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A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state ofabelian 
(free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory 
in the Schr/Sdinger representation. An analysis of the qualitative behaviour of  the theory seems to imply a quasi-free behaviour at 
short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. 
Scaling relations for the mass gap are inferred from the theory of  small random perturbations of  dynamical systems. 

Euclidean fields are defined by a probability mea- 
sure d# on the space of vector-valued distributions 
1~®~ '  (~d), d being the dimension of space-time 
and a denoting the tensor and internal degrees of 
freedom of the fields. The densities Sn of the nth or- 
der moments ofd/~ are the Schwinger functions. From 
the path space L2 ( 1-[ ® ~ ~ '  (~d), dp) for quantum op- 
erators, reflection positivity yields [ 1 ] the positivity 
of the inner product in the Hilbert space where 
Minkowski fields act, and thus the existence of the 
Schr~Sdinger representation 

.Jcd= L2 ( I ~  ,,.@' (IR d - I  ) ,  d p ) ,  

where d v, the measure defined by the ground state of 
the hamiltonian operator, is the restriction of dFt to 
the time t=  0 subspace. 

Conversely, given a measure d v on the space of 
fixed time field configurations one defines the form 

g(u, v)= f Du'Dvdu 

where Du denotes the generalized gradient in the 
space E of t=  0 field configurations. If  8 is a closable 
form, its closure ~is a Dirichlet form [ 2 ]. Then, there 
is a positive definite self-adjoint operator H in L2(E, 
d r )  associated to ~ by ~(u, v)= (x/~u, @v).  
T t = e x p ( - t H )  is a symmetric contraction semi- 

group and a Markov process ( (Xt)t>~o, (Pz)zeE) with 
state space E will be associated to ~if for any bounded 
measurable function u on E 

f u(Xt)dPz = Ttu(z) for/~ - a.e. zEE. 

Then dv is the invariant measure for (Xt)t~>o. There- 
fore closability of the form defined by the measure 
d v allows the reconstruction of a Hilbert space and a 
hamiltonian operator. Schwinger functions are asso- 
ciated to the stochastic correlations of the Markov 
process X,. 

The construction of the theory through ground state 
measures and the corresponding Dirichlet forms met 
a remarkable success in the quantum theory of sys- 
tems with finitely many degrees of freedom [ 3,4 ]. Not 
only was one able to deal with singular interactions 
that cannot be consistently described by potentials, 
but also the stochastic process provides a natural 
framework for the evaluation of non-perturbative ef- 
fects [ 5,6 ]. The singular nature of quantum fields and 
the fact that the formal definition an infinite-dimen- 
sional theory through hamiltonian or lagrangian den- 
sities is an ambiguous specification ,l, makes quan- 
tum fields natural candidates for a description 
through ground state measures. Here one faces how- 
ever the difficult mathematical problems of closabil- 
ity of infinite dimensional Dirichlet forms and the 

~ See for example the discussion in ref. [7]. 
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associated existence problem for the infinite-dimen- 
sional Markov process. It is only very recently that 
reasonable progress has been made towards a saris- 
factory formulation of the necessary tools [ 8-10 ]. 

The existence problem of the Markov process as- 
sociated to ~ may be turned around by defining the 
theory directly in terms of a stochastic differential 
equation. The hamiltonian is the generator of the 
process and the problem is then one of proving the 
existence of solutions and existence of an ergodic in- 
variant measure, i.e., a measure for a unique ground 
state. This point of view is perhaps the most appro- 
priate one for quantum fields [ 11 ]. 

In this paper, keeping to a minimum the formal 
mathematical constructions, one discusses questions 
related to the ground state measure formulation of 
theories of gauge fields. 

Consider continuum QED (without fermions) in 
the Schr6dinger picture and in the temporal gauge, 
Ao (x) = 0 [ 12 ]. The hamiltonian operator is 

H =  ½ d3x 8Ai(x) 2 + B i ( x )  2 , (1) 

with the magnetic field Bi(x) = ea~0/l, (x). The Gauss 
law 3iF°~=0 is imposed as a constraint, 0~(8/ 
8A~(x) ) ~v[A ] = 0, and is equivalent to requiring gauge 
invariance of the wave functionals. 

