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Using a stochastic differential equation for field configurations in a three-dimensional space lattice, one proves existence of an 
euclidean theory for non-abelian gauge fields on the lattice. The theory is also shown to possess a scaling limit for the mass gap at 
weak coupling. The construction is extended in a less rigorous manner to a theory with fermions and gauge fields. 

The formal  analogy between the t ime evolut ion of  the probabi l i ty  densi ty in the SchriSdinger picture and the 
Fokke r -P l anck  equat ion was used in refs. [ 1-3 ] to construct  stochastic processes in configurat ion space asso- 
ciated to lat t ice gauge theories.  F rom the corresponding stochastic differential  equat ions (SDE)  mass gaps and 
eucl idean correlat ions may be measured.  

An impor tan t  poin t  was the p roo f  of  existence o f  stochastic processes which, in the classical con t inuum limit,  
lead to the same hami l ton ian  (as a generator  of  the process semigroup)  but  nevertheless correspond to non- 
equivalent  classes of  dynamics  [ 3 ]. Non-equiva lence  is proven by showing that  at weak coupling the mass gaps 
follow different  scaling laws. 

These results strongly suggest that,  for systems with infini te  number  of  degrees of  freedom, hami l ton ian  or 
lagrangian functions provide  only an incomple te  specif icat ion of  the theory. A specification through SDEs might  
be more  sat isfactory in the sense that  an SDE is closer to provide  a control  over  probabi l i ty  measures  and 
asymptot ic  behav iour  of  opera tors  than the formal  measure  that  one defines by the exponent ia l  o f  the action. 

In this paper  we give first steps on the way to a r igorous construct ion of  four-dimensional  non-tr ivial  eucl idean 
fields on the lat t ice and their  con t inuum limits,  using SDEs in configurat ion space. Firs t  to be discussed is an 
equat ion for non-abel ian fields on the lattice. Besides supplying a p roof  of  consistency of  the lat t ice model,  one 
also sees that  it satisfies a necessary condi t ion  for the existence o f  an asymptot ical ly  free con t inuum limit.  Then 
we discuss the inclusion of  fe rmion fields, as a concrete example  o f  the fermion scheme developed in ref. [ 2 ]. 
This  involves a stochastic equat ion with both diffusion and jumping .  ' 

Consider  a space lat t ice Z 3 = {an I n c 7/3 } and let Aa = A c~ 77 3 where A is a bounded  subset o f  R 3. 
A gauge field configurat ion is a mapp ing  from the links to the space of  a compact  Lie group: 

l--, Ul = e x p  i (0 " l~  ") , 

the ~"'s being a Lie algebra basis and  0"/cS 1. 
To specify that  a l ink l connects the sites n and n + i along the unit  vector  i one uses the nota t ion 

0" l=  0~ ,~+i .  

In Aa one considers  the following SDE: 

d0" ,= ib"~  d s +  (g /x /a )  dW'~t (1) 

with ( d W " ~ d W P  r ) =6"a61r ds and 
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ib",,. ,+i= (1/2a)F'(aG)(  Q%,n+, + QC'n+,,,+ 2i)h'( O",,,,+i) , (2) 

Q",,,,,+,= - ¼V0k[h(0"n+j.,,+j+k) + ~-z['~Y h( Oa,,.,,+j)h( O~',,,~+k) ] , 

Y0k = (sign i)(s ignj)(s ign k)a r,llJlrkl , (3) 

~G = ~ g -  Tr ~ Yijk[--h(0~,n+i)M0~+j.,,+j+k)+i ~h(O~,,,+,)h(On,,+j)h(O,,,~+k)] . (4) 

h(O) is a continuous function in S ~ such that h '  (0) = 1 and h"(O) -~0 faster than 02 when 0--,0. For example 
h(O) may be a 27r-periodic piecewise linear function of  slope + 1. F(~G) is a continuous piecewise linear func- 
tion of~c~ such that F '  (~c )  = + 1 a.e. and F ( ~ )  is bounded from above and below; F~i~<F(~r~) ~<Fm~x. h(0) 
means h (0" )  ~". 

