical change from a
commutative to a non-commutative space-time geometry. The new geome-
try was studied in [58].

For this non-commutative geometry, the differential algebra may be
defined either by duality from the derivations of the algebra or from the
triple (H,π(U�), D), where U� is the enveloping algebra of ��,∞, to which
a unit and, for later convenience, the inverse of �, are added.

U� = {xμ,Mμν , pμ,�,�−1, 1}, (54)

π(U�) is a representation of the U� algebra in the Hilbert space H and D is
the Dirac operator, the commutator with the Dirac operator being used to
generate the one-forms. In a general non-commutative framework [59, 60]
it is not always possible to use the derivations of the algebra to construct
by duality the differential forms. Many algebras have no derivations at all.
However when the algebra has enough derivations it is useful to consider
them [61, 62] because the correspondence of the non-commutative geometry
notions to the classical ones becomes very clear. One considers the set V of
derivations with basis {∂μ, ∂4} defined as followsb

∂μ(xν) = ημν�,
∂4(xμ) = −ε5�pμ�,
∂σ(Mμν) = ησμpν − ησνpμ,
∂μ(pν) = ∂μ(�) = ∂μ(1) = 0,
∂4(Mμν) = ∂4(pμ) = ∂4(�) = ∂4(1) = 0.

(55)

In the commutative (� = 0) case a basis for one-forms is obtained, by
duality, from the set {∂μ}. In the � �= 0 case the set of derivations {∂μ, ∂4}
is the minimal set that contains the usual ∂μ’s, is maximal abelian and is
action closed on the coordinate operators, in the sense that the action of
∂μ on xν leads to the operator � associated to ∂4 and conversely.

The operators that are associated to the physical coordinates are just the
four xμ, μ ∈ (0, 1, 2, 3). However, an additional degree of freedom appears

bNotice that the definition of ∂4 here is slightly different from the one in [58].FOR A
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in the set of derivations. This is not a conjectured extra dimension but sim-
ply a mathematical consequence of the algebraic structure of ��,∞ which,
in turn, was a consequence of the stabilizing deformation of relativistic
quantum mechanics. No extra dimension appears in the set of physical
coordinates, because it does not correspond to any operator in ��,∞. How-
ever the derivations in V introduce, by duality, an additional degree of
freedom in the exterior algebra. Therefore all quantum fields that are Lie
algebra-valued connections will pick up some additional components. These
additional components, in quantum fields that are connections, are a conse-
quence of the length parameter � which does not depend on its magnitude,
but only on � being �= 0.

The Dirac operator [58] is

D = iγa∂a (56)

with ∂a = (∂μ, ∂4) and the γ’s being a basis for the Clifford algebras C(3, 2)
or C(4, 1) (

γ0, γ1, γ2, γ3, γ4 = γ5
)
ε5 = +1(

γ0, γ1, γ2, γ3, γ4 = iγ5
)
ε5 = −1

, (57)

How to construct quantum, scalar, spinor and gauge fields, as operators
in U�, has been described in [58]. In particular the role of the additional
dimension in the exterior algebra on gauge interactions has been emphasized
(see also [56]). Here, another potential interesting consequence for spinor
fields will be described. Because[

pμ, e
i
2kν{xν ,�−1}+

]
= −kμe

i
2kν{xν ,�−1}+ (58)

a spinor field is written

ψ =
∫
d4kδ(k2 −m2)

{
bkuke

− i
2kν{xν ,�−1}+ + d∗kvke

i
2kν{xν ,�−1}+

}
,

(59)

ψ ∈ U� : Dψ −mψ = 0. (60)

For a massless field, the (extended) Dirac equation is

Dψ = iγa∂aψ =
(
iγμ∂μ + iγ4∂4

)
ψ = 0. (61)

Write

ψ = e
i
2kν{xν ,�−1}+u(k).FOR A
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From

∂μe
i
2 kν{xν ,�−1}+ = ikμe

i
2kν{xν ,�−1}+

∂4e
i
2kν{xν ,�−1}+ = −iε5�

(
kμpμ +

1
2
k2

)
e

i
2kν{xν ,�−1}+

, (62)

one obtains, using (62) and (58)(
−γμkμ − γ5�

1
2
k2

)
u (k) = 0 ε5 = +1,(

−γμkμ + iγ5�
1
2
k2

)
u (k) = 0 ε5 = −1.

(63)

Let ε5 = −1. Iterating (63)(
k2 − �2

4
(
k2
)2)

u (k) = 0. (64)

This equation has two solutions, the massless solution (k2 = 0) and another
one, of large mass (� being small)

k2 =
4
�2
. (65)

For ε5 = +1 the large |k2| solution is tachyonic. The solutions of the
extended Dirac equation for k2 = 0 are the usual ones and for k2 = 4

�2 ,
in the rest frame and the Weyl (chiral) basis(

a

−ia
)

Positive energy
(
m0 =

2
�

)
,(

a

ia

)
Negative energy

(
m0 = −2

�

) (66)

the solutions of non-zero momentum being obtained by the application of
a proper Lorentz transformation. a is an arbitrary two-vector.

So far and in [52–56] consequences were explored of the (� �= 0, 1/R→ 0)
case. However, as pointed out by several authors [63–66], even a very small
non-vanishing of the right-hand side of the commutator [Pμ, Pν ] may have
striking consequences on the nature of the representations of the algebra,
which instead of Poincaré, becomes de Sitter or anti-de Sitter.

Another interesting possibility, still unexplored, would be to promote
the right-hand side of the commutator [Pμ, Pν ], which in (28) is written
−i ε4R2Mμν , to a space-time dependent field Cμν(x), from which a theory of
gravity as a deformation might be constructed.FOR A
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Finally, notice that when using algebraic stability to study the kine-
matical algebras, the primary results so far have concerned the nature of
one-particle states. If, instead, one is concerned with two-particle effects (or
aggregates) it is probably the deformation theory of bialgebras that comes
into play. The suggestion is that the stability theory of bialgebras might
provide useful information on the nature of the stable interactions.

4. Stability, Universality and Critical Phenomena

4.1. Bifurcations and universality

Many families of differential equations and discrete-time mappings depend-
ing on one parameter μ, exhibit, when μ varies, a cascade of successive
period-doubling bifurcations of stable periodic orbits [67, 68]. A typical
example is the quadratic map x → 1 − μx2. As μ approaches the value
μ∞ = 1.40155 from below, the ratio

μn − μn−1

μn+1 − μn ,

tends to δ = 4.669 . . ., μn being the value at which the 2n-cycle is born.
Similarly the size of the domains in phase space associated to the successive
cycles (for example the separation of two points in the orbits that contain
the critical point at x = 0) also scales to a constant λ = 0.399 . . .. [68].

The universality of these constants is associated to the existence of a
fixed point for the Feigenbaum functional equation [69–72].

− 1
λ
ψ ◦ ψ(−λx) = ψ(x).