It is convenient to use both the configuration space 
fields and their Fourier transforms 

( 1  ~ 3/2 
A~(k) = k-~gj f d3x e x p ( - i k . x ) A i ( x )  . 

In these coordinates the hamiltonian becomes 

) H=½ d3k -8A~(k) 8A~(-k~ +B~(k) B i ( -k )  , 

(2) 

with &(k )  = -iejmnk,,,An(k). 
Up to a constant the hamiltonian ofeq. (2) admits 

two decompositions in the form 

H+const.=½ f d3k( 8A~(k) + L , ( - k ) )  

× 6Ai(-k~) + L~(k) , (3) 

where the L,(k) are gradients of a functional of the 
fields, L} '~) ( k ) = -  (5/SAi(-k)  )a ~'~) [A]. They are 
[12-15] 

L!~)(k) = -i~imnk,,An(k) , (4a) 

L!2)(k) = Ikl Ai(k ) -  ~ Aj(k) (4b) 

with 

a('~[A]=~ d3ke~mnAi(-k) kmA~(k), (5a) 

O"2) [A]=-½ f d3k(Ai(-k)  [kl Ai(k) 

kikj -A,(  - k  ) - ~  Aj( k ) ) . (5b) 

A decomposition of the type of eq. (3) means that 
~ )  = e x p ( a  (~) [A ] ) are eigenstates of H. Making the 
transformation H ~ H~) = ~ ~-~)H~,~) one obtains 

g ) ~ ) =  d 3k  - 2~A,(k) ~A~(-k) 

+ L , ~ ) ( k ) ~ ) ,  (6) 

implying that -H~,~) is the generator of a diffusion 
process 

dA~"~ (k) = -L~'~(k) dt+dW~(t) (7) 

with drift - L ~  '~)(k) and invariant density 
exp(2a~")[A])  (in the space of fixed-time field 
configurations). 

Of course, the correctness of the above statements 
presumes that one can carry to the infinite dimen- 
sional setting of fields the corresponding manipula- 
tions of  finite dimensional analysis. The justification 
of these constructions may be carried out using a lat- 
tice and approaching the continuum limit through 
scaling relations [ 11 ], or directly by infinite-dimen- 
sional techniques [ 16,17] which, at least in the (free- 
field) abelian gauge field case, are expected to 
succeed. 

The wave functional ~(2) is the usual perturbative 
ground state corresponding to an infinite number of  
harmonic modes. The corresponding stochastic pro- 
cess describes fluctuations around the {A~(k)=0} 
configuration, which is an attractive fixed point for 

84 



Volume 223, number 1 PHYSICS LETTERS B 1 June 1989 

the classical (noiseless) motion. By contrast for the 
process associated to ~(~) the {At(k)=0}  configura- 
tion is an hyperbolic (unstable) fixed point. 

These two functionals have an interesting geomet- 
rical relation. The drift - L~= 8a('*)/8.4~ associated to 
any wave functional exp(a  (")),  satisfying the Gauss 
law constraint, must  be orthogonal to an arbitrary 
gauge transformation 

8Ai(k) =iki 8 a ( k )  . (8a)  

One finds that L} 2) (k) is the exterior product  

L (2)(k)=SA(k) ×L (1)(k) 

forSa(k )=- l / I k l .  
For non-abelian gauge fields the Gauss law con- 

straint is also equivalent to imposing gauge invari- 
ance on the wave functionals, i.e., invariance for 

8A~ (x) = (D~)~  8a  p 

= [0,8~a - gf~vpA ~(x) ] 8ozP(x).  (8b) 

A drift vector -L((x)=Sa/SA~(x) will be or- 
thogonal to an arbitrary 8A~(x) if fd3x 
L ( ( D ~ S a ) ~ = 0 ,  i.e. 

(D,Li(x)) '~  

= [O ,6 ,p -g f ,  yaA~(x) ] L ( ( x )  = 0 .  (9) 

The general solution to eq. (9) is 

L T ( X ) =  ]--_--_--_--_--_--_~ ,~,kp 

where M~,,~=gf~,~#(OffA)A~(x) and/ ' f f  is any solu- 
tion of  0k/'~ = 0. 

