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Associated with the ground state of a quantum system, there is a unique stochastic process which, in
general, has diffusion and jumping components. This is illustrated in two exact models. The drift and
the jumping kernel of the ground-state process may be obtained directly without solving the Schrédinger
equation. A method is proposed to extract expectation values and Euclidian correlation functions from
a numerical simulation of the process. The method applies equally well to boson and fermion systems,

without the sign problem.

I. STOCHASTIC PROCESSES
AND GROUND-STATE DYNAMICS

The ground state and Euclidian dynamics of a quan-
tum system are uniquely associated with a stochastic pro-
cess. Let p and G be the unique invariant measure densi-
ty and the generator of stochastic process such that

—#ip'?Gp~\*=H (1.1)

is the Hamiltonian operator of a physical system. Then
p'/? is the (zero emergy) ground state, i.e., Hp!?=0
(Refs. 1 and 2) (p'/?=¢). From the representation

T =exp{ —tG} for the operator semigroup,

(T, )x)= [ P(t,x,dy)f (), (1.2)

associated with the transition functions of the Markov
process, it follows that Euclidian correlations of the
theory (Schwinger functions) are obtained from the sto-
chastic correlations of the process. The stochastic pro-
cess may therefore be used to study the dynamical prop-
erties of the quantum system.

The existence of a process with a unique invariant mea-
sure insures the existence of a Schrodinger picture for the
quantum system, and stochastic techniques like the
theory of small random perturbations by Wentzell and
Freidlin,>* may be used to obtain rigorous nonperturba-
tive results, not generally accessible through functional
analytic methods.>® The stochastic process involved in
this construction is a classical stochastic process which
happens to have p=|¢|? as its invariant measure, and
generates a set of Euclidian correlations. However, it
should not be confused with the quantum probability”8
process associated with real-time quantum evolutions.

This stochastic formulation of quantum systems has, in
the past, been used mostly for boson systems. In this pa-
per, we will concentrate on methods which are also ap-
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propriate for fermion systems. In the occupation number
representation, fermion systems appear to be associated
to jump processes which, for boson systems, are charac-
teristic of nonlocal interactions. Because of the formal
similarities, we will first review the construction of the
stochastic process for nonlocal interactions.>’

Let H be a Hamiltonian operator and ¢(x) its (real)
lowest-energy eigenstate (which is adjusted to zero energy
by the addition of a constant to H)

ﬁZ
(H$)x) == —A¢(x)+ Ux)g(x)+ [ d"y Vix,»)p(y)

=0 (1.3)

with V(x,y) real finite and V(x,y)=V(y,x).
From (1.1), for the generator of the ground-state pro-
cess with invariant measure p=¢?, we obtain

£V A
m e Vot

(Gf )(x)= 2m

—— [ 4 67 VB D)= 0}

(1.4)

Now we compare with the general differential Chapman-
Kolmogorov equation

9,p(xt|zt')= —V{b(x,t)p(xt|zt")}
1 ??
+3 .E,Tax, {a;(x,0)p(xt|zt")}

+ [d"y (W(xly)p(ytlzt’)
—Wi(ylx)p (xt|zt")} (1.5)
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for which the generator Gf =limy, o [(Ty,f—f)]/At is
2

(GAx)=b(x, )V, f(x)+1a;(x,t) f(x)

dx;0x;
+ [d"y Wil f)—f(0)

Comparing Egs. (1.4) and (1.6) we conclude that the
ground-state process associated with the nonlocal Hamil-
tonian has the drift, diffusion coefficient, and jumping
kernel, respectively:

(1.6)

p=1 Y (1.7)
m ¢
a,.j=%6,.j , (1.8)

Wilx)=—54" OV (x.)600) (1.92)
Notice the association, in processes ruled by nonlocal in-
teractions, of diffusion and jumping.!® This will also be
typical of processes involving bosons and fermions (see
below).

Likewise, if the state space of a Hamiltonian is spanned
by a discrete set {|f)}. of basis states we see, by analogy
with (1.9a), that the jumping process with kernel

1

e _Llpal 1
wW(fIf) ﬁRe Yars

<f’|HIf><f|¢>] (1.9b)

# 1 # .
a,b,(x)=%Vb,2(x)+?n:V(Vb,(x))—;VU(xH-ZVXfd 'y W,(ylx) ,

3, W, ylx)=W,(ylx) [ d"z{W,(zly)— W, (zlx)} + 1 W,(y]x)

As ¢, converges to the ground state, solutions of Eqgs.
(1.13) converge to the drift and jumping kernels associat-
ed with the ground-state process. Therefore, and as far
as the ground-state determination is concerned, the itera-
tion of Egs. (1.13) is equivalent to finding the solution of
the Schrodinger equation. In the general case for pro-
cesses involving diffusion and jumping, these equations
may not be easier to handle than the Schrodinger equa-
tion itself. However, in the pure jump case, they have a
particularly simple form and, in many-body systems with
short-range interactions, they provide a simple numerical
simulation algorithm. In addition, the fact that one is
dealing directly with transition probability kernels and
not with amplitudes circumvents the sign problem in nu-
merical simulations (see below).

