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Abstract
Non-commutative tomography is a technique originally developed and extensively used by
Profs. M. A. Man’ko and V. I. Man’ko in quantum mechanics. Because signal processing deals
with operators that, in general, do not commute with time, the same technique has a natural
extension to this domain. Here, a review is presented of the theory and some applications of non-
commutative tomography for time series as well as some new results on signal processing on
graphs.
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1. Introduction

As an alternative to the description of quantum systems by
wave functions or density matrices, Wigner [1] introduced in
1932 the function W q p( , ), which contains all information on
the quantum state and is similar to the classical probability
density f q p( , ) in phase space. Besides taking negative
values, the amplitude of the oscillating cross-terms in the
Wigner function may be large in position-momentum regions
that carry no physical information. Therefore the Wigner
function cannot be interpreted as a probability distribution in
phase-space.

However, by using a generalization of the Radon trans-
form [2, 3], a squared amplitude of the projection on the
generalized eigenvalues of a linear combination of two non-
commutative operators, it was suggested that quantum states
might be identified with tomographic probability distributions
[4]. This provided for quantum mechanics a description
alternative to the one given by wave functions or density
matrices. For reviews of this approach to quantum mechanics,
refer to [5–7].

The reason why the Wigner function cannot provide a
probability distribution in phase-space lies in the fact that
position q and momentum p are non-commuting operators.
Likewise, the Wigner function for the pair ωt( , ), which in
signal processing goes under the name of Wigner–Ville

transform [8], cannot provide a true probability distribution in
the time-frequency plane, because time t does not commute
with frequency ω = i d

dt
. Hence, serious ambiguity problems

may arise in the interpretation of the Wigner–Ville transform,
for example, in the analysis of radar signals. The same pro-
blem occurs for other time-frequency quasidistributions
[9, 10], even for those that are strictly positive [11, 12] but
cannot be interpreted as actual probability distributions in the
plane of two non-commutative operators.

This situation suggested that also for the pair ωt( , ), and
in general for signal processing applications, the tomographic
point of view might be useful. This program was indeed
developed [13–18]. Some of the main results are briefly
summarized in section 2. The approach has been quite suc-
cessful in signal processing applications, in particular to
separate the components of complex signals. Two examples
of component separation by the non-commutative tomo-
graphy technique are presented in section 3. Section 4 dis-
cusses the application of the tomographic technique when,
instead of using either the frequency, the dilation, or another
mathematical known operator, the operator itself is con-
structed from experimental or simulated data. In this way the
tomogram becomes sensitive to the very features of the signal
that one wants to detect. Finally, the last section contain some
recent new results on the application of the technique to signal
processing on graphs.
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2. Non-commutative tomography and signal
processing

A unified framework to characterize linear transforms, qua-
sidistributions, and tomograms was developed in [15]. To fix
notation we briefly review it here. Signals f (t) are considered
as vectors f in a subspace  of a Hilbert space  with dual

space *. Then a family of unitary operators α = αU ( ) eiB( ),

α being a label α ∈ ⊂{ }I I, n , is defined on *. Using a

ket-bra notation we denote ∈f and ∈f N*. In this
setting three types of integral transforms are constructed. Let

∈h * be a reference vector, and let U be such that the

linear span of α α∈ ∈{ }U h I( ) * : is dense in *. In

αU h{ ( ) }, a complete set of vectors can be chosen to serve as
the basis.

1—Linear transforms

α α= ∣W U h f( ) ( ) (1)f
h( )

2—Quasi-distributions

α α= ∣Q U f f( ) ( ) (2)f

3—Tomograms

Given a unitary α = αU ( ) eiB( ), αB ( ) has the spectral
decomposition ∫α =B XP X X( ) ( )d . Let

=P X X X( )

denote the projector on the (generalized) eigenvector

∈X * of αB ( ). The tomogram is

=

= =

M X f P X f

f X X f X f

( ) ( )

. (3)

f
B( )

2

The tomogram M X( )f
B( ) is the squared amplitude of the

projection of the signal ∈f on the eigenvector

∈X * of the operator αB ( ). Therefore, it is positive. For
normalized ∣ 〉f ,

∣ =f f 1

the tomogram is normalized

∫ =M X X( ) d 1. (4)f
B( )

and may be interpreted as a probability distribution on the set
of generalized eigenvalues of αB ( ), that is, as the probability
distribution for the random variable X corresponding to the
observable defined by the operator αB ( ).

The tomogram is a homogeneous function

=M X p M pX( ) ( ). (5)f
B p

f
B( ) ( )

Examples:
If αU ( ) is an unitary operator, generated by
α α α→ = +( )B t iF t1 2

d

d
, and h is a (generalized) eigenvector of

the time-translation operator, the linear transform αW ( )f
h( ) is

the Fourier transform. For the same α→( )BF , the quasi-
distribution αQ ( )f is the ambiguity function, and the Wigner–
Ville transform [1, 8] is the quasi-distribution αQ ( )f for the
following B-operator

⎛
⎝⎜

⎞
⎠⎟

α α α α

π

= − −

+
− −

B
t

t

t
t

( , ) i2
d

d
2

d

d
1

2
. (6)

WV( )
1 2 1 2

2
2

2

The wavelet transform is αW ( )f
h( ) for

α α α→ = +( )B D iW t1 2
d

d
, D being the dilation operator

= − +( )D t ti i
t t

1

2

d

d

d

d
. The wavelets τh t( )s, are kernel func-

tions generated from a basic wavelet τh ( ) by means of a
translation and a rescaling τ−∞ < < ∞ >s( , 0):

⎜ ⎟⎛
⎝

⎞
⎠

τ= −
τh t

s
h

t

s
( )

1
(7)s,

using the operator

τ τω= ( )U s sD( , ) exp i ˆ exp (ilog ), (8)A( )

τ=τh t U s h t( ) ( , ) ( ). (9)s
A

,
( ) †

ω̂ being the operator i
t

d

d
.

The Bertrand transform [19, 20] is the quasi-distribution
αQ ( )f for BW. Linear, bilinear, and tomogram transforms are

related to one another (see [15]).