The values δ = 4.669 . . . and λ = 0.399 . . . depend on the quadratic nature
of the critical point. Other critical points also lead to scaling behavior but
with different constants [73]. However the fact that the above constants are
the ones that are actually found in so many one-parameter systems and
also on experimental results [74] clearly seems to be a manifestation of the
fact that, as discussed in Appendix A, the quadratic map is the only stable
one-dimensional map.

For higher dimensions, however, we might have stable sequences of
higher order bifurcations corresponding to fixed point solutions of the
functional equation

− 1
λ
ψ ◦ · · · ◦ ψ︸ ︷︷ ︸

n

(−λx) = ψ(x).
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Bifurcation sequences of period-tripling, period-quadrupling, etc. have
been studied for complex mappings [75–77]. Consider a family f(z, μ) of
quadratic mappings of C1 into C1 depending on a complex parameter μ.
In the complex μ plan there is a domain U0 of parameter values for which
there is a stable fixed point. The boundary of the U0 domain consists of
the parameter values for which the map derivative at the fixed point lies on
the unit circle. Touching U0 there are two smaller domains U (1)

3 and U
(2)
3

corresponding to the values of μ for which there is a stable period-3 orbit.
The contact points of the domain U0 with U (1)

3 and U (2)
3 are the cubic roots

of the unit − 1
2 ± i

√
3

2 . Then, adjoining each of the domains U (1)
3 and U (2)

3 ,
there are two domains corresponding to stable period-9 orbits and so on.
Choosing parameter values μ to follow the successive contact points of all
these domains one obtains a period-tripling bifurcation sequence. The cor-
responding (complex) universal constant is δ(1,2)(3) = 4.600 · · · ± i8.981....
A similar scheme operates for other n-tuplings for which the complex uni-
versal constants have also been computed [76].

A complex C1 → C1 mapping may be regarded as a real R2 → R2 map-
ping and sequences of n-tuplings might therefore also be expected in real
mappings as a two-parameter effect. Structural stability imposes however
some restrictions on the observability of this phenomenon. Let us write the
quadratic z → z

′
= 1−μz2 complex mapping as a real C2 → C2 mapping.

With μ = α+ iβ and z = x+ iy one obtains

x
′
= 1− α(x2 − y2) + 2βxy,

y
′
= −β(x2 − y2)− 2αxy.

This map however has at x = y = 0 a singularity of the Σ2-type which
is stable only for real maps of dimension four and above. Therefore, on
the basis of the stability principle, for physical systems described by real
maps, one should expect the n-tupling effect (with n > 2) to be generic only
for phenomena which are not reducible to an effective dynamics below four
dimensions. Conversely the observation of such higher n-tuplings in actual
complex physical systems may be a guide for the dimensional requirements
of their mathematical models.

4.2. Universality in phase transitions

The renormalization group analysis [78, 79] provides a great deal of informa-
tion on continuous phase transitions. At a continuous phase transition point
the correlation length diverges, the dynamics is dominated by long-rangeFOR A
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collective effects and one expects the physics of the problem to be insensitive
to scale transformations.

In configuration (or real)-space renormalization, for a system defined on
a lattice, one replaces, at each step, all the degrees of freedom contained in
a block by a single block variable. Therefore the block variable (σ(n+1)

i ) at
step n+1 is a function of the block variables of the preceding step (σ(n)

i ).

σ
(n+1)
i = f(σ(n)

k ). (67)

The function f may be a smooth function and is normalized in such a way
that the mean-square value of the block variables is preserved at all renor-
malization steps. Each time a blocking is performed, the lattice parameter
changes from a to ba. Therefore to keep the same nominal lattice spacing,
lengths are at each step scaled down by a factor b−1. The effective Hamil-
tonian H(σ(n+1)) of the renormalized system is obtained by summing over
the variables of the preceding step, namely

1
Z(n+1)

e−H
(n+1)(σ

(n+1)
i ) =

∑
f(σ

(n)
k )=σ

(n+1)
i

1
Z(n)

e−H
(n)(σ

(n)
k ), (68)

where the sum in the right-hand side is over all the configurations of the σ(n)
k

variables that lead to the specified σ(n+1)
i . The temperature dependence is

included in the effective Hamiltonian. In the first step we have

H(0)(σ(0)
i ) =

1
kT

H(σ(0)
i ), (69)

H being the temperature-independent usual Hamiltonian. However, after
the renormalization, the effective Hamiltonians obtained from Eq. (68) will
in general have a much more complicated dependence on the temperature
and on the other variables. However, they will be functions of the same
variables as H(0)(σ(0)

i ) and furthermore assumed to be smooth functions.
Here, I will be mostly concerned with the dependence on temperature

and on a parameter which, for definiteness, is assumed to play the same
role as an external magnetic field coupled by a term B

kT

∑
i σ

(0)
i in H(0).

Hence

H(0)(σ(0)
i ) = H(n)

(
T,
B

T
, . . .

)
. (70)

The dots stand for other variables like the spin–spin coupling strengths, etc.FOR A
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At high temperatures, variables become independent and the correlation
length vanishes. On the other hand, using a sufficiently high-temperature
for the starting point of the renormalization, the correlation length at step
n is ξ(n) = ξ

bn , it tends to zero as n→ ∞ and one expects it to be driven
to the high-temperature fixed point.

On the other hand, close enough to T = 0 all variables are near their
ground-state values and the block averaging, resulting from the renormal-
ization, will make the block variables increasingly more uniform. Therefore
starting from a sufficiently small temperature the system is driven by renor-
malization towards the low-temperature fixed point.

Consider now a system that has only one phase transition. Then,
between the functions that are attracted to the high-temperature fixed point
and those that are attracted to the low-temperature fixed point, there is,
in the space of smooth functions, those that are attracted to neither one.
These functions are said to lie in the critical surface and, at least some of
them, correspond to effective Hamiltonians for phase transition points at
distinct values of the physical parameters.

To make the connection with the structural stability scenario, notice that
this is typically a codimension-one framework (Appendix A). Therefore
the critical surface may be taken to be a codimension-one subset Sc in
the space of all smooth functions. The missing dimension is precisely the
direction taken by the renormalization transformation when it drives nearby
functions either to the low or the high-temperature limits. This is the precise
physical meaning of the codimension of the critical surface, as defined here.
It should not be confused with the number of relevant directions, because if
there is a renormalization group fixed point in the critical surface, some of
the directions associated to eigenvalues greater than one may point along
the critical surface.

