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Abstract

In Coulomb 3-body problems, configurations of close proximity of the
particles are classically unstable. In confined systems they might however
exist as excited quantum states. By studying a maximally symmetric sub-
space of the 3-body problem one obtains strong evidence for the existence
of excited states for which the wave function is non-zero for triple collision
configurations. Quantum control of such states by time changing electro-
magnetic fields is discussed, with particular emphasis on the nature of the
required controls.

Availability of appropriately shaped laser pulses at very short time scales
provides a tool to control molecular dynamics. Quantum control applications
range from multi-photon excitations to direct control of chemical reactions and
to many diverse designs in quantum information [1] [2] [3] [4] [5]. By quantum
control one might also be able to excite exotic quantum states, in particular
in confined systems [6]. One type of such states are the scar states [7] [8] [9]
which correspond to classically unstable configurations, but may appear as well
defined states in the quantum spectrum.

This paper is concerned with a 3-body Coulomb problem of two positively
charged particles of mass M and charge Ze and a negatively charged one of
mass m and charge qe. Let R̃ be the separation of the positive particles, ρ̃ the

distance of the negative particle to one of the positive ones and ψ
(
R̃, ρ̃

)
the

system wave function. The central question to be addressed is whether there
are excited states for which ψ (0, 0) ̸= 0. Such states will be called quantum
triple collisions (QTC). Practical applications of this study concern the question
of how to counter, by quantum control, potential barriers in molecular [6] or
nuclear reactions in confined systems [10].

In the case of two heavy (M) and one light (m) particle, it is more or
less obvious, from kinetic barrier considerations, that such states, if they exist,
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should be relatively high in the spectrum. Of course, in Coulomb systems in
free space such energies would be expected to correspond to scattering states.
Therefore the search for quantum triple collisions in Coulomb systems only
makes sense for systems that are confined, for example, in a metalic lattice.

The full system has 9 spatial degrees of freedom. For the full system one
may at most reduce this number to three by fixing the two positive charges in
one direction (R̃) and describing the negative charge in cylindrical coordinates
(ρ̃, θ). However, the purpose here is not to describe the full spectrum of the
problem, but to discuss the existence or non-existence of quantum triple col-
lisions. Therefore one may look for them in a reduced subspace of maximally
symmetric states, which would correspond to states symmetric in the θ coordi-
nate. Existence of QTC states in this subspace is not a necessary condition for
their existence in the full system, but it is a sufficient one. For the exploration of
this maximally symmetric subspace of states the number of degrees of freedom
may be reduced to two.

Take one of the positively charged particles as the origin and use spherical
coordinates for the other two particles. The full Hilbert space measure is

dν = R̃2dR̃dΩ+ρ̃
2dρ̃d (cos θ) dφ (1)(

R̃,Ω+

)
being the coordinates of the second positively charged particle and

(ρ̃, θ, φ) those of the negatively charged one. The Hamiltonian is

H̃ = − ℏ2

2M

1

R̃2

∂

∂R̃

(
R̃2 ∂

∂R̃

)
− ℏ2

2m

1

ρ̃2
∂

∂ρ̃

(
ρ̃2

∂

∂ρ̃

)
+ V

(
R̃, ρ̃, θ

)
(2)

V
(
R̃, ρ̃, θ

)
=
Z2e2

4πε0

1

R̃
− Zqe2

4πε0

1

ρ̃
+

1√
R̃2 + ρ̃2 − 2R̃ρ̃ cos θ

 (3)

Let

µ =
m

M

G2 =
Zme2

2πε0ℏ2
(4)

and redefine

R = G2R̃; ρ = G2ρ̃; H =
2m

ℏ2G4
H̃ (5)

µ,R, ρ and H being dimensionless quantities, the results may easily be used
both for molecular and nuclear environments. Maximally symmetric states, as
defined above, being independent of the θ coordinate, an equivalent Hamiltonian
H acting in their subspace, is obtained by integration over the θ−angle variables
obtaining