2.1. Tomograms: some examples

Tomograms are obtained from projections on the eigenstates
of the B operators. These operators may be linear combina-
tions of different (commuting or noncommuting) operators,

μ ν= +B O O1 2

meaning that the tomogram explores the signal along lines in
the plane ( )O O,1 2 . For example, for

μ ν μ νω μ ν= + = +B t t
t

( , ) i
d

d

the tomogram is the expectation value of a projection operator
with support on a line in the time–frequency plane

μ νω= +X t . (10)

Therefore, μ νM X( , , )f
S( ) is the marginal distribution of the

variable X along this line in the time–frequency plane. The
line is rotated and rescaled when one changes the parameters
μ and ν. In this way, the whole time–frequency plane is
sampled, and the tomographic transform contains all the
information on the signal. Instead of marginals collected
along straight lines on the time–frequency plane, one may use
other curves to sample this space [15].

For the tomograms associated to the generators of the
conformal group, the B operators are:
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Time–frequency

μ ν= +B t
t

i
d

d
(11)1

Time–scale

⎜ ⎟⎛
⎝

⎞
⎠μ ν= + +B t t

t
i

d

d

1

2
(12)2

Frequency–scale

⎜ ⎟⎛
⎝

⎞
⎠μ ν= + +B

t
t

t
i

d

d
i

d

d

1

2
(13)3

Time-conformal

⎜ ⎟⎛
⎝

⎞
⎠μ ν= + +B t t

t
ti

d

d
. (14)4

2

The construction of the tomograms reduces to the calculation
of the generalized eigenvectors of each one of these Bi

operators
ψ μ ν ψ μ ν=B t X X t X( , , , ) ( , , , )1 1 1

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ψ μ ν μ

ν ν
= −t X

t tX
( , , , ) exp i

2
(15)1

2

with normalization

∫ ψ μ ν ψ μ ν

πνδ

′

= − ′

( )

( )

t t X t X

X X

d ( , , , ) , , ,

2 (16)

1
*

1

ψ μ ν ψ μ ν=B t X X t X( , , , ) ( , , , )2 2 2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ψ μ ν μ

ν ν
= −t X

t

t X
t( , , , )

1
exp i log (17)2

∫ ψ μ ν ψ μ ν πνδ′ = − ′( ) ( )t t X t X X Xd ( , , , ) , , , 4 (18)2
*

2

ψ μ ν ω ψ μ ν ω=B X X X( , , , ) ( , , , )3 3 3

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ψ μ ν μ

ν
ω

ν
ω= − −t X

X
( , , , ) exp i log (19)3

∫ ωψ μ ν ω ψ μ ν ω πνδ′ = − ′( ) ( )X X X Xd ( , , , ) , , , 2 (20)1
*

1

ψ μ ν ψ μ ν=B t X X t X( , , , ) ( , , , )4 4 4

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ψ μ ν

ν
μ
ν

= +t X
t

X

t
t( , , , )

1
exp i log (21)4

∫ ψ μ ν ψ μ ν πνδ′ = − ′( ) ( )t t s t s s sd ( , , , ) , , , 2 . (22)4
*

4

Then, the tomograms are:

Time–frequency tomogram

⎡
⎣⎢

⎤
⎦⎥∫μ ν

π ν
μ

ν ν
= −M X

t tX
f t t( , , )

1

2
exp

i

2

i
( )d (23)1

2
2

Time–scale tomogram

⎡
⎣⎢

⎤
⎦⎥∫μ ν

π ν
= ν−μ

ν( )M X t
f t

t
( , , )

1

2
d

( )
e (24)i t X t

2
log

2

Frequency–scale tomogram

⎡
⎣⎢

⎤
⎦⎥∫μ ν

π ν
ω ω

ω
= ω ν ω− −μ

ν( )M X
f

( , , )
1

2
d

˜ ( )
e (25)

X
3

i log
2

ωf̃ ( ) being the Fourier transform of f (t)

Time-conformal tomogram

⎡
⎣⎢

⎤
⎦⎥∫μ ν

π ν
=

μ
ν+ν( )M X t

f t

t
( , , )

1

2
d

( )
e (26)t

4
i log

2
X
t

The tomograms M M,1 2, and M4 interpolate between the
(squared) time signal (ν = 0) and its projection on the
ψ μ ν t X( , , , )i functions for μ = 0.

For the particular case of the time-frequency tomogram,
the projection being on a linear chirp basis, one deals for each
fixed X with the modulus squared of a fractional Fourier
transform.

In a similar way, tomograms may be constructed for any
operator of the general type

⎜ ⎟⎛
⎝

⎞
⎠μ ν= + +B t g t

t

g t

t
i ( )

d

d

1

2

d ( )

d
4

the generalized eigenvectors being

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥∫ ∫

ψ μ ν

ν
μ
ν

=

× − +

−t X g t

X s

g s

s s

g s

( , , , ) ( )

exp i
d

( )

d

( )
.

g

t t

1 2

When dealing with finite-time signals and finite-time
tomograms, some normalization modifications are needed.
For example, for a time-frequency tomogram, instead of (23),
we consider the finite-time tomogram, for a signal defined
from t0 to +t T0 with μ θ= cos and ν θ= sin

∫θ ψ

ψ

=

= ∣

θ

+
M X f t t t

f

( , ) * ( ) ( ) d

(27)

t

t T

X1 ,
(1)

2

(1)
2

0

0

with

⎜ ⎟⎛
⎝

⎞
⎠ψ θ

θ θ
= −θ t

T
t

X
t( )

1
exp

icos

2 sin

i

sin
. (28)X,

(1) 2

θ is a parameter that interpolates between the time and the
frequency operators, running from 0 to π 2, whereas X is
allowed to be any real number. An orthonormalized set of
ψθ t( )X,

(1) vectors is obtained by choosing the sequence


π θ= + ∈X X

n

T
n

2
sin . (29)n 0

Likewise, for the finite-time time–scale tomogram
μ νM X( , , )2 (24) and the finite-time time-conformal
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tomogram μ νM X( , , )4 (26):

∫θ ψ

ψ

=

= ∣

θ

+
M X f t t t

f

( , ) * ( ) ( ) d

(30)

t

t T

X2 ,
(2)