Of course, not every function in Sc may be reached from any other by a
renormalization transformation. This is understandable because the finite
codimension subsets in the space of all smooth functions are defined by
R-equivalence, that is by arbitrary diffeomorphisms and the renormaliza-
tion transformation is just a particular type of change of variables. Also, as
defined, the critical surface may contain the effective Hamiltonians of many
different physical systems. For each particular system the renormalization
group generates a (not necessarily dense) orbit in the critical surface. Notice
also that, instead of the critical surface containing the effective Hamiltoni-
ans, we may consider a space of (Helmholtz) free energy functions.
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So far this a very general framework which depends only on the exis-
tence of the low and high-temperature limits and one phase transition.
A further assumption of the renormalization group analysis is the exis-
tence, in the critical surface, of quasi-homogeneous functions. A function is
quasi-homogeneous [80] of degree d with indices y1, . . . , yn if for any b > 0
we have

f(by1x1, . . . , b
ynxn) = bdf(x1, . . . , xn). (71)

For the effective Hamiltonians the assumption is that there is a fixed point
in the critical surface and the corresponding result for the free energy per
unit mass is a relation of the type of Eq. (71). Actually, even at the fixed
point, the transformation of the free energy is slightly more complicated,
namely

f(by1x1, . . . , b
ynxn) = bd {f(x1, . . . , xn)− g(x1, . . . , xn)},

where the function g is needed to satisfy the normalization conditions. How-
ever for the purpose of computation of the critical exponents the first term
is considered to be sufficient (for a discussion see [79]).

For a continuous phase transition, physical intuition, derived from the
divergence of the correlation length, indeed suggests the existence of a scale-
independent point. Nevertheless the actual existence of a renormalization
fixed point in the critical surface is an assumption and more complex (peri-
odic or chaotic) behaviors are possible. Notice also that, at the fixed point,
the effective Hamiltonian that is obtained by the action of the renormaliza-
tion group may not correspond to any particularly interesting set of param-
eters. The physical phase transition points are all over the critical surface.
However because the critical exponents are preserved along renormalization
group orbits, they may be computed at the fixed point.

Let, in Eq. (71), x1 be the reduced temperature

x1 = t =
|T − Tc|
Tc

and x2 the magnetic field

x2 = B.

Then y1 and y2 are the temperature and magnetic indices (or eigenvalues)
and Eq. (71) becomes Widom’s [81, 82] scaling hypothesis

f(bytt, byBB) = bdf(t, B). (72)FOR A
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All critical exponents may be computed from the two numbers yt and yB
[79]. ξ ∼ |T − Tc|−ν

cB ∼ α−1

(( |T − Tc|
Tc

)−α
− 1

)
; α = 2− d

yt
,

m ∼ (Tc − T )β ; B = 0; β =
d− yB
yt

,

cB ∼ α−1

(( |T − Tc|
Tc

)−α
− 1

)
; α = 2− d

yt
,

m ∼ B
1
δ ; T = Tc; δ =

yB
d− yB ,

G(2)(r) ∼ 1
γd−2+η

; T = Tc; B = 0; η = d+ 2− 2yB,

ξ ∼ |T − Tc|−ν ; B = 0; ν =
1
yt
.

For each pair (yt, yB) of renormalization group eigenvalues one has a set of
critical exponents, which apply to a class of different physical systems. Each
set of values (yt, yB) defines a universality class. This provides an apprecia-
ble unification in our knowledge of critical phenomena and understanding
the mechanism, through which very different physical systems may have the
same critical exponents, was the great achievement of the renormalization
group analysis. However, the renormalization group is powerless in deter-
mining the pair (yt, yB) or in finding out how many universality classes
there is.

We now turn to structural stability considerations. One imposes, as an
hypothesis, that the critical surface is a structurally stable codimension-one
family of functions. From the table in Appendix A one knows that there
is only one stable family of codimension-one. This family contains all the
functions that are R-equivalent to the canonical form A2. The canonical
forms listed in the table of Appendix A are defined up to a Morse function
in the other variables. Hence, for two variables, one has

fα(x1, x2) = x2
1 + x3

2 + αx2. (73)

The last term is the unfolding that vanishes (α = 0) on the critical surface.
By R-equivalence one generates all kinds of complex functions in the critical
surface. However the canonical form is already all one needs because it is aFOR A
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quasi-homogeneous function. Hence for the stable codimension-one family,
the existence of a quasi-homogeneous point is not a separate assumption.

Notice that the canonical form in Eq. (73) is only appropriate at the
fixed point. Because the other functions in the critical surface are obtained
from this one by arbitrary diffeomorphisms, there is no simple relation
between the canonical form at the quasi-homogeneous point and the free
energy at other physical phase transition points. Therefore the canonical
form is only appropriate to derive renormalization group invariants like the
critical exponents and nothing else. Notice also that it is only at the fixed
point that the extra functional dimension, pointing towards the high and
low temperature limits, is generated by αx2.

To apply the canonical form to derive the critical exponents we still have
to identify the variables x1 and x2. Referring back to Eq. (70) we conclude
that the natural identification of even and odd variables is not t and B, but
t and B

t . Then

x1 = t and x2 =
B

t
.

Therefore from

f0

(
t,
B

t

)
= b−df0

(
bytt, byB−yt

B

t

)
and Eq. (73) one obtains

2yt = d,

3(yB − yt) = d,

that is, yt = d
2 and yB = 5

6d. Then,

α = 0; β =
1
3
; γ =

4
3
; δ = 5; η = 2− 2

3
d; ν =

2
d
. (74)

These values, obtained from the structural stability of the critical surface,
are indeed close to the experimental values for three-dimensional physical
systems undergoing continuous phase transitions.

The similarity of the measured critical exponents for many different
experimental systems and in particular the proximity of their values to sim-
ple rational numbers has intrigued many authors. Cardy [83], for example,
uses the fact that, by letting the length rescaling factor depend continuously
on position, scale invariance is generalized to conformal invariance. Then
the critical exponents are restricted to rational numbers which, by trial,FOR A
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may be identified with particular models. However no unique or strongly
preferred result is obtained.

Here using a structural stability hypothesis, in the codimension-one set-
ting, a unique result is obtained. To require structural stability, that is, to
require that the physical laws are not too sensitive to the precise values
of the couplings, is perhaps a natural requirement, at least for phenomena
that do not seem to depend on the detailed properties of the system but
only on a general scaling behavior. In obtaining the result (74) an impor-
tant role is also played by the identification of t and B

t as the variables in
the quasi-homogeneous free energy at the fixed point. This however seems
a natural choice in view of Eq. (70). Is the result (74) an accident, or is it
appropriate to use structural stability in this context? I leave to the reader
to decide.

5. Appendix A: Structural Stability in Dynamical
Systems Theory

5.1. Structural stability of phase portraits

Let (M,Ut) be a dynamical system. M is the state space and Ut (with t ∈
K=R,Z,R+ or Z+) the time evolution operator. For each initial condition
x0 ∈ M , the set {Ut x0 : t ∈ K} is an orbit of the dynamical system. The
set of all orbits is called the phase portrait P of the system.

The problem of structural stability in the theory of dynamical systems
is, in qualitative terms, the following: “If the dynamical system (M,Ut) with
phase portrait P is perturbed to a slightly different system (M,Ut)′, is the
new phase portrait P ′ also a small perturbation of P? That is, is the new
system equivalent to the first? (equivalent in a sense to be specified later)”.
The perturbation of the dynamical system may be, for example, a small
change in the numerical parameters of the evolution operator.