H =
2m

ℏ2G4
H̃ = −µ 1

R2

∂

∂R

(
R2 ∂

∂R

)
− 1

ρ2
∂

∂ρ

(
ρ2

∂

∂ρ

)
+
Z

R
− q
ρ
−q

{
χ (R− ρ)

R
+
χ (ρ−R)

ρ

}
,

(6)

2



χ being the Heaviside function1. Then, the maximally symmetric subsystem
has two degrees of freedom with integration measure

dσ = R2dR2ρ2dρ (7)

From (6) one sees that, in spite of the Coulomb barrier between the positive
charges (ZR ), the effective potential in the subspace of maximally symmetric
states, becomes attractive in the region ρ < R if ρ < q

Z−qR. Given an eigenstate

ψ (R, ρ) of H, the quantum probability for a two-body collision of the positively
charged particles is proportional to

I2 =

∫
dρρ2 |ψ (0, ρ)|2 (8)

and, as defined above, there is a quantum triple-collision if ψ (0, 0) ̸= 0.
A difficulty on the way to a rigorous solution to this problem is the fact

that the potential is singular at the R = ρ = 0 point. In an actual physical
system this point could never be reached because of the finite dimensions of
the particles. Therefore a reasonable approximation that avoids the singularity
problem is to compute the numerical solution of the spectrum in a grid that does
not contain the R = ρ = 0 point, with the average of ψ on the smallest square
around the origin standing for ψ (0, 0). Because of the Coulomb barrier and the
kinematical cost of localization, it is to be expected that the quantum triple
collision states, if they exist, will be relatively high in the spectrum. Therefore
to compute them one needs a method that involves very many basis states. A
simple way to fulfill this requirement is to represent the operator H in a fine grid
of points in a box2 of size [0, L]

2
and to diagonalize the resulting matrix. As far

as I know, this is the best way to obtain both the ground and high excited states
with similar degrees of accuracy. The number of eigenstates that is obtained
equals the number of points in the grid. However the number of different,
discrete spectrum, energy levels of the confined system is much smaller, wave
functions at each level being related by symmetry transformations. As a result,
when fine grids are used, the energy spectrum has a piecewise constant nature.

The Fig.1 shows the results of such calculation for3 µ = 2.7 × 10−4. The
upper left panel is the value of ψ (0, 0) along the spectrum. One sees that for
all the lower part of the spectrum this is a vanishing value, although for high
excitation values there are many quantum triple collision states (QTC). These
states are many, but still somewhat exceptional in the whole set.

The right upper panel shows the energy difference ∆ between the ground
state ψ0 and the excited states (in H units) and the two lower panels show,

1χ (x) = 1 for x ≥ 0, χ (x) = 0 for x < 0
2Because one is using spherical coordinates this box size corresponds roughly to a lattice

volume 4
3
πL3.

3This value corresponds roughly to the ratio of the electron and deuteron masses. Using
this value emphasizes the fact that quantum triple collision states do exist even for small
values of µ, in spite of the kinetic penalty associated to the small mass particle. For larger
values of µ these states also exist, lower in the spectrum.
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Figure 1: ψ (0, 0) for the first 3000 discretized eigenstates (40 energy levels), the
energy difference ∆ between the ground and the excited states (in H units) and
the wave functions of the ground state (lower left panel) and the first quantum
triple collision state (lower right panel)

respectively, the wave functions of the ground state ψ0 and of the first quantum
triple collision state ψ∗

1 .
Because of the inhibiting effect of the Coulomb barrier between the two pos-

itively charged particles, it is expected that the QTC states will be relatively
high in the spectrum and sparse, because many other, less exceptional, config-
urations would have similar energy. In particular, it is not to be expected that
such states will occur spontaneously in a Coulomb system. Hence, the objec-
tive now is to assess the possibility to carry the system from the ground state
ψ0 to the state ψ∗

1 by quantum control. The most effective way for coherently
control the evolution of a quantum system is through the interaction with an
electromagnetic field with a spectral content and temporal profile that may be
altered throughout the process. The evolution equation would be

iℏ∂tψ (t) = (H − ϵ (t)H1)ψ (t) (9)

where H is the original Hamiltonian, H1 the control operator and ϵ (t) the time
varying control intensity. A well established technique of optimal control [11]
[12] [13] [14] [15] defines a function F , to be minimized, which contains both the
objective goal and all the desired control constraints, among them the equation
of motion (9). The constraints are made independent by the introduction of
Lagrangian multiplier fields and the optimal control intensity ϵ (t) is obtained
by iterative forward integration of (9) and backward integration of the Lagrange
multiplier equations. This method allows for the introduction of arbitrary con-
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trol constraints, in particular the fluency
∫
ϵ (t)

2
dt of the control field. In this

setting open source codes have even been constructed to implement optimal
quantum control [16] [17].