2

(2)
2

0

0

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ψ

θ
θ θ

=
+ −

× −

θ t
t T t

t
t

X
t

( )
1

log log

1
exp i

cos

sin sin
log (31)

X,
(2)

0 0


π θ= +

+ −
∈X X

n

t T t
n

2

log log
sin (32)n 0

0 0

and

∫θ ψ

ψ

=

= ∣

θ

+
M X f t t t

f

( , ) * ( ) ( ) d

(33)

t

t T

X4 ,
(4)

2

(4)
2

0

0

⎜ ⎟⎛
⎝

⎞
⎠

ψ

θ
θ θ

=
+

× +

θ
( )

t
t t T

T t

t
X

t

( )
1

exp i
cos

sin
log

sin
. (34)

X,
(4) 0 0

π θ= +
+

∈
( )

X X
t t T

T
n n2 sin . (35)n 0

0 0

Tomograms performing a signal analysis on two vari-
ables (time and frequency, time and scale, etc.) are more
powerful than linear transforms, like Fourier or wavelets. On
the other hand, in contrast with the bilinear transforms
(Wigner–Ville, Bertrand, etc) and because of their rigorous
probabilistic interpretation, they provide a robust and unam-
biguous characterization of the signals.

3. Component separation and noise suppression

The non-commutative tomography technique has already
been used in the identification of biological signals [21],
reflectometry in plasma physics [22–25], and astrophysical
data [26]. Here I will emphasize the component separation
feature.

Most natural and man-made signals are nonstationary
and may be thought of as having a multicomponent structure.
Bat echolocation, whale sounds, radar, sonar, and many
others are examples of this kind of signal. The notion of
nonstationarity is easy to define. However, the concept of
signal component is not so clearly defined. Because time and
frequency descriptions are standard methods of signal ana-
lysis, many authors have attempted to base the characteriza-
tion of signal components on the analysis of the time–
frequency plane. There is a large class of time–frequency
signal representations (TFR). An important set of such TFRs
is Cohen’s class [9], obtained by convolutions with the
Wigner distribution. Once one particular TFR of the signal is

constructed, the search for components may be done by
looking for amplitude concentrations in the time–frequency
plane. This is the methodology that has been followed by
most authors, the notions of instantaneous frequency and
instantaneous bandwidth playing an important role in these
studies.

An important drawback of the use of TFRs is the fact that
they may have negative terms, cross terms, or lack the correct
marginal properties in time and frequency. Even if, by the
choice of a clever kernel or a smoothing or filtering operation,
the TFRs are apparently free from these problems, there is no
guarantee that they are free from artifacts that might lead to
unwarranted inferences about the signal properties. As stated
before, this is a consequence of the basic fact that time t( ) and

frequency ω =( )i
t

d

d
, being associated to a pair of non-

commuting operators, there can never be a joint probability
distribution in the time–frequency plane.

Notice that an approach to component separation starts
from the insight that the notion of component depends as
much on the observer as on the observed object. That is, when
we speak about a component of a signal, we are in fact
referring to a particular feature of the signal that we want to
emphasize. For example, if time and frequency are the fea-
tures that interest us, they might indeed be the salient features
in the time–frequency plane that should be identified as
components. However, if frequency and fractality (scale)
interest us, the notion of component and the nature of the
decomposition would be completely different. In general, the
features of interest correspond to incompatible notions (that
is, to noncommuting operators). Therefore, to look for robust
characterizations in a joint feature plane is a difficult task,
because the noncommutativity of the operators precludes the
existence of joint probability densities. Instead, in the tomo-
graphic approach, one considers spectral decompositions
using the eigenvectors of linear combinations of the operators.
The sum of the squares of the signal projections on these
eigenvectors having the same norm as the signal, this
approach provides an exact probabilistic interpretation.

Once a tomogram for a linear combination of operators
O1 and O2 μ ν= +( )B O O1 2 is constructed, what one obtains
in the μ νX( , ( , )) (hyper-) plane is an image of the probability
flow from the O1-description of the signal to the O2-descrip-
tion, through all the intermediate steps of the linear combi-
nation. In contrast with the time–frequency representations,
we need not worry about cross-terms or artifacts, thanks to the
exact probability interpretation of the tomogram. Then, a
component of the signal may be defined as any distinct feature
(ridge, peak, etc) of the probability distribution in the

μ νX( , ( , )) (hyper-) plane. It is clear that this notion of
component is contingent on the choice of the pair ( )O O,1 2 .

Here, the method of component separation will be
described in some detail for the time–frequency tomogram
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case, θM X( , )1 (27).

θ ψ= ∣M X f( , ) (36)1
(1)

2

with

⎜ ⎟⎛
⎝

⎞
⎠ψ θ

θ θ
= −θ t

T
t

X
t( )

1
exp

icos

2 sin

i

sin
. (37)X,

(1) 2

θis a parameter that interpolates between the time and the
frequency operators, running from 0 to π 2, whereas X is
allowed to be any real number. Notice that the ψθ X,

(1) are

generalized eigenfunctions of θ θ θ= +B t( ) cos isin
t1

d

d
for a

spectral value X. Therefore θM X( , )1 is a (positive) prob-
ability distribution as a function of X for each θ. From an
abstract point of view, since for different θ the θ = θU ( ) e Bi ( )1

are unitarily equivalent operators, all the tomograms share the
same information. An orthonormalized set of ψθ t( )X,

(1) vectors
is obtained by choosing the sequence (29),

ψ ψ δ∣ =θ θt t( ) ( ) . (38)X X m n,
(1)

,
(1)

,m n

X0 is freely chosen. (In general, one takes =X 00 , but it is
possible to make other choices, depending on what is more
suitable for the signal under study.)

A glance at the shape of the functions (28) shows that the
nodes (the zero crossings) tn of the real (resp. imaginary) part
of ψθ X,

(1)
m
are the solutions of

θ
θ θ

π

π π

− =

+

t
X

t n

resp n

cos

2 sin sin
2

( . 2 2). (39)

n n
2

It is clear that −+t tn n1 scales as n and that, for fixed θ, the
oscillation length, at a given t, decreases when X increases.