Structural stability is a question of great physical importance because,
even if (M,Ut) is an accurate model for a physical system, the results
obtained by the study of this model are, in practice, never applied to the
actual (M,Ut) model of the real world but to a nearby system because the
parameters of the system, being obtained experimentally, are only known
approximately. Therefore, underlying all attempts to describe natural phe-
nomena is the assumption that the structures in Nature enjoy some stability,
otherwise we could hardly think of the possibility to describe them in an
experimentally reproducible way. Hence, the only qualitative properties of
a family of dynamical systems which are physically relevant are those that
are preserved under perturbations.FOR A
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To discuss structural stability we have to specify what are the allowed
deformations of the systems we are concerned with (that is, what is the
topology given to the set of dynamical systems) and what is the equiva-
lence relation that decides when the perturbed system is equivalent to the
unperturbed one. In the classical theory of dynamical systems, the evolution
operator Ut is either a discrete power of a mapping T : M → M (discrete
time) or the flow induced by a vector field X in M (continuous time). The
topology is in both cases the Cr-topology. Two maps are Cr-close when
their values and the values of their derivatives up to order r are close at
every point. An ε-neighborhood of a map f in the Cr-topology is the set of
all Cr-maps which together with their derivatives up to order r differ from
f less than ε.

The equivalence relation is topological conjugacy for maps and topologi-
cal equivalence for flows. Two maps T1 and T2 are C0-conjugate if there is a
homeomorphism h such that h◦T1 = T2◦h. Two vector fieldsX1 andX2 are
C0-equivalent if there is a homeomorphism h which takes the orbits of X1

to orbits of X2, preserving senses but not necessarily the time parametriza-
tion. This is because, for example, we allow the periods of closed orbits to be
different. Notice also that the most relevant notion of equivalence is topo-
logical (C0) equivalence, not for example C1-equivalence or C1-conjugacy.
This latter equivalence would be too restrictive because it would impose
invariance of the eigenvalues of the linear part of the dynamics at periodic
points.

A map f (or vector field X) is structurally stable if it has an
ε-neighborhood topologically conjugate (or topologically equivalent) to f

(to X). We may however not be concerned with the transients of the
dynamics. Therefore we may consider stability restricted to the main part
of the orbit structure, that is to the non-wandering set Ω. A point is non-
wandering if, for any neighborhood U of x, there is an integer n such that
fnU ∩U �= ∅. Then, Ω−structural stability is structural stability restricted
to the non-wandering set. That is, given a small perturbation the perturbed
system has a non-wandering set Ω̃ and there is a surjective map Ω → Ω̃
sending orbits to orbits.

For general dynamical systems the notions of structural stability, hyper-
bolicity and transversality are closely related. Some of the strongest results
proved so far are:

Theorem: (Mañé [84]) A C1-diffeomorphism is C1-structurally stable if
and only if it satisfies Axiom A and the strong transversality condition.
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Theorem: (Palis [85]) A C1-diffeomorphism is C1-Ω-structurally stable
if and only if it satisfies Axiom A and the no-cycle condition.

The meaning of the terms used in these theorems is the following:
An Axiom A dynamical system is a map (or flow) such that

(1) The non-wandering set Ω is compact and hyperbolic.
(2) The fixed points and periodic orbits are dense in Ω.

A set is hyperbolic when there is a continuous splitting TM |Ω= V + +
V − of the tangent bundle restricted to Ω such that (Df)V ± ⊂ V ± and
‖Df±n |V ∓‖ ≤ cθ−n, n ≥ 0 for some c > 0 , θ > 1.

The stable and unstable manifolds of a point are

W s
x = {y ∈M : lim

n→∞ d(fnx, fny) = 0},
Wu
x = {y ∈M : lim

n→−∞ d(f
nx, fny) = 0}.

A dynamical system f satisfies the strong transversality condition if, for
each y ∈M there are stable and unstable manifolds through y such that

TyM = TyW
u
x + TyW

s
x′ (+X),

where X is added in the flow case if y is not a fixed point.
For Ω-stability, strong transversality is replaced by the no-cycle condi-

tion. The non-wandering set Ω of an Axiom A system f is a finite union
Ω = Ω1 ∪ · · · ∪ Ωn of disjoint closed invariant sets called basic sets, such
that f is topologically transitive on each Ωi. Topological transitivity means
that there is an x with dense orbit in Ωi. One writes

Ωi � Ωj if W s
Ωi
∩Wu

Ωj
�= ∅.

The no-cycle condition means that one cannot find distinct Ωi1 , ...,Ωip (p >
1) such that

Ωi1 � Ωi2 � · · · � Ωip � Ωi1 .

The stability results quoted above are difficult mathematical theo-
rems. However, the relation between structural stability, hyperbolicity and
transversality is fairly intuitive and was the object of an old conjecture
(Palis, Smale [86]). Structural stability means that the nature of the sys-
tem does not change for small perturbations and, for example, a periodic
point must be hyperbolic if it remains of the same nature for small per-
turbations. On the other hand, transversality means that the stable and
unstable manifolds, that are the organizers of the dynamics, must be in
general position.FOR A
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The generic nature of hyperbolicity and transversality might suggest
that almost all systems are structurally stable in the sense that structurally
stable systems are dense in the set of all smooth systems. Actually this has
been proven not to be true [87, 88] except for low-dimensional cases [89].

Structural stability as it has been defined is a property that concerns
the topological properties of the dynamical system. Another notion of sta-
bility was proposed (Zeeman [90]) that deals with the invariant measure ρ
of the system under a small random perturbation. A small random pertur-
bation is added to the system because for a large class of noisy systems the
invariant measure is unique whereas in general a deterministic system has
many invariant measures. The measure is the solution of the Fokker–Planck
equation

∂tρ = −∇(ρX) + ε�ρ,
where X is the deterministic vector field and the diffusion coefficient ε is
a small quantity. Two functions ρ and ρ

′
are equivalent if there are diffeo-

morphisms α and β of M and R such that ρ
′ ◦ α = β ◦ ρ. Then two vector

fields X and X
′
are ε−equivalent in this sense when the corresponding solu-

tions ρX,ε and ρX
′
,ε are equivalent. A vector field X is ε-stable if it has an

ε-equivalent neighborhood. It is called stable if it is ε-stable for arbitrarily
small ε > 0.

Both structural stability and (measure) stability in Zeeman’s sense are
designed for general dynamical systems and leave out whole classes of
physical interest. For example they are not suitable for Hamiltonian sys-
tems which are all structurally unstable. This is because the perturbations
allowed in the Cr-topology do not preserve any constants of motion or
symmetries that the dynamical system may have.