Eq. (10) may be used to construct general gauge 
invariant diffusion processes for non-abelian gauge 
fields. Here we will limit ourselves to the non-abelian 
generalizations of  L } ~ ) and L } 2) of  eqs. (4).  For this 
purpose we rewrite the exponents a(") [A ] o f  the cor- 
responding wave functionals ( exp(a  (~)))  in terms 
of  the configuration space fields and exhibiting their 
gauge transformation properties. 

041)[A] = 1 f d3x e.oijkAi(x) OjAk(x) , (5C) 

1 1 
at2)[A] = - 4rca f d3xd3y Bi(x) ~'~'fi-~Bi(y) 

f 1 = 1 d3xBi(x) ~--~Bi (x ) ,  (5d)  

a (~) [A] generalizes easily to the non-abelian case as 

a ( l ) [A]  = 

f d3x eoijk Tr{di(x)  [a jdk(x)  + i ~ 4 j ( x ) d k ( x )  1}. 

(11) 

a (~) [A ] is proportional to the Pontryagin index of  
the field configuration and leads to a gauge invariant 
drift even for topologically non-trivial transforma- 
tions. This "winding number  functional" first men- 
tioned by Loos [ 15 ], has been discussed by several 
authors [ 12,18 ]. As in the abelian case the {A~ =0} 
configuration is an unstable fixed point, and in the 
cont inuum formulation with unbounded variables it 
is not possible to use the corresponding drift 

8a~ ~ ) 
--L}'l) -- 8A~ 

to define a recurrent process with an ergodic ground 
state measure. However, if the variables are compac- 
tiffed in a lattice version [ I I ] ,  existence (and 
uniqueness) of  the solutions to the stochastic differ- 
ential equation may be proved, as well as existence o f  
a unique invariant measure and a well defined scal- 
ing limit at weak coupling. Although this process is 
unrelated to the perturbative ground state it never- 
theless defines a well-behaved quantum theory. 

Here we will concern ourselves with the non-abe- 
lian generalization #2 ofo.(2) [A] to 

0"(2>[1]: - 1  f d3xB°~(x)( ~ ~  Bff(x), 
kx/-D,D~J.~ 

(12) 

For eq. (12) to make sense a meaning has to be as- 

~2 Previous attempts [ 12,19 ] to generalize the abelian ground 
state functional exp(a(2)[A]) start from o'(2)[A]=--(l/ 
4~r 2 ) fd3x d3y Bk(x) [X--Y1-2Bk(Y), and attempt to general- 
ize the kernel Ix-y[-2. The problems encountered by these 
authors are probably related to the difficulty in finding a well- 
defined explicit form for the (symbolic) kernel (1/ 
~ ) a 3 ( x - y ) .  
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signed to ( - DiDo) - ~/2. The abelian version ( - A) - ~ / 2 
is well defined through the Fourier transform. A sim- 
ilar transform does not exist for the nonabelian case 
because the operator set {D~, i=  1, 2, 3} has a com- 
mon system ofeigenvalues only ifA ~ is a gauge trans- 
form ofA ~(x) =0. 

Due to the antisymmetry of the structure con- 
stants, in the space of vector-valued functions of 
compact support in ~ 3 with norm 

(U, V) = j d3x Ua(X)ya(X) 

one has (u, D~v) = - (D~u, v). Therefore one may use 
the integral representation for fractional powers of 
positive operators [ 20 ] and define 

1 2_1/2 1 
~ 2_D,Dm d~. (13) 

0 

Using ( 13 ) in eq. (12) and a formal series expansion 
of 1 / ( 2 -  D~D~) to compute the functional derivative 
one obtains 

5A~(x) - --~ijk(Dj)~p Bk 

+ -~ ,~-D~D~ 
0 

# 

X F~Di 2 _  D~D, 

for the drift of the process. The quantities involved 
in eq. ( 1 4 )  are 

B°~ = ekm. [ O,,A ~ (x) - ½gf,~A ~m (x)A ~ (X) ] , 

(F~)~, = f~ .  

The task now is to obtain a precise meaning for the 
stochastic process with drift given by (14). As in ref. 
[11] we use a lattice formulation, define the vari- 
ables 0"(n, n + D corresponding to the scaled fields 
A ~ (n) and make the replacements 

gaA~(n)~O'~(n, n+ D , (15a) 

gaZB~(n)~fl~(n)  

= ]7,jk[0'~(n+j~ n+f+~)  

- ~,~O~(n, n+f)O~(n, n+]~) ] ,  (15b) 

where yOk = (sign/)(sign j)(signk)Eii I IJl Ikl; i,j, ke{1, 
2, 3}, •denotes the unit lattice vector along the i-di- 
rection and a is the lattice spacing. 