As a result, the projection of the signal on ψθ{ }t( )X,
(1)

n
will

locally explore different scales. On the other hand, changing θ
will modify the first term of (39) in such a way that the local
time–scale is larger when θ becomes larger, in agreement with
the uncertainty principle.

The projections of the signal f (t)

ψ= ∣θ
θc f f t( ) ( ) (40)X X,
(1)

n n

are then used for signal processing purposes. In particular, a
natural choice for denoising consists in eliminating the θc s( )Xn

such that

ϵ⩽θc f( ) (41)X
2

n

for some chosen threshold ϵ, the remainder being used to
reconstruct a denoised signal. In this case a proper choice of θ
is an important issue in the method.

The multi-component analysis is done by selecting sub-
sets k of the Xn and reconstructing partial signals (k-com-
ponents) by restricting the sum to


∑ ψ= θ

θ
∈

f t c f t( ) ( ) ( ) (42)k
n

X X,
(1)

k

n n

for each k. By an appropriate choice of θ, it is possible to use

this technique to disentangle the different components of a
signal.

3.1. Examples

Here the general method is applied to two examples: one that
shows how two nonlinear chirps, overlapping both in time
and frequency, may be correctly separated; the other concerns
component separation in reflectometry signals of plasma
diagnosis [22, 23].

3.1.1. Separation of a composite chirp signal. Here one
analyzes the decomposition into elementary components of a
signal which mimics, in a simplified way, the case of an
incident plus a reflected wave delayed in time and with an
acquired time-dependent change in phase. This would be a
typical situation when a signal is sent to probe some
environment. In this case the simulated signal y(t) is the
sum of an ‘incident’ chirp y t( )0 and a ‘deformed reflected’
chirp yR(t). White noise is added to the signal. The incident
chirp is:

= Φy t( ) e (43)t
0

i ( )0

with Φ = +t a t b t( )0 0
2

0 .
The ‘instantaneous frequency’ of y t( )0 sweeps linearly

from 75 −rd s 1 to 50 −rd s 1 during s20 . Its phase derivative is
linearly dependent on time: Φ = +t a t b( ) 2

t

d

d 0 0 0. The
‘reflected’ signal yR(t) is delayed by =t s3R from the incident
one and continuously sweeps from −75 rd s 1 to −50 rd s 1:

= Φy t( ) e (44)R
ti ( )R

with Φ = − + − + −t a t t b t t t t( ) ( ) ( ) 10( )R R R R R R
2 3

2 . For

yR(t) the phase derivative Φ t( )
t R

d

d
is no longer a linear

function. The signal yR(t) is zero during the first s3 seconds
and ends at =t s23 . Finally, the signal to be analyzed is:

= + +y t y t y t b t( ) ( ) ( ) ( ). (45)R0

Figure 1. Temporal representation of the real part  y t[ ( )] of the
simulated data defined by equation (45).
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The signal-to-noise ratio, SNR y b( , ), is 15 dB. The real
 y t[ ( )] part of this signal is shown in figure 1.

Figure 2 shows Φ t( )
t

d

d 0 and Φ t( )
t R

d

d
as a function of

time. Notice that, except for the three first seconds, there is an
almost complete overlap of the ‘instantaneous frequency’ of
the signals y t( )0 and y t( )R .

The tomogram of the first s20 of y(t),

θ ψ= 〈 ∣ 〉θM X y t( , ) ( )y X,
(1) 2

has a maximum at

θ ≈sin ( ) 0.625 (figure 3) corresponding to the ‘incident’
part of the signal that mainly projects in the unique ψθ t( )X,

(1)

that matches Φ t( )0 . One takes the value of θ ≈sin ( ) 0.625 to
carry out the separation of y(t) in its components. As seen
from the tomogram, the signals overlapping both in time and
frequency separate in this θ−region. The corresponding
spectrum θc y( )Xn

is shown in figure 4. Based on this spectrum
the signal is decomposed into two components. From the first

component, the ‘incident’ chirp y t( )0 is reconstructed by:

∑ ψ= θ
θ

=

y t c y t˜ ( ) ( ) ( ). (46)
X

X X0
45

47.25

,
(1)

n

n n

0

The quadratic error, between y t˜ ( )0 and y t( )0 , E y y( , ˜ )0 0 , is
−9.5 dB.

From the second spectral component, the ‘reflected’ chirp
is given by:

∑ ψ= θ
θ

=

y t c y t˜ ( ) ( ) ( ). (47)R
X

X X
47.5

50.5

,
(1)

n

n n

In this case the quadratic error E y y( , ˜ )R R is −10 dB. This may
be compared with a quadratic error E y y( , ˜) of −29 dB for the
total signal reconstructed from the spectral projection
corresponding to < <X45 50.5n .

A signal that appears completely mixed, both in time and
in the frequency spectrum, is thus separated, with good
accuracy, into its components. This puts into evidence the
convenience of looking for a signal along several different
paths in feature space. However, for this analysis to be carried
out in a sound way, one should always have a correct
probabilistic interpretation of the intensity of the signal as it is
projected along each path in feature space. This is exactly
what the tomographic analysis provides. I do not know of any
other technique fulfilling such requirements.

3.1.2. Component separation in reflectometry data. The
reflectometry diagnostic is widely used to determine the
electronic density profile in a tokamak. The principle, based
upon a radar technique [27], measures the phase of a probing
wave reflected by the plasma cut-off layer at a density where
the refractive index vanishes. The determination of the
density profile can be achieved by continuously sweeping
the frequency of the probing wave.

Different techniques are used to measure the density
profile on fusion plasmas [28] (phase difference, ultrashort
pulses, continuous sweep, etc.) A broadband reflectometer
operating in the frequency range 50–75 GHz (V band)
[29, 30] and 75–110 GHz (W band) [31] has been developed

Figure 2. Representation of Φ=F t( )o t

d
d 0 and Φ=F t( )r t R

d
d

as a

function of time.

Figure 3. Contour plot of the tomogram for the data defined by
equation (45).

Figure 4. Spectrum of the signal for θ =sin ( ) 0.625.
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on Tore Supra to measure the electron density profiles at
the edge.