No system with regular first integrals may be structurally stable, in the
general sense, because the property of having no regular first integrals is
C1 generic [91, 92]. To define a structural stability concept for Hamiltonian
systems we must exclude non-Hamiltonian perturbations. Restricting the
perturbations to the space χH of Hamiltonian vector fields, and using the
Cr-topology in this space, we may define stability of the phase portrait in
the same way as before. This notion of stability is very strong and it seems
more appropriate to require only stability of the phase portrait on a single
energy surface under small perturbations of the Hamiltonian and the energy.
Because generically an Hamiltonian system restricted to an energy surface
has no other first integrals, the conflict with general structural stability
would seem to be avoided. However the problem with the several definitionsFOR A

UTHOR C
HECKIN

G83

FOR A
UTHOR C

HECKIN
G8

uggest

FOR A
UTHOR C

HECKIN
Guggest

ucturally

FOR A
UTHOR C

HECKIN
G

ucturall
ly this has

FOR A
UTHOR C

HECKIN
G

y this has
l cases [89].

FOR A
UTHOR C

HECKIN
G

cases [89].
that concern

FOR A
UTHOR C

HECKIN
G

that concer
her notion of

FOR A
UTHOR C

HECKIN
G

er notio
nvariant mea

FOR A
UTHOR C

HECKIN
G

nvariant mea
small random

FOR A
UTHOR C

HECKIN
G

mall rando
ass of noisy sy

FOR A
UTHOR C

HECKIN
G

ass of noisy sy
deterministic

FOR A
UTHOR C

HECKIN
G

determinist
lution of the F

FOR A
UTHOR C

HECKIN
G

lution of the

+

FOR A
UTHOR C

HECKIN
G

+ ε�

FOR A
UTHOR C

HECKIN
G

�ρ,

FOR A
UTHOR C

HECKIN
G

ρ,

eld and the d

FOR A
UTHOR C

HECKIN
G

d and the d
nd ρ

′

FOR A
UTHOR C

HECKIN
G

′
are

FOR A
UTHOR C

HECKIN
G

are equi

FOR A
UTHOR C

HECKIN
G

equi
uch that

FOR A
UTHOR C

HECKIN
G

ch ρ
′

FOR A
UTHOR C

HECKIN
G

′ ◦
in this sense

FOR A
UTHOR C

HECKIN
G

in this sens
alent. A vecto

FOR A
UTHOR C

HECKIN
G

ent. A
It is called

FOR A
UTHOR C

HECKIN
G

It is called st

FOR A
UTHOR C

HECKIN
G

st

ility and (me

FOR A
UTHOR C

HECKIN
G

ility and (me
dynamical sy

FOR A
UTHOR C

HECKIN
G

dynamical
or example th

FOR A
UTHOR C

HECKIN
G

r example t
l structurally

FOR A
UTHOR C

HECKIN
G

l structurall
C

FOR A
UTHOR C

HECKIN
G

Cr

FOR A
UTHOR C

HECKIN
G

r-topology

FOR A
UTHOR C

HECKIN
G

-topology
hat the dynam

FOR A
UTHOR C

HECKIN
G

hat the dyna
em with regu

FOR A
UTHOR C

HECKIN
G

em with re
ense, because

FOR A
UTHOR C

HECKIN
G

nse, becaus
eric [91, 92]. T

FOR A
UTHOR C

HECKIN
G

, 92]. T
ms we must

FOR A
UTHOR C

HECKIN
G

s we must
turbations to

FOR A
UTHOR C

HECKIN
G

tions to
Cr-topology i

FOR A
UTHOR C

HECKIN
G

-topology
the same wa

FOR A
UTHOR C

HECKIN
G

the same w
more appr

FOR A
UTHOR C

HECKIN
G

more app
energy s

FOR A
UTHOR C

HECKIN
G

energy
Becau

FOR A
UTHOR C

HECKIN
G

Becau
has

FOR A
UTHOR C

HECKIN
G

has
wFOR A

UTHOR C
HECKIN

G



February 4, 2016 9:29 Beyond Peaceful Coexistence 9in x 6in FA b2362-ch06 page 184

184 R. Vilela Mendes

that have been proposed so far [93] is that they do not apply to generic
Hamiltonian systems [94].

In addition to stability of the phase portraits, there are two other notions
of dynamical stability which are reviewed in next two subsections. They are
of importance for the applications described in Section 4.

5.2. Stability of smooth mappings and stable

dynamical families

The preceding subsection was concerned with the stability of the phase
portrait of a dynamical system, that is, the stability of the realization in
phase space of a dynamical law. Given two equivalent phase portraits, one
may in fact say that one is dealing with the same dynamics as seen in
two reference frames, related by a continuous change of coordinates. This
subsection deals not with stability of the phase portrait but with stability
of the type of dynamical law. This will be clear after the definition of
equivalence and stability of smooth mappings.

Being mostly concerned with local properties of maps between smooth
manifoldsM andN one may, by a choice of local charts, reduce the problem
to Rn → Rp maps. Two smooth maps f1, f2 : Rn → Rp are equivalent
when there are diffeomorphisms g : Rn → Rn and h : Rp → Rp such that
f1 = h−1◦f2◦g. A mapping f is stable when there is a neighborhood where
all mappings are equivalent to f . Neighborhoods in the space of mappings
are defined by

Uf (k, ε) =
{
g : max

α≤k
‖∂α(f − g)∂xα1 · · ·∂xαn‖ < ε, α = α1 + · · ·+ αn

}
the derivatives being taken up to order r for the Cr-topology.

When dealing with maps between different spaces,Rn andRp, the equiv-
alence relation means that different choices of coordinate systems in the
source and the target spaces are allowed. If however one identifies the source
and the target space, as in a map f : Rn → Rn defining a discrete time
dynamical system and the diffeomorphisms h and g are distinct, different
dynamics are in fact obtained. Two equivalent maps in the above sense may
generate very different phase portraits. The set

{f ′
: f

′
= h−1 ◦ f ◦ g} (75)

for all possible difeomorphisms h and g represents not a single dynami-
cal system but a family of related systems. We know that in Nature weFOR A
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sometimes have to deal with phenomena that depend on a certain number
of control parameters, which may indeed induce very different dynamical
behavior, phase transitions, etc., but which nevertheless we want to identify
with different conditions of the same physical system. The action of the dif-
feomorphisms in (75) gives then a precise and general meaning to the notion
of change of parameters in a stable family of dynamical systems. This con-
tains the usual notion of change of parameters in many classical examples.
For example for mappings of the unit interval x → fμ(x) = 1 − μx2, fμ′

and fμare related by h(x) = x and g(x) = (μ
′
/μ)

1
2x.

If the phase portrait is not preserved, what are the features of the
dynamics that are preserved under this equivalence relation? That is, what
are the invariant properties that characterize the dynamical systems fam-
ily defined by (75). The most significant ones are the singularities of the
mappings. f is said to have a singularity or critical point at x if the rank
of the derivative map Df at x is less than the maximum possible value (n
for Rn → Rn mappings). The kind of dynamical properties that are con-
trolled by the critical points are universality in the approach to bifurcation
accumulation points [73] and bifurcation patterns.