Optimal control methods are most appropriate an accurate equation of mo-
tion is known. This is so, of course, for the present simplified model and the
methods of optimal control might readily be used. However, in a practical
situation for a Coulomb system embedded on a molecular lattice, the crystal
potentials of the lattice may preclude an exact knowledge of relevant equations.
Therefore, it was preferred to emphasize a more direct control methodology,
which is in fact closer to an experimental learning methodology. This is the
local field approach, which defines a Lyapunov function [18] by the squared
overlap of the current ψ (t) and a target state ψ∗

1

M (t) = (ψ (t) , ψ∗
1) (ψ

∗
1 , ψ (t)) (10)

and chooses ϵ (t) during the evolution, with initial condition ψ0, to insure that
d
dtM ≥ 0. Because

dM (t)

dt
= −ϵ (t) 2

ℏ
Im {(ψ (t) , ψ∗

1) (ψ
∗
1 , H1ψ (t))} (11)

the condition d
dtM ≥ 0 is satisfied if

ϵ (t) = −αIm {(ψ (t) , ψ∗
1) (ψ

∗
1 , H1ψ (t))} (12)

α being a positive constant.
Even for a system contained in a box, the Hilbert space of solutions of the

equation (9) is infinite-dimensional and it is known that full quantum controlla-
bility in infinite dimensions is a delicate problem [19] requiring non-Lie algebraic
operators or approximations thereof [20] [21]. In this case however one deals with
a simpler problem of controllability between two states in a discrete spectrum.
It is known that in this case a necessary condition [22] is transitivity of the op-
erator H1. Hence the first thing to check is the availability of H1 operators that
are transitive between these two states, in the sense that there is an iteration
Hn

1 of the operator with non-vanishing matrix elements between the two states.
In the dipole approximation the interaction of the charged particles with the

electric field of a laser pulse takes place through the dipole operator, namely

D = (R− ρ) · E (13)

with Z = q = 1, E the electrical field and all constants included in ϵ (t). To ob-
tain the effect of this operator on the maximally symmetric states one integrates
over all angles obtaining

H
(E)
1 =

1

16Rρ

{
(R+ ρ)

3 − |R− ρ|3
}

(14)

The transitivity of this operator is found by computing
∣∣∣(ψ∗

1 , H
(E)n

1 ψ0

)∣∣∣ for
successive powers of the operator. The result is shown in the left-hand panel
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Figure 2:
∣∣∣(ψ∗

1 , H
(E)n

1 ψ0

)∣∣∣ compared with similar matrix elements replacing ψ∗
1

by two states with ψ(0, 0) = 0 (left panel) and a control attempt with the dipole
operator (right panel). nt is the number of control steps with dt = 0.05

of Fig.2 where this value is compared with the corresponding matrix element
with ψ∗

1 , the first QTC state, replaced by two other randomly chosen states
for which ψ (0, 0) = 0. This shows that, starting from the ground state, the
quantum triple collision state is not controllable with this operator. This is
confirmed in the right-hand panel where a control attempt is made using the
Lyapunov method and adjusting the field ϵ (t) intensity at each step by (12).
The time step is dt = 0.05 and the exponential of the operator is computed at
every step to improve the precision. One sees that the overlap |(ψ0, ψ

∗
1)| always

remains at the level of the numerical round-off. The uncontrollability by the
dipole operator is in fact to be expected because in the quantum triple collision
state R and ρ are expected to be small, even for states that are not maximally
symmetric. In the maximally symmetric case, studied here, one sees from Fig.1

that in the ψ∗
1 state R ≈ 0 and therefore the operator H

(E)
1 in (14) vanishes.