The sweep frequency reflectometry system of Tore Supra
launches a probing wave on the X-mode polarization in the V
band (50–75 GHz). The emitting and receiving antennas are
located at about 1.20 m from the plasma edge, outside the
vacuum vessel. The reflectometry system operates in burst
mode; i.e., the sweeps are performed repeatedly every μ25 s.
The duration of one sweep, = ϕE t A( ) e t

0 0
i ( ), is μ20 s, and

5000 chirps are sent during one measurement. During the
μ20 s of measurement time, the frequency of the probing

wave is continuously varying from 50 GHz to 75 GHz
(V band).

The heterodyne reflectometers, with I/Q detection,
provide a good signal-to-noise ratio, up to 40 dB. For each
sweep, the reflected chirp ER (t) is mixed with the incident
sweep E t( )0 , and only the interference term is recorded as in-
phase and °90 phase-shifted signals sampled at = −T s10e

8

φ=x t A A t t( ) ( ) cos ( ( ))R1 0

φ=x t A A t t( ) ( ) sin ( ( )).R2 0

For each sweep, the phase φ t( ) of the reflected signal is
represented by

= + = φy t x t x t A t( ) ( ) i ( ) ( )e . (48)t
1 2

i ( )

The amplitude of this signal =A t A A t( ) ( )R0 is of low
frequency. The real part of one such signal y(t) is shown in
figure 5. The labels (choc ...) at the top of figures 5 and 7 and
refer to the experiment where this data was acquired.

The contour plot of the tomogram θM X( , )y of the signal
is shown in figure 6 where it is possible to see that it carries
three main components. The choice of θ =sin ( ) 0.58 to
perform the decomposition of the signal was done by
inspection of this tomogram. The spectrum θc y( )Xn

of the
reflectometry signal for θ =sin ( ) 0.58 is shown in figures 7
and 8.

When reconstructing y t˜ ( ) by:

∑ ψ= θ
θ

=−

y t c y t˜ ( ) ( ) ( ) (49)
X

X X
200

200

,
(1)

n

n n

the quadratic error E y y( , ˜), between the original and the
reconstructed signals, is −25 dB.

Figure 5. Time representation of the reflectometry signal.

Figure 6. Contour plot of the tomogram of the reflectometry signal
θ ⩾M X( ( , ) 0.01)y .

Figure 7. Spectrum θcXn
of the reflectometry signal y(t) for

θ =sin ( ) 0.58.

Figure 8. Part of the spectrum θc y( )Xn
of the reflectometry signal used

in the decomposition.
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Decomposition of the reflectometry signal. By taking a
threshold equal to ϵ = 0.04, one selects the spectral
components corresponding to ≠c 0Xn for

− ⩽ ⩽X40 100n (see figure 8). The error between the
original and the selected signal is about −18 dB. From this,
the spectrum of y(t) splits in three components.

First component the reflection on the porthole. The
first component y t˜ ( )1 corresponds to − ⩽ ⩽x20 0n and is,
therefore, defined as:

∑ ψ= θ
θ

=−

y t c y t˜ ( ) ( ) ( ). (50)
X

X X1
20

0

,
(1)

n

n n

It is a low-frequency signal corresponding to the heterodyne
product of the probe signal with the reflection on the porthole
[31]. It is shown in figure 9.

Second component, the plasma signal. The second
component has a Fourier spectrum that fits the expected
behavior corresponding to the reflection of the wave inside
the plasma of the tokamak [31]. This component, y t˜ ( )2 ,
corresponds to ⩽ ⩽X0 110n and is therefore defined as:

∑ ψ= θ
θ

=

y t c y t˜ ( ) ( ) ( ). (51)
X

X X2
0

110

,
(1)

n

n n

It is shown in figure 10.
Third component, the first reflection on the wall of the

vacuum vessel. The last component corresponds [31] to the
first reflection on the wall of the vacuum vessel. This
component, y t˜ ( )3 , corresponds to ⩽ ⩽X110 140n and is
therefore defined as:

∑ ψ= θ
θ

=

y t c y t˜ ( ) ( ) ( ). (52)
X

X X3
10

140

,
(1)

n

n n

This component is shown in figure 11. Notice that by
undertaking a new factorization of this third component it
seems possible to separate different successive reflections of
the wave.

The three components of the reflectometry signal are
presented together on the same plot (figure 12). It is

instructive to compare this factorization with the original
reflectometry signal (see figure 5).

Before the tomographic technique was developed, the
traditional way to separate components in plasma reflecto-
metry was based on the short-time Fourier transform, which
provides much poorer results. For detailed comparisons, refer
to [22–24].

Figure 9. First component of the reflectometry signal corresponding
to the reflection on the porthole.

Figure 10. Second component of the reflectometry signal, corre-
sponding to the reflection on the plasma.

Figure 11. Third component of the reflectometry signal, corre-
sponding to reflection on the wall of the vacuum vessel

Figure 12. The three components of the reflectometry signal. For
visual purposes, the average of y t˜ ( )1 is shifted to 1 and the average of
y t˜ ( )3 to −1.
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4. Signal detection with an adapted operator pair

time–frequency tomograms are particularly appropriate to
identify the time unfolding of the frequency features of the
signals. For example, the component separation success in
plasma reflectometry, described before, is to a large extent
due to the fact that the plasma is sampled by microwave
chirps, and the basis in (28) is exactly a chirp basis. This
suggests that, for other types of signals, other types of
tomograms should be chosen. It also suggests the best
tomographic analysis would be one that mirrors features
extracted from the signal itself. This was the motivation to
develop a signal-adapted tomogram [26].

In the linear combination μ ν μ ν= +B t O( , ) , one
chooses an operator O tuned to the signal features that one
wants to extract. Then, by looking for particular values in the
set μ ν( , ) where noise effects might cancel out, we may not
only separate the information of weak signals from noise but
also obtain reliable information on the temporal structure of
the signal. This provides a signal-adapted filtering technique.
The construction of an operator suited to particular signals
may be done by the same techniques that are used in the bi-
orthogonal decomposition [32]. The method for the con-
struction of the adapted operator pair is as follows:

Consider a set of N -dimensional time sequences
⎯→⎯ ⋯ ⎯→⎯{ }x x, , k1 , typical of the signal features one wants to

detect. From a communication point of view these may be
considered as the code words that one wishes to detect in the
noisy signal. Form the k×N matrix ∈ ×U k N .