For the pure jump case associated with the discrete
basis representation {|f )}, one obtains the (Euclidian)
evolution equation

O.K,(fIf ) =3K,fIf K, (glf) =K, glf)} (1.14)
g
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has an invariant density p(f)=|{f]¢)|? as may easily be
checked from the stochastic equation

3 pN=A{WSIf ) f ) =W | fIp(f)] .
-

Notice that in this equation the kernel is defined only up

to terms const & /..

In Egs. (1.7) and (1.9) the drift and the jumping kernel
are both functions of the ground-state wave function ¢,
which in general is not known for a given Hamiltonian.
It is, however, possible to formulate the dynamical prob-
lem in such a way that the drift and jumping kernel are
obtained directly without having to solve the equation
Hp(x)=Ayp(x) for the lowest eigenvalue A,. Let ¢, be
some initial state nonorthogonal to the ground state.
Then, in the t— o0 limit, the solution
¢, =exp{ —(1/7)Ht}¢, of the Euclidian equation

#3,6,(x)=—Hé,(x)

(1.10)

(1.11)

converges to the ground state. That s,

exp{(1/#)Ayt}¢, —¢. Defining

\Y
bt = _ﬁ_ ¢t
m @,

, W,(ylx)=—%:ﬁ,"(x)V(x,y)qS,(y),

(1.12)

where ¢, is a solution of the Euclidian equation (1.11), we
obtain evolution equations for b, and W,(y|x):

(1.13a)

2U(x)—%bf(x)—Vb,(x)—ZU(yH— %b,z(y)-f-Vb,(y) .

(1.13b)

f

for the quantity

K(flf=—2 L (rHI I8,

1
% (f'l,)
the jumping kernel being

W.(flf')=ReK,(f|f") .

Starting from an initial W), this equation converges in
the ¢ — oo limit to the jumping kernel of the ground-state
process. We may start, for example, from

Wo<f|f'>=——;—Re<f|H(f'> ,

which corresponds to considering the initial ¢, as having
the same projection on all basis states. Although Eq.
(1.14) by itself contains no explicit dynamical information
about the interaction potential, it is able to generate the
ground-state kernel because under time evolution it
preserves all information introduced by the initial condi-
tion, namely d,{ W,(f’'|f) W,(f|f')}=0. That is, what
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Eq. (1.14) does is simply to balance the transition proba-
bilities to make them consistent with an invariant mea-
sure while, at the same time, preserving the information
about the Hamiltonian that is supplied by the initial con-
dition.

For a many-body quantum system, because the number
of possible states is very large, the Euclidian equations
(1.14) become a very large system. If the interactions are
short range, a possible solution is to formulate the itera-
tion on a small cluster simulation of the system to obtain
an approximation of the ground-state stochastic kernels.
These kernels may then be used to obtain correlation
functions by simulating the process in a much larger lat-
tice. The simulation of the process uses Egs. (1.5) and
(1.10) or the corresponding stochastic differential equa-
tions.

Expectation values of observables for the process X,
defined by Egs. (1.7)-(1.9) are the quantum expectation
values in the ground state:

E{AX)}= [ A(x)ptx)dx

= [$(x)A(x)¢(x)dx =(¢, A$) .  (1.15)

The multitime correlations of the stochastic process are
the Euclidian correlations of the quantum system. For
example,

E{A(X,)A(Xy)} = [ (T, A)(x) A(x)p(x)dx
= [ $%x) A(x)e /%97 ) 4 )(x )dx

=(¢, de " /PH4) (1.16)

and similarly for the general n-point correlation function.

Assume that one chooses to compute the stochastic
kernels in a basis {|f )] that diagonalizes the observable
A for which one wishes to obtain the correlation func-
tions. Then the calculation above also shows that, in
such an “adapted occupation number basis,” there is no
essential difference in the procedures to be used for boson
or fermion systems. There is therefore a very important
difference between the numerical simulation method ob-
tained from the ground-state process, and the quantum
Monte Carlo algorithms.!!