Considering the formal cont inuum limit ( a - , 0 )  with 

A"(n )  = ( I /ga )S~'( n ) = ( 0 ~_~,,, + O,,.~+~,)/2ga , (5a) 

OjA~( n ) = (1/2gaZ)[ Sk(  n +j)  - -Sk(  n- - j )  ] , (5b) 

one recognizes in the RHS ofeq.  (4) the lattice version o f  the Chern-Simons density and the drift ib"t becomes 
the chromomagnet ic  field parallel to the link l. The regularizing functions h(O) and F(aG) (equal to one in the 
0 ~ 0  limit) are required to ensure global existence o f  the solution to eq. (1) and a consistent quantum contin- 
uum limit (see below) ~. The drift is related to F(aG) as follows: 

ib" t= (gZ /a)( O/OO':'t)F( aG) . (6) 

Eq. (1) is a SDE with values in Q ~ , S  f, nz being the number  of  links in A~. Existence and uniqueness of  a 
solution may be obtained either by patching up the solutions in coordinate neighbourhoods or using Whitney's  
imbedding theorem and considering the corresponding process in R 2~ ÷~ 

In eq. (1) the diffusion coefficient is a constant and the drift a bounded continuous function. Therefore by 
theorem 2.2 in chapter IV of  ref. [4] there is a solution for any given initial probability distribution of  0 (0). 
Furthermore the drift being locally Lipschitz continuous there is pathwise uniqueness and a unique strong so- 
lution o f  eq. (1) ( theorem 3.1 in chapter IV of  ref. [ 4 ] ). 

Next one discusses the invariant measure o f  the process. Because the drift is a gradient [see eq. (6)] the 
function 

p( O) =cexp[  ( 2g2 /a)F(  aG) ] (7) 

is an invariant density, c is the normalization constant, c = f exp [ (2g2/a) F(aG)  ] d/z (0) ,  the integration being 
over Q,,~S ~. 

To prove uniqueness and ergodicity of  the invariant measure one has to discuss the recurrence of  the stochas- 
tic process. By Whitney's  theorem one imbeds (~) ~tS ~ into ~2,1+ ~ as a closed bounded submanifold M. Let F be 
a bounded set in ~2~t+ ~ containing M and larger than M in the sense OF c~ 0M = ~. Let U~ be an arbitrary set in 
M and U = F  \U~.  Then U is a set bounded in all coordinates, i.e. x ~ U ~ x ~  i" <~x~ <~x ma~. By the corollary 2 of 
theorem 7.1, chapter III of  ref. [ 5 ], for any x~ U c~ M, 

p , { r ~  < ~ } = 1  , 

and furthermore ~u (the first hitting time of  the boundary ~U) has moments  of  all orders. Because the process 
is restricted to M, for an initial point in U c~ M, the boundary point of  U that is hit is also a boundary point of 
U~. Therefore the Markov process in M associated to the SDE (1) is positively recurrent. Hence, by theorem 

~ Defining the variables 0"/in ~ instead ofS ~ and choosing for h(O) the identity function [3] one could still assert the existence of local 
solutions, but not global solutions without explosions. 
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5.1 (and corollaries)  in chapter  IV of  ref. [5] one concludes that  the invar iant  measure  with densi ty (7)  is 
unique and the law of  large numbers  holds in the sense 

7" 

0 

The measure dp=p(0)1-[zd0t  being invar iant  and ergodic, it provides  a suitable vacuum measure.  Consider  
the space of  square integrable funct ions for the measure  dp, i . e . .~D = L2(F(0 ) ,  dp).  JtSo is the Dirichlet  repre- 
sentat ion ~2 of  the eucl idean theory. 

Existence and uniqueness o f  the solut ion to the SDE (1) ensures the existence o f a  Markov  process with values 
in @ , , S  ~ and a well-defined set of  t ransi t ion funct ions P(t, 0~, d02) (where dO2 denotes  the fiat measure  in @ 
,,,S ~ ). These are used to character ize  the eucl idean t ime correlat ions o f  the theory (Schwinger funct ions)  by 

( F,,(O(t,,))F,,_I (O(t,,_l))...Fo ( 0 o ) )  

=f  FN(O,,)P(t,,--t,_l, 0,,_~, dO,)F(O,,_l)P(t,,_l -tn_2, O~_z, dOn_l)...Fo(Oo) dp(0o) , (9)  

where t,, >1 t,,_ t >1 ... >10 and the F ' s  are bounded  functions.  
The t ransi t ion functions are probabi l i ty  measures  on the last argument,  therefore the act ion of  the process 

semigroup T(t )  at each step, for example  

(T(t,,-t,,_l)Fn)(O,_,) =f  F,,(O~)P(tn-t,,_l, 0~_~, dO,,) ,  

preserves the boundedness  of  the in tegrand functions and ensures the existence of  the Schwinger functions, 
p rovided  the F ' s  are bounded  functions in (~)~S 1 . Fur the rmore  ergodici ty of  the process [eq. (8)]  allows the 
de te rmina t ion  o f  the Schwinger funct ions f rom t ime averages. 