For the singular points of smooth mappings one uses Boardman’s nota-
tion Σi1,···,ik . A point is said to belong to Σi1 if the dimension of the kernel of
Df is i1. The full notation is defined recursively by considering the kernels
of the restriction of Df to Σi1 , etc. That is, Σi1,...,ik = Σik(Df | Σi1,...,ik−1).
Actually this characterization of the Boardman symbol Σi1,...,ik is correct
only if these sets are submanifolds, which is the case for the stable maps
that concern us here. That is, for stable maps the Boardman sets coincide
with Thom’s singularity sets.

The stable maps for low dimensions have been fully classified [80, 95, 96].
They are characterized in terms of germs and unfoldings. A smooth germ at
the point x is an equivalence class of maps which coincide when restricted
to some neighborhood of x. Given a germ f0 : (Rn, 0) → (Rn, 0) in the
neighborhood of zero, an r-parameter unfolding of f0 is the germ F : (Rr×
Rn, 0)→ (Rr ×Rn, 0) given by F (u, x) = (u, f(u, x)) with f(0, x) = f0(x).
Therefore an unfolding is a (r + n)-dimensional map, the first r compo-
nents being the identity map and the other n a deformation of the original
f0 map.

A classification of stable Rn → Rn maps for n ≤ 4 is listed below, in
terms of equivalence of its germ at any point to a standard form. Let f
be a stable map; then its germ at any point is equivalent to one of the
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following:
n = 1

Σ0(x
′
1 = x1),

Σ1,0(x
′
1 = x2

1).

n = 2

Σ0(x
′
1 = x1;x

′
2 = x2),

Σ1,0(x
′
1 = x1;x

′
2 = x2

2),

Σ1,1,0(x
′
1 = x1;x

′
2 = x3

2 + x1x2).

n = 3

Σ0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3),

Σ1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x2

3),

Σ1,1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3

3 + x1x3),

Σ1,1,1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x4

3 + x1x3 + x2x
2
3).

n = 4

Σ0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3;x

′
4 = x4),

Σ1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3;x

′
4 = x2

4),

Σ1,1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3;x

′
4 = x3

4 + x1x4),

Σ1,1,1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3;x

′
4 = x4

4 + x1x4 + x2x
2
4),

Σ1,1,1,1,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3;x

′
4 = x5

4 + x1x4 + x2x
2
4 + x3x

3
4),

Σ2,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3x4;x

′
4 = x2

3 + x2
4 + x1x3 + x2x4),

Σ2,0(x
′
1 = x1;x

′
2 = x2;x

′
3 = x3x4;x

′
4 = x2

3 − x2
4 + x1x3 + x2x4).

On the left of each standard form is the Boardman symbol corresponding
to the singularity set to which the singular point belongs. Notice that in all
cases the standard forms for singularities of type Σi are written as (n− i)-
parameter unfoldings of i-dimensional maps.

For a stable Rn → Rp map the singularity set Σi1,...,ik is a smooth
submanifold of codimension

(p− n+ i1)μ(i1, . . . , ik)− (i1 − i2)μ(i2, . . . , ik)− · · · − (ik − ik−1)μ(ik),

where μ(is, . . . , ik) denotes the number of sequences of integers (js, . . . , jk)
satisfying js ≥ js+1 ≥ · · · ≥ jk ≥ 0 with ir ≥ jr for all s ≤ r ≤ k and js > 0.FOR A
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In particular, for the equidimensional case (n = p), Σi has codimension i2.
That is why, in the list above, singularities of the type Σ2 only appear for
n ≥ 4.

The (Boardman) singularity symbols Σi1,...,ik are equivalence invariants,
that is, they are invariant under a change of parameters (in the sense defined
above), and therefore, they are a robust characterization of the dynamical
system families. Notice however that, for example, the last two stable R4 →
R4 maps listed above have the same Σ2,0 symbol but are not equivalent.
Hence the classification of singularities in ΣI classes is not complete.

For low dimensions, stable maps are dense in the space of all Rn → Rn

maps. However for n ≥ 9 this is no longer true.
In discussing the stability of critical properties of dynamical system

families through the stability of smooth mappings one is directly concerned
with discrete time dynamics. This is not a serious limitation because in a
continuous time system one may always consider the intersections of the
orbits with some transversal surface in phase space. Conversely for a discrete
dynamical system defined in K ⊂ Rn there is [97] a continuous time system
in R2n+1 for which K is a global section.

5.3. Stable dynamical families with degeneracies

Here we are concerned with properties of smooth functions f : Rn → R.
The structural stability conditions for functions is given by Morse theory:

(i) f is stable if and only if the critical points are non-degenerate (non-
vanishing Hessian) and distinct.

(ii) If f is stable, local coordinates (x1, . . . , xn) may be defined in such a
way that in the neighborhood of each point −→x the function may be
written either as

f(−→x ) = x1

or

f(−→x ) = x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n

(iii) Stable functions on a compact manifold are everywhere dense in the
space of all smooth functions.

Hence, in the space of all functions, stable functions are generic and
the non-stable functions form a codimension-one hypersurface, that is,
a submanifold defined by one equation. This hypersurface is called theFOR A
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bifurcation set. The bifurcation set is the union of the hypersurface of
functions having degenerate critical points and the hypersurface of func-
tions with coinciding critical values. The bifurcation set divides the func-
tion space into components. When in the previous subsection we spoke
of the notion of change of parameters in a stable family of dynamics, as
induced by the diffeomorphisms h and g, this operates solely inside one of
the components of the space of functions. However we may have a more
general situation. Consider for example a one-parameter family. This is
represented by a curve in function space. If the intersection of this curve
with the bifurcation hypersurface is transversal then the intersection is sta-
ble in the sense that it cannot be destroyed by a small variation of the
one-parameter family. For a neighboring family the intersection will occur
for a slightly different value of the parameter and the point of intersection
itself is slightly different. However the intersection cannot be removed by
small perturbations and the situation is qualitatively the same for all the
neighboring families. An example is

ft(x) = x3 − tx

which has a degenerate critical point at t = 0 which cannot be removed from
the family by small perturbations. We therefore reach the notion of stable
dynamical family with degeneracies. Such families represent the stable ways
to connect two non-equivalent classes of functions. This is the reason why
they might be relevant to the theory of phase transitions as illustrated in
Section 4.

To classify the possible classes of stable parametrized families, the notion
of universal unfolding plays an essential role. For the space of function germs
En one uses in general a notion of equivalence finer than the one defined
for general maps. Two function germs f, g : Rn → R are said to be right-
equivalent if there is a diffeomorphism germ h and a constant c such that

g(x) = f ◦ h(x) + c.