If the initial state @, in the Euclidian equation is not
orthogonal to the ground state, the quantity

¢‘r= e TH¢0

IT v,

qE[“lml

II v,

9€{cpq}

W({ckodlferq})=

9€{cy,}

with Ap =2Epupvp.

Cooper pairs, and {c,}tc, is the same set with one
more or one less occupied pair. Equation (2.4) is ob-
tained from (1.9b) neglecting a term of the type

const8lck0}, (gl

_ 2__ A2
S WVE DB, ieet T BB (e el e, T B0Blep b icr 1~

{ckal denotes a set of occupied
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tends to the ground state when ¢ — o. In the projector
Monte Carlo method, for example,12 the weights that are
used for the statistical sampling are proportional to the
wave function ¥,. However, we know that for fermions
¥, cannot be positive for all configurations. Decompose
the wave function into positive and negative energy parts:
b=v —y7 .

At low energies both ¢ and ¢, have nonvanishing pro-
jections on the “hard-core” bosonic ground state associ-
ated with the fermion problem. Hence, at low tempera-
tures, the simulation spends most of the time below the
actual energy of the fermionic ground state. These
configurations have to be canceled in the partition func-
tion sums, hence a minus sign must appear in some of the
weights. A similar effect occurs in frustrated spin sys-
tems.

By contrast, in algorithms derived from the ground-
state processes, one deals with actual transition probabili-
ty kernels, not with individual terms in a Suzuki-Trotter
decomposition of the partition function. Therefore no
sign problem should be expected.

II. EXAMPLES

In Sec. III the algorithm for the ground state, de-
scribed above, is applied to a numerical simulation of the
Hubbard model. Here we will consider two examples
where the ground state may explicitly be represented as a
functional of the operators of the theory. The study of
the examples clarifies the nature of the stochastic pro-
cesses associated with the ground state. The first exam-
ple is the BCS model. The BCS ground state

|6 =TT ue +viblobl s _)0O), ul+vi= 2.1
k,o

is a zero-energy eigenstate of the Hamiltonian

H=3 Eullbl, —apb_; _Nbo—arb'y ), 22
k,o

with

Uk
a=—a_,=—.
k k Uy

(2.3)

Let {lcio)=bi,b" _,10); k;>0} be a basis of
Cooper pairs. Then from (1.9b) the ground-state process
is a jumping process with kernel

1
7’ (2.4)

Another formulation of the ground-state process which
is at least of formal interest is obtained using a represen-
tation of the creation and annihilation operators in
Grassman variables 7. The representation is
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d
dni,

by, >t bro— 2.5)

L

where

NkoMgor T NgoMko = MkaMgor T MgoMko =0 >

and the subscript L in the differentiation symbol means
that the variable 1%, in a monomial must be pushed to
the extreme left before the differentiation is applied.

The representation (2.5) acts on functions of {7nf,}
alone. In this representation the BCS ground state is

¢(7]*): H (uk+l)k7]za'f]ik,0) ’ (2.6)
k,o
(k;>0)
and the Hamiltonian is
d d
szEkulz nlto_ak —akn:k-a
k,o dnik—a dnlta
(2.7)
Performing the transformation induced by ¢é(n*) on H
one obtains
. d d d
1 *
— H E, u E —_—
¢ Ho= 2 R E, kMo dnt.
(2.8)

Comparing with the standard form of the elliptic opera-
tor,

$3e 00 T SBa,

the generator of a diffusion process, one concludes that
the BCS ground-state process may formally be interpret-
ed as a diffusion process in Grassman variables, with drift

Bro=—ErExmi, (2.9a)
and diffusion coefficient
Ao por =2E U1 8y 8, 5 . (2.9b)

For practical purposes, however, the formulation of the
ground state as a jump process in an occupation number
basis is probably more useful.