On the other hand the covafiant derivative of a 
quantity v'~(n) transforming under the adjoint rep- 
resentation of the internal symmetry group, becomes 

l 
(Di)~pvl~(n) --+ a{½ [v~(n+ D - v - ( n - D  ] 

- f ,~Or(n ,  n+ DvP(n) } 

1 
a (~i) '~vP(n) (16) 

With these definitions and using eq. ( 13 ) the lattice 
version o f o  "(2) [A] is 

a(2) [0] = 2~g2 ~ d~,~-l/2fl°~(n) 
0 

(1)  
x , l - 7~ ,  /~(n), (17) 

and for the drift of  the lattice process we obtain 

-L(O'~(n, n+D)  

; [ -real (t22 -~/2 --eijk(@),~ 2--~s~s ilk(n) 
0 

i - " 

(18) 

Notice that, for simplicity, we have written for 
-L(O'~(n, n+D)  the lattice version of eq. (14) 
rather than recomputing (g2/a)~a(2)[O]/5Oa(n, 
n + D. The two quantities should however coincide 
in the continuum limit. 

We have now two ways to study the lattice model. 
The first takes the energy form associated to the den- 
sity p ( 0 ) = e x p ( 2 a  (2) [0] ) 

E(u, v) = J ~ dO'~(n, n+Dp(o )  Du(0) Dr(0) ,  
n,i,¢~ 

(19) 

and proceeds, through the proof of closability, to the 
existence of a positive self-adjoint generator of  time 
translations and a Markov process. 

The second studies directly the stochastic differ- 
ential equation 
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dO"(n, n+f) 

= -L(O'~(n, n+f)) d t+  -~aadW'~(n, n+{) 
~g 

(20) 

trying to insure existence of solutions and an invar- 
iant measure. 

In both cases to insure the existence of a well de- 
fined Markov process is an essential step to be able 
to use the (non-perturbative) Wentzell and Freidlin 
technique [ 21,7 ] to infer the continuum behavior 
through scaling relations for the mass gap. 

Before showing that exp(2a {2) [0] ) as the density 
of a Dirichlet form (or ( 18 ) as the drift of  a stochas- 
tic differential equation) lead to a well-defined quan- 
tum theory, we examine the relevant features of 
physical significance associated to the ground state 
wave functional exp(a  (2) [A] ) (with 0 .(2) [A] as in 
eq. (12)) .  

For field configurations for which A~(x) varies 
slowly in space, the effect of  the derivative terms in 
the denominator of 1 / ( 2 -  D,Dj ) is small and the op- 
erator becomes a local one. I.e. in the neighbourhood 
of these slowly varying field configurations the ground 
state wave functional factors out into a product 
Hxexp [F(x)  ] where each F(x) depends only on the 
fields at the point x. 

F(x)~-½ i d2~-l/2 
0 

×B~(x)(2_geFyF¢l~(x)A~i(x)),a B~(x)" 

Considering the Fourier transform ofA ? (x) it is clear 
that the slow varying configurations are the low-mo- 
mentum components that control the long-distance 
behaviour. Hence the main correlations between field 
configurations at different points in space, imposed 
by the low-momentum component of the ground state 
wave functional, are only those that follow from the 
Bianchi identity. I.e. the long-distance behaviour is 
associated to a maximally disordered field strength 
configuration. 

Conversely for high-momentum (short distance) 
the derivative terms in I / ( 2 - D , D ~ )  are dominant 
and the kernel will approach the 1 / I x - y l  2 of the 

U ( 1 ) free theory. From the qualitative limiting be- 
haviour of the operators one already expects the 
exp (2a ~2) [A ] ) ground state measure to describe both 
asymptotic freedom at short distances and a maxi- 
mally disordered situation at low momentum. 

The exponent a ~2) [A] is negative semi-definite. 
Therefore the maximum of the (real) ground state 
functional is reached for the B~(x)=0 configura- 
tions, the functional being peaked at all homotopi- 
cally non-equivalent classical vacua. 