The action of all possible diffeomorphisms h acting on a function f defines
an orbit of a smooth action. The codimension of the orbit is the number of
independent functional directions missing from the orbit. The codimension
is obtained by finding the quotient of the functional space with the tangent
space to the orbit. The functional space to consider is Mn, the ideal of
germs vanishing at the origin, and the tangent space is the Jacobian idealFOR A
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Δ(f) =
{
g1

∂f
∂x1

+ · · ·+ gn
∂f
∂xn

: g1, . . . , gn ∈ En
}
. Then

cod(f) = dim
Mn

Δ(f)
.

Whenever the codimension of f is finite the construction of a stable family
of dynamics fα(x) based on f is straightforward. A basis {u1, . . . , ul} is
found for Mn

Δ(f) and

fα(x) = f(x) + α1u1(x) + · · ·+ αlul(x). (76)

This unfolding of the function f is called universal because any other
unfolding may be induced from it by a smooth change of parameters and
the number l of unfolding directions is as small as possible. If the function
f is stable the unfolding coincides with the function itself. A family of func-
tion germs is structurally stable if any small perturbation is equivalent to
it, as an unfolding. (Equivalence for two unfoldings means that they may
be obtained from each other by a smooth change of parameters). Hence a
universal unfolding of a germ of finite codimension is structurally stable.

The unfolding (76) is linear in the parameters α and for finite codi-
mension this construction characterizes all possible parametrized functional
families. A useful result is the splitting lemma which states that if the rank
of the second differential (the Hessian) of f at a singularity is r then f is
right equivalent to

g(x1, . . . , xn−r)± x2
n−r+1 ± · · · ± x2

n.

The splitting lemma reduces the effective number of variables to n− r and
the classification of possible classes for f depends only on the classification
of g. n− r is called the corank. A list all the classes of universal unfoldings
for codimension ≤ 5 is included here. By the splitting lemma, in each case,
we may add an arbitrary quadratic (Morse) function on the other variables.
A more extensive list may be found in [80].

The symbols Ak, Dk, and E6 are used because of the relation of these
singularities to the crystallographic groups with the same symbols. Ak and
Dk correspond to two infinite series with germs g(x1, . . . , xn−r) equivalent
to xk+1 and x2y + yk−1.

When using the stable unfoldings to model natural phenomena the first
and most important number to be concerned with is the codimension (of
the germ g), because degenerate singularities are irremovable only in the
case of a family depending on parameters. In particular a singularity of
codimension c is irremovable only if the number of parameters is ≥ c.FOR A
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Conversely if, for some process, there are l relevant parameters then all
classes up to codimension l should be considered.

Symbol Corank,
Codimension

A2 x3 + αx 1,1
A3 ±x4 + α1x

2 + α2x 1,2
A4 x5 + α1x

3 + α2x
2 + α3x 1,3

A5 ±x6 + α1x
4 + α2x

3 + α3x
2 + α4x 1,4

A6 x7 + α1x
5 + α2x

4 + α3x
3 + α4x

2 + α5x 1,5
D4 x3 − xy2 + α1x

2 + α2x + α3y 2,3
D4 x3 + xy2 + α1x

2 + α2x + α3y 2,3
D5 ±(x2y + y4) + α1x

2 + α2y
2 + α3x + α4y 2,4

D6 x5 − xy2 + α1y
3 + α2x

2 + α3y
2 + α4x + α5y 2,5

D6 x5 + xy2 + α1y
3 + α2x

2 + α3y
2 + α4x + α5y 2,5

E6 ±(x3 + y4) + α1xy2 + α2y
2 + α3xy + α4x + α5y 2,5

6. Appendix B: Algebraic Deformation Theory.
Basic Notions

Deformation theory, as the study of continuous families of mathemati-
cal structures, already implicit in the work of Riemann [98], traces its
modern origins to the work of Fröhlicher–Nijenhuis [99] and Kodaira–
Spencer [100] on deformations of complex manifolds and of Gerstenhaber
[103] and Nijenhuis–Richardson [102] on the deformations of associative and
Lie algebras. So far, it is the deformation theory of algebras that seems to
play the main role on physical applications.

6.1. Deformation of Lie algebras

For physics it is useful to have an explicit representation of the deformation
parameters, because they may play the role of fundamental constants in
the deformed stable theories. I will therefore focus in the theory of formal
deformations of Lie algebras [104]. A formal deformation of a Lie algebra
L0 defined on a vector space V over a field K is an algebra Lt on the space
V ⊗K[t] (where K[t] is the field of formal power series), defined by

[A,B]t = [A,B]0 +
∞∑
i=1

φi(A,B)ti (77)

with A, B, φi(A,B) ∈ V and t ∈ K. The adjoint representation of L0 is

ρ(A)(B) = [A,B]0. (78)FOR A
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The (Chevalley) cohomology groups play a key role in characterizing
the stability of the Lie algebra. An n-cochain (relative to the adjoint rep-
resentation) is a multilinear, skew-symmetric mapping

V × · · · × V → V

and the n-cochains form a vector space Cn(ρ, V ). In particular φi(A,B) in
Eq. (77) must be a 2-cochain. One also has:

# The coboundary operator

d(A1, . . . , An+1) =
∑n+1

i=1 (−1)i−1ρ(Ai)φ(A1, . . . , Âi, . . . , An+1)
+
∑

1≤i<j≤n+1(−1)i+jφ([Ai, Aj ], A1, . . . , Âi, . . . , Âj , . . . , An+1)
. (79)

# A cocycle φ ∈ Cn(ρ, V ) whenever dφ = 0. The set of all n-cocycles is
a vector space denoted Zn(ρ).

# A coboundary if φ ∈ d(Cn−1(ρ, V )). The set of all coboundaries is a
vector space denoted Bn(ρ).

# The quotient space

Hn(ρ) =
Zn(ρ)
Bn(ρ)

is the n-cohomology group (relative to the ρ-representation). From (79) it
follows that d2φ = 0. However not all cocycles need to be coboundaries and
the n-cohomology groups may be non-trivial.

To illustrate the relevance of these concepts to the deformation problem
use the deformed commutation relations (77) and differentiate the Jacobi
identity

[A, [B,C]t]t + [B, [C,A]t]t + [C, [A,B]t]t = 0 (80a)

in the variable t. Then, setting t = 0 one obtains

dφ1(A,B,C) = 0,

that is, for the deformation in (77) to be a Lie algebra, φ1 must be a
2-cocycle.

A deformation of L0 is said to be trivial if the algebra Lt is isomorphic to
L0. This means that there is an invertible linear transformation Tt : V → V

such that

[A,B]t = T−1
t [TtA, TtB]0. (81)

If all deformations Lt are isomorphic to L0 then L0 is said to be stable
or rigid. Suppose now that the second cohomology group H2(ρ) is trivial.FOR A
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This means that all 2-cocycles are 2-coboundaries. Then, there must be a
1-cochain γ such that φ1 = dγ. Applying the linear transformation M

′
t =

exp{−tγ} to the algebra Lt

[A,B]
′
t = M

′−1
t ([M

′
tA,M

′
tB]0).