For the second example, consider a supersymmetric
hopping model defined on a two-dimensional square lat-
tice by

3? AW oW
H=13 |-# +
2%;) 9¢(;0b;j) 9% OB
3*W

+15 > ———[elicunl s (2.10)
’ (ij)(kl ad’(ij a7

where ¢;;) and c;; are bosonic and fermionic fields at the

lattice point (ij), satisfying

#i_d

biijy =i#8 ;) (k1) >
l a¢(ij)

(2.11)

+ —
{c(kl)’c(ij)}_ﬁ(ij),(kl) .
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For the superpotential W(¢),
t

E 2 ¢(u)¢(k1

[Cif), (kD]

Wi(d)=— (2.12)

with [(ij),(kl)] denoting a sum over nearest neighbors,
the Hamiltonian becomes

82
-t ki ]2
96100 ;j) t[(u)},%ij)] o

2 c(kl)] .
i)k

H=33

(ij)

(2.13)

NlN

Denote by |0) and | — ) the empty and filled sectors in
the fermion Fock space. Then the state

|1//> :eW(¢)/ﬁ2( '—1)1 +j(:“‘j)l_' )

(if)

(2.14)

is the ground state in the one-hole sector, and is a zero-
energy eigenstate of the operator H =H +4t. Computing
the drift and the jumping kernel from Egs. (1.7) and (1.9),
we obtain

t

biy=—75- > bun s

fim i)

W(¢ij}¢’kl)=—%8

(2.15a)

[(kl)y(,-j)]ﬁq,)qy . (215b)
The sum in b, is over all lattice points (kI) that are
nearest neighbors to (ij), and 8y, (;;)) vanishes unless (ij)
and (kl) are nearest neighbors. The jumping kernel is
computed in the basis

lgijy=I¢depl—) .

We see that the boson-fermion nature of the problem im-
plies that the corresponding process involves both
diffusion and jumping.

III. NUMERICAL SIMULATION
OF THE GROUND-STATE PROCESS.
THE HUBBARD MODEL

As we explained in Sec. I the essential step is the calcu-
lation of the jumping kernels W(f’|f) from the asymp-
totic solution of Eq. (1.14). Notice that |f) runs over all
states of the system and therefore, for a system with a
large number of degrees of freedom, Eq. (1.14) becomes a
differential equation of very high dimension. However, in
a system like the Hubbard model,!® where the elementary
interactions are short range, the kernels may, to a good
approximation, be obtained by solving the equation for a
small cluster, and then storing the solution in a look-up
table that is used in a much larger lattice to extract the
global properties of the ground state. Notice that the
small cluster does not even have to be very small because,
for each set of parameters, Eq. (1.14) has to be solved
only once.

The Hubbard model is a simple model for interacting
electrons in narrow bands. Its current popularity traces
its origin to the role played by electron correlations in
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high-temperature superconductors. It has been exten-
sively used as a standard test for quantum Monte Carlo
methods!! and this is one of the reasons why we too have
used it to test our ground-state process algorithm. Con-
sider then the Hubbard model. The Hamiltonian is

Wof'|f)=UN,, f'=f,

5039
=—13 ce(N+USn;(Dn, () .
(i} i

With W, (f'|f)=—Re(f'|H|f), the initial values for
Eq. (1.14) are

Wo(f'|f)=—t if f' differs from f by an electron jump to a neighboring site ,

Wo(f'|f)=0 for all other pairs f,f",

and from the (Euclidian) evolution equation (1.14) the
only nonzero W’s are those which are nonzero for the ini-
tial condition. Therefore, in this case, a 3 X3 lattice with
periodic boundary conditions already provides an un-
biased environment for the elementary jumps. However
a 3X3 lattice already carries 4° possible different
configurations, considering at each site no electron, one
electron (1 or l), or a pair of electrons. Using symmetry
properties these configurations may be grouped into
classes, a class being defined as configurations that can be
transformed into one another by translations, rotations,
or mirror reflections. This finally leads to 4480 different
classes which are classified in Table I according to the
number of up and down electrons.

We may therefore limit ourselves to a study of a
representative element in each class and their neighbor-
ing configurations. The system of equations correspond-
ing to possible, and topologically distinct, transitions be-
tween different classes is now solved numerically, and the
W(f'|f)s corresponding to its (rapidly) convergent large
time solution are stored in a look-up table. Look-up
tables were generated for several U/t values in the range
0-10.

Two remarks should be made concerning the calcula-
tion of the jumping kernels. The ground-state stochastic
equations in Sec. I are derived under the assumption that
the energy of the ground state is normalized to zero. Be-
cause the ground-state energy is in general not known, it
means that the diagonal kernels W(f’|f) are defined only

TABLE 1. Independent configuration classes in a 3X3 lat-
tice, classified according to the number of up and down elec-
trons.