For the quantum theory defined by the ground state 
measure exp{2a[ 0] } (i.e. the lattice version) we now 
make a few exact statements and sketch their proofs. 
Whenever consideration of a specific group is called 
for, SU (2) has, for simplicity, been considered. 

Statement 1. For a finite lattice with periodic 
boundary conditions the ground state measure 
p[O] =exp{2a[0]} with a[O] of eq. (17) character- 
izes a well-defined quantum theory. 

In a finite lattice with periodic boundary conditions 

(u, ~ , v ) =  ~ u~(n)(~i),~vg(n) 
n,ot/~ 

= -  Z (~,)~pug(n)v~(n), 
n,oL,[3 

and - ~ , ~  is a positive operator. 
cr t 2 ) [ 0 ] being ~< 0, p (0) is bounded. 
If/to is the lowest positive eigenvalue of - ~ ,  the 

norm of the operator ( 1 /n) fT2-1/2 (2_  ~ ~ )  - I d2 is 
bounded by (#o)-~/2. However zero eigenvalues of 

- ~i~i may exist and one worries about possible ze- 
ros of p(0) ,  more precisely about the measure of the 
singular set S(p) 

S(P)={ {O}: f P-l n~, dO~(n, n+ {)=~ 

) 
for any neighbourhood of {0} ~ ,  

i.e., the set of field configurations {0} for which p - l  
is not locally integrable. 

Let v~(n) be a zero eigenvalue of - ~ i ~ , .  Then 
from ( ~iv, ~ v )  = 0 it follows that 

½ [v~(n+f) -v~(n-f)  ] -f,B~OT(n, n+f)v~.(n) = 0  

Vn, a,k,i. (21) 
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Let the lattice have N 3 sites and the Lie algebra di- 
mensionality be dL. Eq. (21) is a system of 9N3dL 
equations for 3N 3dL variables. Consider the NdL-di- 
mensional subsystems associated to N sites along one 
coordinate direction and fixed k. For generic 0 the 
equations in these subsystems are linearly indepen- 
dent. If  (21 ) has a non-trivial solution then, at least 
one of the subsystems should have a non-zero solu- 
tion. This imposes a determinant relation on the 0 
coordinates that reduces the dimensionality by one 
unit, at least. I.e. the subset in 0-space associated to a 
zero eigenvalue of - ~g~g has dimensionality less than 
3N3dL. 

Therefore, the singular set S(p) has zero measure 
and the density p(O) satisfies the conditions of theo- 
rem 1 in ref. [22]. The form E(u, v) ofeq.  (19) is 
closable, there is associated to it a diffusion process 
and, in the Hilbert space of square-integrable field 
configurations, its generator defines a positive self- 
adjoint hamiltonian operator. I.e. a well defined 
quantum theory is associated to p(0).  

Statement 2. The "constant field configurations" 
contribution to the Wilson loop of the theory defined 
in statement 1 has area law decay. 

By constant field contribution one means precisely 
the contribution of the amplitudes 

~o(0) =exp ~ d22 -~/2 
o 

XT~jkyO, k,f~pyO~(n, n+ f)O~(n, n+#) 

X 2_F~F~,O~(n,n+f)O:,(n,n+f ) ~, 

xf,,a,.~.Oa'(n,n+f')OY'(n,n+f¢')], (22) 

which are obtained from eq. ( 17 ) in the constant field 
limit. 

One can now either consider spatial Wilson loops 
and use ~,~ as a dimensionally reduced partition 
function, or compute the time correlation of two 
strings, which is the form taken by the space-time 
Wilson loop in the temporal gauge. 

W(N, T) 

= <Tr{U*(N, T)...U*( 1, T) U( 1, O)...U(N, 0)} > 

= <Tr{ U*(N, 0)...U*( 1, 0) 

× e x p ( - H T )  U( 1, O)...U(N, 0)}> .  (23) 

Transforming the hamiltonian 

g2 ( ~ 0tf2) ) 

H= 2a ,,,Z aO"(n, n+[) - aO"(n, n+D 

X 0 -- 0 a  (2) 
(aO,(n,n+[) aO~(n,n+;) ) (24) 

by the string operator one obtains 

W(n, T ) =  <Tr{exp(- / ( rT)} > , (25) 

where/~ differs from H by the replacement 

8 a 
O0"(n, n+[) ~U*(s, O) O0"(n, n+[) U(s, O), 

whenever the link s -  (n, n + [) belongs to the string, 
and remains unchanged otherwise. To compute eq. 
(25) one uses (22) with 

80" 
O"(n, n-[)=-O"(n,  n+f)+a O[ ' 

the contribution of the second term vanishing in the 
constant field limit. One then finds that the operator 
in eq. (25) factors out in a product of independent 
site operators leading to a exp ( - cNT) area law. 