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Δ Δ Δ

Δ Δ Δ
=

…
⋮ ⋮ ⋮

…
U

x t x t x N t

x t x t x N t

(1 ) (2 ) ( )

(1 ) (2 ) ( )
(53)

k k k

1 1 1

with typically <k N . Then one constructs the square matrices
= ∈ ×A U UT

N N and = ∈ ×B UUT
k k. The diag-

onalization of A provides k non-zero eigenvalues α α⋯( , , )k1

and its corresponding orthogonal N -dimensional eigenvectors
Φ Φ⋯( , , )k1 , Φ ∈j

N . The diagonalization of B would
provide the same k eigenvalues and eigenvectors Ψ Ψ⋯( , , )k1

with Ψ ∈j
k . If needed one may obtain, by the Gram–

Schmidt method, the remaining −N k eigenvectors to span
N , which in this context are associated to the eigenvalue
zero. The non-zero eigenvalues αi are the squared non-zero
diagonal elements of the singular value decomposition of U.

The linear operator S constructed from the set of typical
signals is

∑α Φ Φ=
=

S (54)
i

k

i i i
t

1

where ∈ ×S N N .

For the tomogram, the operator μ νB ( , ) has the form

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

μ ν μ ν

μ

Δ
Δ

Δ

Δ

ν α Φ Φ

= +

=
⋱

+ ∑ =

B t S

t
t

t

N t

( , )

1
2

3

(55)i
k

i i i
t

1

with ∈ ×B N N .
The eigenvectors of each μ νB ( , ) are the columns of the

matrix that diagonalizes it. Taking the projections of the
signal on these eigenvectors, one obtains a tomogram adapted
to the operator pair t S( , ).

4.1. An example: detection of dust devils

For this example one uses data obtained from the Phoenix
Mars Lander [33]. A dust devil is a hot whirlwind generated
by a huge temperature contrast between the Martian atmo-
spheric air and the planet surface. Dust devils appear in both
temperature and pressure data as sudden drops with a duration
between two and three minutes. The upper left panel in
figure 13 shows some data from the Phoenix Mars Lander
covering a 2000-second interval with a sampling rate of
0.5 Hz. A dust devil is clearly visible at ≃t s800 as a drop in
the pressure value.

There have been several efforts to develop systematic
methods to detect the effect of dust devils on the Martian
atmosphere data. They are based either on checking several
ad hoc conditions in the data [33] or on field-programmable
gate arrays (FPGAs) [34].

To use the adapted tomographic filtering method for the
detection of dust devils, a set of 278 signals was generated.
They resemble the shape that a dust devil produces on the
data, that is, a sudden drop of about 3% from the baseline,
with different durations ranging from 60–80 time units. The
upper right panel displays several of these typical signals.
Some of the signals have been shifted up or down for
representation purposes.

A tomogram is constructed for 20 different values of θ at
intervals Δθ π= 40. A contour plot of the first 999 coeffi-
cients of the tomogram is shown in the lower left panel of
figure 13.

The coefficient n = 1000 corresponds to the largest
eigenvalue (and its corresponding eigenvector). This eigen-
vector contains most of the energy of the signal and is several
orders of magnitude larger that any other coefficient, so, for
clarity, this coefficient has not been plotted in the tomogram.
By direct inspection, one observes that, aside from the coef-
ficient at n = 1000, the strongest components concentrate
close to =n 400. The lower right panel in figure 13 shows the
projection on the subspace spanned by the eigenvectors
340–450 and 1000 at θ π= 19 40. One sees that the pressure
drop produced by the dust devil is very well reconstructed and
separated from any other components present in the signal,
such as noise or smaller pressure variations.
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Figure 13. Signal, typical signals, the tomogram (coefficients 1–999) and the projection on the subspace spanned by the eigenvectors
340–450 and 1000 at θ π= 19 40.

Figure 14. Tomogram for 0 mean typical signals and the projection on the subspace spanned by the eigenvectors 340–450 at θ π= 19 40.
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As an alternative that avoids the large value of the largest
eigenvalue, we may shift both the typical signals and the real
data to zero mean signals. In this case there is no eigenvalue
much larger than all others. The left panel of figure 14 dis-
plays a three-dimensional plot of the tomogram for the 1000
coefficients obtained with zero mean signals. We have also
applied a denoising procedure, removing the small coeffi-
cients. The right panel in figure 14 shows the projection on
the subspace spanned by the eigenvectors 340–450 at
θ π= 19 40. One sees that the pressure drop produced by the
dust devil is completely separated from any other components
in the signal.

The signal-adapted tomogram provides not only a mul-
tiple-feature extraction capability, as in the tomograms based,
for example, on the operators of the conformal group, but it
also performs a feature-adapted filtering of the signal.

5. Transforms and tomograms on graphs

Social and economic networks, information networks, power
grids, biological networks, etc., generate large sets of raw data
from which only a detailed analysis may extract useful
information. A first step is the construction of the appropriate
signal transforms

From the graph point of view, a time series is a signal on
a one-dimensional directed graph with vertices labelled by the
times ⋯t t t( , , , )0 1 2 and edges connecting +tk 1 to tk . That is,
the adjacency matrix A of a time series is, in general

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=

⋯
⋯
⋯
⋯

⋮ ⋮ ⋮ ⋮ ⋯

A

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

(56)

or, for a time-periodic signal

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

⋯
⋯
⋯
⋯

⋮ ⋮ ⋮ ⋮

A

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0
0 0 0 0 1 0

. (57)

Linear signal transforms for a time series are projections on
the set of eigenvectors of a linear operator. These operators
are not arbitrary but are chosen to extract particular features of
the signal that is being analyzed. The Fourier transform looks
for periodic features, wavelets for multiscale features, etc.
Likewise, useful information from signals on arbitrary graphs
may be obtained from projections on sets of vectors asso-
ciated to suitably chosen linear operators. For the time-peri-
odic signal, it is easy to see that the discrete Fourier transform
is the projection on the eigenvectors of the adjacency matrix
(57). Therefore, one may generalize the notion of a Fourier
transform for graphs as the projection on the eigenvectors (or
on the generalized eigenvectors of the Jordan decomposition)
of the adjacency matrix. This was the point of view taken by
some authors [35–37] to develop a theory of discrete signal

processing on graphs. However, this choice is not unique,
because, for the time series network, other matrices have the
same spectrum, for example, the Laplacian matrix

= −L D A

D being the degree matrix, which for the time series is the
identity. Hence, the graph Fourier transform might as well be
defined as a projection on the generalized eigenvectors of the
Laplacian matrix [38–41]. This operator point of view allows
us not only to generalize the notion of transforms but also the
notions of filtering and other general linear operations on
graph signals.