Number of electrons 1

0o 1 2 3 4 5 6 7 8 9

o1 1 2 4 5 5 4 2 11

11 3 8 16 23 23 16 8 3 1

2 2 8 26 54 78 78 54 26 8 2

Number of 3 4 16 54 118 170 170 118 54 16 4
electrons 4 5 23 78 170 250 250 170 78 23 5
\ 5 5 23 78 170 250 250 170 78 23 5
6 4 16 54 118 170 170 118 54 16 4

7 2 8 26 54 78 78 54 26 8 2

8 1 3 8 16 23 23 16 8 3 1

9 1 1 2 4 5 5 4 2 11

up to an additive constant. This has no effect in the evo-
lution of Eq. (1.14) because the additive constant cancels
in the sum of the right-hand side, but it means that the
diagonal element values stored in the look-up table are
not the actual W(f|f)’s. The way to obtain actual values
for the stochastic evolution in the ground-state process is
through

wW(flf)=1—3 W(glf)At,

8*f

provided At is sufficiently small compared with the
Wglf)s.

To obtain the properties of the ground state, the simu-
lation starts from a lattice with a certain number of up
and down electrons, and the evolution of the stochastic
ground-state process is carried out by picking a site at
random each time and having its 3X3 neighborhood
evolve according to the jumping kernels of the look-up
table. In practice all compatible W’s are piled up accord-
ing to their sizes as intervals in the line, and the decision
is taken by a random number uniformly distributed in the
interval [0, S W1].

We now present some results of a study of pairing and
short-range antiferromagnetic correlations in the ground
state of the Hubbard model. More extensive results for
this and other modified models are presented elsewhere.'*
The simulations were carried out in a 20X 20 lattice with
198 up electrons and 198 down electrons. The boundary
conditions are periodic, and the parameter values ex-
plored were U/t=0, 1, 4, and 10. The initial electron
distribution is random (constrained by the Pauli princi-
ple). For each case the results we present correspond to
10° productive evolutions (i.e., evolutions where there
was an actual change in the lattice configuration). Mea-
sures of average values are taken only after the number of
double occupancies is stabilized. The following quanti-
ties were measured: (i) number of doubly occupied sites;
(i) number of hole pairs; (iii) short-range antiferromag-
netic correlation; and (iv) medium-range antiferromag-
netic correlation. The antiferromagnetic correlation is
measured by looking at a neighborhood of each point and
counting +1 for the antiferromagnetically correlated
neighbors, —1 for the ferromagnetic ones, and zero for
those that are either empty or have double occupancy.
For the “short range” we consider a 3 X3 neighborhood
and for the “medium range” a 5X5 neighborhood. The
results are shown in Table II.
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TABLE II. Number of doubly occupied sites, hole pairs, and
short- and medium-range antiferromagnetic correlations in a
20X 20 lattice, for several U/t values.
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TABLE III. Comparison of the average distribution of holes
in the Hubbard ground-state simulation (at U/t =4), with a
purely random distribution for the same total number of holes.

U/t
0 1 4 10
Double occupancy 99 93 74 50
Hole pairs 54 46 28 14
Short-range antiferr. 53 84 92 117
Medium-range antiferr. 33 75 76 32

A critical issue in models of high-temperature super-
conductivity is whether or not the effect is due to a type
of Bose condensation of preexisting local pairs of carriers.
In particular, the short coherence lengths observed seem
to favor such a local pair picture. It is therefore impor-
tant to search for any symptoms of dynamical hole pair-
ing in the Hubbard model. One sees from Table II that
the number of hole pairs decreases with U /¢, but that is
to be expected from the statistical effect of the decreasing
double occupancy which also decreases the number of
holes. To disentangle the statistics from dynamical
effects we compare, in Table III, the average distribution
of holes in the Hubbard model ground state (at U/t =4)
with a purely random distribution for the same total
number of holes. The first column defines the size of the
hole clusters, and the second and the third columns con-
tain the average number of such clusters in the Hubbard
model and in a random distribution. The conclusion is
that there is no essential distinction between the random

Number of holes in Hubbard Random
the cluster model distribution
1 37.61 32.97
2 9.19 8.11
3 3.51 3.44
4 1.75 1.54
5 0.67 0.72
6 0.46 0.35
7 0.32 0.17
8 0.13 0.09
9 0.12 0.04
10 0.03 0.02
11 0.08 0.01
12 0.03 0.00

unbiased distribution of holes and the Hubbard model.
Therefore we find no evidence for hole-pair formation in
the Hubbard model. Incidentally, this agrees with the
analytical estimates of Ref. 15, where it was concluded
that the Hubbard model by itself does not lead to pair
formation, and that an additional pairing interaction
seems to be needed in models of high-T. superconductivi-
ty.

What our results show is evidence of short-range anti-
ferromagnetic correlation, although already at a modest
medium range the correlation seems to be lost.
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