From φ1 = dγ one now obtains, by a simple calculation

φ
′
1(A,B) = φ1(A,B)− [γ(A), B]− [A, γ(B)] + γ([A,B]) = 0.

Therefore, the power series expansion for [A,B]
′
t begins with terms of second

order in t

[A,B]
′
t = [A,B]0 + φ

′
2(A,B)t2 + · · ·

and from the Jacobi identity, as above, it follows dφ
′
2(A,B) = 0. Iterating

the whole process all powers of t are successively eliminated. It means that
the limit

T−1
t = M

′−1
t M

′′−1
t . . .

is the transformation that establishes the equivalence of Lt and L0. In con-
clusion, the vanishing of the second cohomology group is a sufficient condi-
tion for non-existence of non-trivial deformations, that is, it is a sufficient
condition for stability (or rigidity) of the Lie algebra. This is the content
of the “rigidity theorem” of Nijenhuis and Richardson [102]. However the
condition is not necessary and there are rigid Lie algebras for which the
second cohomology group is non-vanishing [8, 105, 106].

Cocycles and coboundaries have a nice geometrical interpretation. The
set Ln of all possible complex n-dimensional Lie algebras is an algebraic
variety embedded in the linear space of alternating bilinear mappings in
CN (isomorphic to C(n3−n2)/2), the defining algebraic relations being the
Jacobi identity relations between the structure constants. In Ln one has
two natural topologies. One is the topology induced on Ln by the open sets
in CN . the other is the Zariski topology defined by taking closed sets to be
zeros of polynomials on Ln.

The isomorphism relation (81) is an action of the linear group GL(n,C)

Ln ×GL(n,C) → Ln : (l, T )→ T−1 ◦ l ◦ T × T, (82)

where l ∈ Ln denotes the Lie algebra law. Denoting l0(A,B) .= [A,B]0,
l0 will be a rigid algebra if its orbit O(l0) under the action of GL(n,C) isFOR A
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(Zariski) open. Considering an infinitesimal transformation

T = Id+ εφ,

acting on l0 (T : l0 → l′0), a simple computation using (81) leads to

lim
ε→0

l′0 − l0
ε

(X,Y ) = dφ(X,Y ).

Therefore the tangent space to the orbit O(l0) at l0 coincides with B2(l0).
On the other hand, considering a tangent line to Ln at l0

lt = l0 + εψ,

lt will satisfy Jacobi identity if and only if

d2ψ = 0,

that is, if ψ ∈ Z2(l0), the 2-cocycle space Z2(l0) of l0. Then we understand
why the vanishing of the second cohomology group is a sufficient condition
for rigidity of the algebra. The correspondence does not work both ways
because, in general, the algebraic variety Ln has singular points.

Semisimple Lie algebras have a vanishing second cohomology group [107]
and are stable. More generally, for any subalgebra l of a semisimple Lie
algebra that contains a maximal solvable algebra one has Hp(l) = 0 for all
p ≥ 0 [108].

In the general case, the construction of the cohomology groups is not a
simple matter. This led to the development of different, non-cohomological,
techniques to classify the rigid Lie algebras [27, 106, 109–112]. Here an
important role is played by the techniques of non-standard analysis. In
this context a Lie algebra law l0 is said to be rigid if any perturbation is
isomorphic to l0. A perturbation of l0 is an algebra such that

l(A,B) ∼ l0(A,B) (83)

for A,B standard or limited. The symbol ∼ means infinitesimally close.
There is a decomposition of any perturbation of l0 as follows

l = l0 + ε1φ1 + ε1ε2φ2 + · · ·+ ε1ε2 . . . εkφk (84)

which is unique up to equivalence. The φ’s are standard antisymmetric
bilinear mappings, the ε’s are non-zero infinitesimals and k ≤ N .

The most useful result for the characterization of the rigid Lie algebras
is the theorem that states that if l0 is rigid there is a standard non-zeroFOR A
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vector X such that adl0X is diagonalizable (adl0X(Y ) = [X,Y ]). The con-
verse result is not true and to classify the rigid algebras in dimension n

one still has to exclude the non-rigid ones with a diagonalizable vector.
A large number is simply excluded by checking the rank of the root system
and for the rest (which is a finite number) one has to check explicitly the
isomorphism of the perturbation. For details refer to [27, 109, 111, 112].

A related question is the strong rigidity. A finite-dimensional complex
Lie algebra is called strongly rigid if its universal enveloping algebra is rigid
as an associative algebra. Results on the strong rigidity question may be
found in [113].

6.2. Bialgebras

A bialgebra over the fieldK is an algebraA which, in addition to the product
m, is equipped with a coproduct � : A → A⊗A and a counit ε : A → K

satisfying

� ◦m = (m⊗m) ◦ τ ◦ (�⊗�) ; ε ◦m = m ◦ (ε⊗ ε)
� ◦ i = i⊗ i ; ε ◦ i = I

, (85)

where i is the unit of the algebra, I the identity map and τ a permutation
on the nearby indices. With an additional operation called the antipode
S : A → A and

m ◦ (I ⊗ S) ◦ � = m ◦ (S ⊗ I) ◦ � = i ◦ ε (86)

the bialgebra becomes an Hopf algebra. These properties have a natural
realization on (and were abstracted from) the algebra of a group G where

m (g ⊗ h) = gh ε (g) = 1
� (g) = g ⊗ g S (g) = g−1 . (87)

Then, for example, the first equation in (85) reads

� ◦m (g, h) = gh⊗ gh = (m⊗m) ◦ τ ◦ (�⊗�) (g, h)

= (m⊗m) ◦ τ ◦ (g ⊗ g, h⊗ h) = gh⊗ gh,
where the last step follows from exchanging the second and third argument
(that is why the permutation τ is sometimes denoted (2, 3)).

Other common realizations are:
# For the algebra of functions on a group

m (f ⊗ g) (x) = f (x) g (x) ε (f) = f (e)
� (f) (x, y) = f (xy) S (f) (x) = f

(
x−1

) . (88)
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# For the tensor algebra on a vector space

m (x, y) = x⊗ y ε (x) = 0
� (x) = x⊗ 1 + 1⊗ x S (x) = −x . (89)

A deformation theory of bialgebras has been developed [114] and a par-
tial classification of rigid bialgebras has also been obtained [115].
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rigides, au deuxième groupe de cohomologie non-nul et pour lesquelles
l’application quadratique de D.S. Rim est injective, C. R. Acad. Sci. Paris
300 (1985) 467–469.

107. N. Jacobson; “Lie algebras”, Interscience Pub., New York, 1962.
108. A. L. Onishchik and E. B. Vinberg; “Lie groups and Lie algebras III ”,

Encyclopaedia of Mathematical Sciences vol. 41, Springer, Berlin 1994.
109. M. Goze and J. M. Ancochea Bermudez; Algèbres de Lie rigides, Indaga-
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