Remark. the reason why this is not a confinement 
result follows from the fact that constant field config- 
urations have zero measure in the space of all config- 
urations. The crucial step missing is, for example, 
proof that a positive measure neighbourhood of the 
constant field configurations has the same area law 
behaviour. 

That "constant field configurations" produce a non- 
trivial contribution to the quantum ground state 
measure is seen from the following explicit calcula- 
tion in the SU(2) group: 

Consider the matrix M=p=Z~07'Of, 07''-O~(n, 
n + f) V n, t" being the constant field. M may be dia- 
gonalized by a global gauge transformation. In the new 
gauge the three (for SU (2) )  three-vectors 0"  are or- 
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thogonal .  W i t h o u t  loss o f  general i ty,  space axis m a y  
be chosen such that  

0] = ( a l ,  0, 0 ) ,  0 2 = ( 0 ,  a 2 , 0 ) ,  0 3 = ( 0 , 0 ,  a3) ,  

to which  cor respond  the c h r o m o m a g n e t i c  fields 

f l ] = ( - a 2 a 3 , 0 ,  O), f l ~ = ( O , - a 3 a ~ , O ) ,  

p3i = (0, O, - a l a 2 )  . 

T h e n  

l { 
p ( 0 ) = e x p  - ~ \ ~  

2 2  2 2  )] 
a l a 3  a 2 a ~  (26 )  

2 2 • 

The last s t a t emen t  per ta ins  to the approach  to the 
c o n t i n u u m  l imi t  th rough  scaling relat ions:  

S ta temen t  3. The  mass  gap of  the theory  def ined  in  
s t a t emen t  1 scales as a m  ~ exp ( - c / g  2) when  a ~ 0 ,  

g ( a )  ~ 0 .  

The  drif t  - L  (eq. ( 1 8 ) )  o f  the lat t ice process is 
i n d e p e n d e n t  o f  g, therefore the mode l  satisfies the 
necessary cond i t i on  for the mass  gap to have the 
s ta ted b e h a v i o u r  [ 7 ] when  g-*0.  The  p ro o f  of  state- 
m e n t  3 is based  on  the asympto t ics  of  the lowest ei- 
genva lue  of  ell iptic operators ,  as o b t a i n e d  f rom the 
theory  of  smal l  r a n d o m  pe r tu rba t ions  o f  d y n a m i c a l  
systems [21,7 ]. The  app l i ca t ion  of  the smal l  r a n d o m  
pe r tu rba t ions  theory  is re levant  to the c o n t i n u u m  
l imi t  only  i f  a - , 0  impl ies  also g ( a ) - ,  0. We refer to 
ref. [7] for detai ls  on  the app l i ca t ion  of  this  tech- 
n i que  to latt ice problems.  

A suff icient  c o n d i t i o n  for a m  ~ exp ( - c / g  2 ) when  
g ~ 0  is that  the o)-limit set o f  the de te rmin i s t i c  
p r ob l em 

d 0 " ( n ,  n + D  
- L ( O ~ ( n , n + D )  

dt  

be a t t rac t ive  in  the d o m a i n  of  the Dir ich le t  p rob lem.  
This  is fulfi l led because  tr ~2) is negat ive  def in i te  wi th  
m a x i m a  in  the r =  0 field conf igura t ions .  

F r o m  a m  ~ exp ( - c / g  2) one  sees tha t  for the  phys- 

ical mass gap to r e m a i n  fixed when  a ~ 0 ,  one  should  
requi re  g 2 ( a ) ~ l c / l o g a l .  Therefore  when  a-- ,0 
g ( a )  --, 0, consis tent  with the use of  the theory of  small  
r a n d o m  per turba t ions .  
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