The generator  of  the Markov  process is 

0 g2 0 0 ~ ib~l o0~l HD = --~a ~ O0"lO0"t I , .  
(10) 

The unitary t ransformat ion HD--,HG =p I/2HDp-1/2 between the spaces AeD= L2(F(0) ,  dp) and ~ s  = L2 (Pl/2F(O), 
dO) leads to the hami l ton ian  opera tor  

= g 2  0 . a  ~, 0 . a  , 
HG ~ a ~ ( - ~ l - l ~ s b  l ) ( O ~ l - l ~ b  i).  (11) 

Using the replacement  0/00"t--.i a2g-~g"z, where g"z denotes  the chromoelectr ic  field, and the relat ions (5a)  
and (5b) ,  one sees that,  in the a ~ 0  limit,  H c  is the sum of  the squares o f  the (chromo-)e lec t r ic  and  magnet ic  
fields. I.e., the theory associated to the SDE (1) has (pure  gauge) quan tum chromodynamics  as its classical 
con t inuum limit.  

A necessary condi t ion  for the existence o f  a con t inuum l imit  for the eucl idean quan tum theory is existence of 
a coupling constant  value g* where the correla t ion length diverges and a scaling t ransformat ion  g=g(a) such 
that  physical  quant i t ies  remain  constant  when a ~ 0  and l ima~0g(a)  =g* .  

To obta in  an equat ion with diffusion coefficient independen t  o f  the lat t ice spacing one makes  a scale trans- 
format ion  in the t ime variable  s ~  r = s/a: 

~2 This is also called the Schr6dinger representation of the theory [ 6 ]. Here one uses the name Dirichlet representation for the space with 
the ground state measure, Schr6dinger representation being reserved for the space with fiat measure obtained from ~D by a unitary 
transformation. 
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d0"/(ar) = i  a b " l d r + g d W " t ( r )  . (12) 

The correlation length is the inverse of the mass gap (lowest positive eigenvalue). If the critical point we are 
looking for is at g*=  0, then one may use the fact that the lowest positive eigenvalue for the boundary value 
problem of an elliptic operator (HDu = 2u; u 10p = 0) may be estimated at weak coupling (weak noise) from the 
theory of small random perturbations of dynamical systems [ 7,8 ]. 

To obtain the smallest eigenvalue one chooses the domain D for the eigenvalue problem in such a way that 
F ( a c )  reaches its maximum and minimum values in D. From the properties of the solutions of eq. (12) and 
the results of ref. [ 7 ] or ref. [ 8 ], applied to the case where the drift is the gradient of a function, one obtain for 
smallg (cf. theorem 11.1 ofref. [8] or theorem 7.4 ofref. [7]) 

amg ~exp[ - 2(Fmax - F m i n ) / g  2 ] • (13) 

For the physical mass gap to remain fixed when a - ,0  one requires 

g2(a) ~ 12(Fmax -Fmin)/loga] • (14) 

Therefore when a- ,  0 one obtains g(a)  -, 0, consistent with the use of the small random perturbation results to 
compute (13). This establishes the existence of a scaling limit for the mass gap. We have therefore proved the 
following theorem. 

Theorem 
The SDE (1) with the drift given by eqs. (3) and (4) and the boundedness conditions on F(~G) defines a 

lattice euclidean theory for (chromodynamic) non-abelian gauge fields with a scaling limit for the mass gap 
g(a) - ,O  at a- ,0.  

Remarks 
(l)  Had we chosen F(a~)  = a c ,  i.e. F(a~)  not bounded to values independent of the volume Vofthe lattice 

Aa, we would have obtained 

amg ~exp( - c '  V/gZ a 3) (15a) 

because a~ grows with the number of links in the domain Aa. Then, to keep mg fixed 

g2(a) ~ J1/a 3 loga[ (15b) 

and g(a)  - , ~  when a-.0,  which is inconsistent with the g - ,0  hypothesis used to compute (15a). 
(2) Using the volume-independent (upper and lower) boundedness of F(a~)  one obtains a consistent scaling 

limit, no matter whether the gauge group is abelian or non-abelian. The choice of the model appropriate to each 
physical situation requires therefore some other considerations. 