Let =G A( , ) be a graph, with  = … −v v{ , , }N0 1 the
set of vertices and A the weighted adjacency matrix. Each
matrix element An m, is the weight of a directed edge from vm
to vn, which can take arbitrary real or complex values.
 = ∣ ≠m A{ 0}n n m, is the neighborhood of vn, and a

graph signal is a map = { }ff n from the set  of vertices into
the set of complex numbers , each element fn being indexed
by the vertex vn.

5.1. Fourier-like transforms

Denote a graph matrix (A L, , or any other) by M. The
matrices M act on the space of graph signals by


∑ ∑→ = =∼

∈

f f f fM M . (58)n n
m

n m m
m

n m m, ,

n

When the matrix M is the adjacency matrix A, this operation
generalizes the notion of time shift (when time sequences are
looked at as forward-connected graphs).

For many real-world datasets the matrices M are not
diagonalizable. In those cases, to obtain a suitable set of
expansion vectors, one may either use the symmetric com-
binations MMT and M MT to generate an expansion basis or,
alternatively, use the block-diagonal Jordan decomposition of
M.

= −M VJV (59)1

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

λ

λ
= ⋱

−− −

( )

( )

J

J
J (60)

R

R M

0

1M DM

0,0

1, 1

with Jordan blocks associated to the eigenvalues of M

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
λ

λ
λ

λ

= ⋱
⋱( )J

1

1
. (61)r m

m

m

m

m d,

The columns of the matrix V, which bring M to its Jordan
normal form, are the eigenvectors

λ− =( )M I v 0 (62)m m d, ,0

and the generalized eigenvectors of the Jordan chain

λ− = −( )M I v v (63)m m d r m d r, , , , 1

of M. These vectors may then be used to project the signals
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on the graph and, considering the graph signal f as a column
vector, the M-transform is

= −Vf f^ (64)1

with inverse transform

= Vf f̂ . (65)

As stated before, when M is either the adjacency or the
Laplacian matrix, the transforms so obtained correspond to
the graph generalization of the Fourier transform, as proposed
by several authors. When the matrices are not symmetric, the
problem with these transforms lies in the fact that, in general,
the set of generalized eigenvectors do not form an orthogonal
basis. Therefore it is sometimes more convenient to use MMT

and M MT to generate the expansion basis, leading to what
one calls the MMT—or M MT —transform.

5.2. Wavelet-like transforms

The definition of wavelet-like transforms for graphs requires a
more elaborate construction. For time series the affine
wavelets use, in equation (1), an operator αU ( ) consisting of
the product of a translation and a scale transformation that act
on a fixed reference signal (the mother wavelet h t( )0 ),
namely,

= =

× = +

+( )h t U s a h t

h t s h st a

( ) ( , ) ( ) e

e ( ) ( ). (66)

s a
s t

a

, 0
log

0 0

t

t

d
d

1
2

d
d

Translation in the graph is easily generalized, but it is not
obvious how to generalize scale transformations. This
becomes clearer if one writes the wavelet transform in fre-
quency space,

⎜ ⎟⎛
⎝

⎞
⎠ 

∫
∫

∫ ω ω ω

=

=

=

+

− ω

( )( )

f a s th t f t

t h t f t

s
h

s
f

( , ) d ( ) ( )

d e e ( ) ( )

d
e * ( ) (67)

s a

s t a

a

,
*

log
0
*

i

0

t t

s

d
d

1
2

d
d

h0 and f denoting the Fourier transforms of the mother
wavelet and of the signal. One sees that the wavelet transform
is represented as a sum over the Fourier spectrum Ω with the
(frequency) argument of the mother wavelet shifted from ω to
ω
s
. The mapping ω Ω Ω∈ → ∈ω

s
is a one-to-one onto

mapping of the Fourier spectrum Ω into itself. Therefore, the
natural generalization of the wavelet transform for graphs
may be defined as a similar sum, with the spectrum label shift
being one of the possible one-to-one onto mappings of the
spectrum of the adjacency matrix (or of the Laplacian matrix).

Write the Fourier-like transform on graphs and its inverse
as





∑

∑

η χ

η χ

=

=

η

η
η

f i f i

f i f i

( ) ( ) ( )

( ) ( ) ( ) (68)

i

where χη i( ) is an eigenvector of A or L (or a generalized

eigenvector or an eigenvector of A AT or L LT ), and η denotes
the spectral label in the spectrum Ω of the matrices. With a
localized ‘mother wavelet’

δ=h i( ) (69)k
k i

( )
,

the wavelet-like transform on graphs would be

∑χ η= +∼
η

η∼( )f a s k a f, ( ) ( ). (70)s ( )

The mapping η∼s ( ) is not η → η
s
, because, in general, η

s
is not

in Ω. ∼s is a mapping in the set  of the possible one-to-one
onto mappings of Ω, ∈∼s .

The inverse wavelet transform is


 ∑η χ= η∼ ( )f a f a s( )

1

#
( ) , ˜ . (71)

a s
s

, ˜
( )

# denotes the cardinality of independent one-to-one onto
mappings of Ω.

Hammond, Vandergheynst, and Gribonval [42] have also
attempted to generalize the notion of wavelet transform to
graph signals. However, instead of the sum with the shifted
arguments in the spectrum, their construction corresponds to
the introduction of a η-dependent weight on the sum of the
2nd equation in (68), with both the signal component  ηf ( )
and the eigenvector χη associated to the same spectral value η.
Therefore, their construction is more in the spirit of a Fourier
deformation of the signal rather than of a wavelet transform.