For a controlling alternative one considers the interaction with a magnetic
field B. This interaction has two different terms, the paramagnetic and the
diamagnetic, both arising from the substitution p→ p− eA (x, t) . The param-
agnetic term may be written

− e

2m
L ·B

and therefore, being proportional to the orbital angular momentum L, it van-
ishes for a maximally symmetric state. The diamagnetic term is proportional
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Figure 3:
∣∣∣(ψ∗

1 ,
(
H

(E)
1 + ρ2

)n

ψ0

)∣∣∣ compared with similar matrix elements re-

placing ψ∗
1 by two states with ψ(0, 0) = 0

If M ≫ m, µ is very small and will be mostly the operator ρ2 that
might have a controlling effect. In Fig.3 one shows the successive values of∣∣∣(ψ∗

1 ,
(
H

(E)
1 + ρ2

)n

ψ0

)∣∣∣. Ones sees that in this case the matrix element be-

comes large, although not so large as the corresponding matrix elements for the
same two reference states as used in Fig.2 . Some degree of controllability is
confirmed by using again the Lyapunov method now with the operator

H
(M)
1 = H

(E)
1 + ρ2

The result of the numerical calculation is shown in Fig.4 where one sees that
the overlap indeed grows rapidly on the first four iterations then settling around
12%. The left-hand panel shows the overlap |(ψ (t) , ψ∗

1)|, the middle one the
control intensity ϵ (t) and the right-hand panel the wave function ψ (t) after 100
iterations. Although the controlled wave function is very close to a quantum
triple collision situation, the overlap is still small because, as seen in right-hand
panel, the overlap with the objective function is mostly in the region of small ρ
and R where the integration measure (7) is small.

In conclusion: A Coulomb system of two positive and one negative charge
confined in a box has quantum triple collision states. These states are high
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Figure 4: Control with the H
(M)
1 operator. The overlap |(ψ (t) , ψ∗

1)| (left panel),
the control intensity ϵ (t) (central panel) and the wave function ψ (t) after 100
iterations (right panel)

excited states in the spectrum. They are many but still exceptional in a ”sea”
of states with ψ (0, 0) = 0. Quantum control from the ground state, by the
dipole operator, is not possible in maximally symmetric states and also expected
to be inefficient for non-symmetric states. However, it seems possible using
time-varying magnetic fields. Magnetic control might even be more efficient for
non-symmetric states because of the action of the paramagnetic term.

Notice however that the non-controllability result with the dipole operator
and the electric field refers only to exact controllability, which arises from the

non-transitivity of the H
(E)
1 operator. What one observes, for example in the

control experiment reported in the right-hand panel of Fig.2, is that the con-
trolled wave function ψ (t) converges to states of close proximity (R small),
nevertheless with negligible overlap with the objective function ψ∗

1 .
In an actual 3-body Coulomb system confined in a solid lattice, accurate

calculation of the energy levels will be difficult, because it is strongly influenced
by the solid state environment. Therefore to have success in the use of quan-
tum triple collisions to induce molecular or nuclear reactions, some automatic
learning process as in [23] [24] is recommended. Another important considera-
tion in any experimental implementation of this quantum control technique is
the order of magnitude of the electromagnetic energies to be used. The nor-
malized Hamiltonian H in Eq.(6) is a dimensionless quantity and to convert
H−computed energy differences into physical values one should multiply them
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by Z2me4

8π2ε20ℏ2 . Notice however that there is another dimensionless parameter that

has to be taken into account. It is the ratio µ = m
M of the masses of the negative

and the positively charged particles. As an illustration, for the µ values used
in the numerical calculations that were performed, which correspond to ratios
of the electron mass to typical nuclear masses, energy differences between the
ground state and the first QTC states would be located in the high ultraviolet
- low X-ray range. As for the intensity of the fields, it will strongly depend on
the experimental setting, on the volume of the samples, on the absorption of the
material, etc. and no safe implementation-independent estimate may be made.
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