An even more general transform would be

∑ η η χ η= ′
η η

η
′

′( )f a C C a f( , ) , ( ) ( ). (72)
,

For comparison with the time series case, this last construc-
tion would be similar to the case of ‘conformal wavelets’

generated by α +( ) h te e ( )t t a
0t t

2 d
d

d
d .

5.3. Graph tomograms

So far signals on graphs have been described either as vectors
on vertex space or as projections of these vectors on the
generalized eigenvectors of a particular matrix M. Each
particular matrix emphasizes a specific topological property
of the graph. Tomograms for graphs attempt to obtain infor-
mation about more than one property by projecting on the
generalized eigenvectors of a matrix that interpolates between
two distinct matrices M1 and M2. This parallels what for a
time series is achieved, for example, by the time–frequency
tomogram.
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In a time series the successive times ⋯t t t, n1 2 are the
eigenvalues of the time operator t that appears in

α α α= +B t( ) iF t1 2
d

d
, the operator that generates the time–

frequency tomogram. For a graph, the corresponding notion is
the vertex operator. For a graph with N vertices the vertex
operator is

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

⋮
⋮
⋮

⋯ ⋯ ⋯ ⋱ ⋮
⋯

×

× −

π

π

π

T

1 0 0 0

0 e 0 0

0 0 e 0

0 0 0 e

(73)

N

i

i 2

i ( 1)

N

N

N

2

2

2

and the vertex signal = { }ff n corresponds to a projection of f
on the eigenvectors of this operator. Therefore, the con-
struction of a tomogram for graph signals would amount to
finding an operator that interpolates between T and another
graph matrix M. A solution would be

α α= − +αB T M(1 ) (74)

with α varying between 0 and 1. The tomogram is obtained by
projecting the signal f on the eigenvectors of αB . If M is the
adjacency matrix A, this construction, interpolating between
A and the vertex operator T, is, for graphs, the analog of the
time–frequency tomogram.

Even if the ordering of the vertices is arbitrary, the vertex
operator is always a meaningful entity in the sense that if, for
example, the tomogram is used for clustering purposes, it is
the T operator that allows us to identify which vertices belong
to each cluster. In addition, more information may be intro-
duced into T by using, for example, geographical ordering of
the nodes or some other property.

Tomograms may also be constructed by using two arbi-
trary graph matrices M1 and M2

α α= − +αB M M(1 ) 1 2

which may be used to refine the analysis beyond the infor-
mation obtained from the T A( , )-tomogram

As discussed before, the reason why time and frequency
cannot be simultaneously specified is because they corre-
spond to a pair of non-commuting operators. This is the
reason why bilinear transforms, like Wigner–Ville, are unre-
liable, and it is also the main motivation for using tomogram
transforms In graphs, the vertex description and the adjacency
matrix projection are also incompatible specifications,
because in general the T and A (or L) matrices do not
commute. It is in this sense that, as recently stated [39, 43],
there is an uncertainty principle for graphs, that is, a funda-
mental trade-off between a signal localization on the
graph and on its spectral domain.

5.4. Graph tomograms and dynamics

The graph tomogram, as defined above, is appropriate for the
study of a static network signal3. If during the time evolution

the graph structure stays the same, the time series associated
to each vertex may simply be projected on the (generalized)
eigenvectors, as in the scalar case. However, if the graph itself
changes in time, a more general framework must be used.

Consider a graph signal that evolves in (discrete) time.
The corresponding graph would be, for each time t, a regular
graph, and each one of these graphs is forward-connected to
the graph of the subsequent time. A vertex ν t( )n at time t
connects to the vertex ν +t( 1)n at time +t 1. This con-
struction accommodates the possible disappearance of ver-
tices. In that case such vertex ν t( )n would not have any
forward edges.

The construction of the M-transforms and the
graph tomograms will then proceed as before for the global
adjacency matrix. To have a feeling for this kind of con-
struction, consider the simple case of a finite-vertex circle
graph with N vertices symmetrically connected to nearest-
neighbors and forward connected in periodic time with τ time
steps. Then, at each time t, the adjacency matrix tA( ) is

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

⋮
⋮
⋮
⋮

⋯ ⋯ ⋯ ⋯ ⋱ ⋮
⋯

tA( )

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0

0 0 0 1 0

. (75)

Let, for definiteness and notational simplicity, τ= =N 3.
Then the global 9 × 9 adjacency matrix is

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

=A

0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

. (76)

This matrix is

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

= ⨂

⊕ ⨂

A I

I

0 1 1
1 0 1
0 1 0

0 0 1
1 0 0
0 1 0

3

3

with eigenvalues

± − ± − ± ±i i i
0,

3 5

2
,

3 3

2
,

5 3

2
,

5 3

2
.

The ‘Fourier’ transform of the dynamical graph signal will be
the projection on the corresponding nine-dimensional
eigenvectors.

3 Likewise, the usual time–frequency tomogram may be looked upon as a
static description of the whole time history of the system.
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For the construction of the tomogram, the vertex operator
T, as in (73), is

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=T

T 0 0
0 T 0
0 0 T

(3)

(3)

(3)

where T(3) is the 3 × 3 matrix

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟×

π

π

1 0 0

0 e 0

0 0 e

i

i 2

2
3

2
3

.

This general framework, where one takes into account
both the network edges and the time links, allows for a unified
treatment of both the dynamics over graphs and the dynamics
associated to a time-changing topology.

For more details on the tomographic approach to
graph signals and some applications, refer to [44].

6. Conclusions

1–Tomograms, a generalization of the Radon transform, first
developed for applications in quantum mechanics, are also a
powerful tool for the processing of classical signals.

2–As in the case of quantum mechanics, which deals
with pairs of non-commuting opertors time and frequency or
time and scale, etc, are incompatible features which cannot be
simultaneously specified with absolute precision. This is why
tomograms, by providing a robust probabilistic interpretation
along paths in multi-feature space, are a useful tool in signal
processing.

3–The tomographic formulation in signal processing
turns out to be a sucessful technique for denoising, compo-
nent separation, and even, in its signal-adapted form, to
extract customer-oriented features of arbitrary signals.

4–The large amount of data that is currently generated in
technological and social networks may also benefit from
graph signal processing and tomograms on graphs.
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