As explained in ref. [ 3 ], because ac  is proportional to the Pontryagin index it seems physically reasonable to 
impose periodicity on F(a~) ,  choosing the period in such a way that all the homotopically distinct Yang-Mills 
vacua have a similar drift in the SDE (1). On the other hand for U(1 ) there is only one class of vacuum config- 
urations. Hence, one has no physical reason not to choose F(cr~) = ac  in this case. 

With these choices one would obtain a scaling model at g - ,0  for QCD and a model without a scaling limit at 
g - ,0  for lattice QED. Notice, however, that, in the latter case, when V - , ~  at fixed a, eq. (15a) implies mg-,0; 
i.e., the infinite volume lattice theory has no mass gap. Left open is therefore the possibility of existence of a 
scaling limit at some other g~  0. 

The fact that, to obtain a well-defined theory, one needs to make these choices in the model, is a good illustra- 
tion of the question raised in the introduction concerning the basic ambiguity of hamiltonian (or lagrangian) 
specifications of gauge theories. 
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Now, one includes fermion fields in the stochastic description. A general scheme to write stochastic equations 
of fermions and gauge fields was developed in ref. [ 2]. The main conclusion is that euclidean evolution is, in 
this case, described by a stochastic process involving diffusion in the gauge coordinates and jumping between 
the fermion configurations. 

Here one obtains an explicit form for the drift and transition functions in such a way that the generator of the 
process coincides, in the a ~ 0  limit, with the QCD hamiltonian. 

The fermion lattice fields ~u( n ) and ~(n) are treated as coordinates in the same footing as Oat. It is only in the 
last step, after drift and transition functions are obtained, that q/and ~ are evaluated, by changing to an occu- 
pation number basis. 

For Wilson fermions the standard lattice hamiltonian is 

i 
Hv = - ~aa ~ ~(n)7 ' [  U,,,~+,q/(n+ i) - U,,.._iq/(n-i)] 

n,t 

B 
+ 2aa ~ q~(n)[Z~'(n)- U...+,q/(n+i) - U..n_igt(n-i)] + m  ~. (l(n)q/(n) . (16) 

Define 

i 
crF= -2---a y" ~(n)f[z(O,. , ,+,)q/(n+i)  - z ( O  . . . .  g ~,(n-  i)] 

n,i 

- 2 a  ~ ~(n)D~(On,.+,.)~(n+i)+)~(O . . . .  ~)~(n- i ) ]  + 5 m+ ..,~" ~(n)qJ(n)~(O.,.+,), (17) 

where 

2 a ~  ~ . . . .  + .  +~1(0 n.n+~) 1~ , ) ~ ( O n , n + i ) = ~  [(  1 jQ~ ]2 1" ot 3 o~ (18) 

~(0,,,+,) =C---~g 2 ~ 0 c' 0 c' (19) n ,n+t  n ,n+i  

with CN= 1 for U(1 ) and CN=N z -  1 for SU(N). 
It is easy to see that an hamiltonian of the form 

with a = a G + a V  has the same a--,0 limit as H o + H v  [Ho being the pure gauge hamiltonian eq. (11 )]. In eq. 
(20) the terms that do not vanish in the c ~ 0  limit come from Y(Sao/80'~t)(ao~o/aO"l) for Ho and from 
Ya2av/O0"l 2 for HF. 

The stochastic process is now constructed in such a way that its generator is 

exp{ - [g2(ao + az)/a] } H {exp [g2(ao + av)/a] } . 

For the time evolution of the probability density of the process one obtains 

0 g2  02 C~ 
~p(  , ~', ~ ) =  ;-- E ~ P -  E o~,  (ib-,p) 

z a  oe,i ij~, i c~,t 

+ ~ [J(Oq/~lO~'~')p(O, q/', ~ ' ) - J ( O q / ' ~ '  IOgt~)p(O, q/, ~)] , (21) 
q f ~ '  
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p=p(O, ~,, ~) being the probability of the configuration (0, ~', ~); 

ib~l= (g2/a)(O/OO'~t)a (22) 

and J is the jumping transition function, to be defined below. 
So far one has considered ~'(n) and ~(n) as classical coordinates in the same footing as 0"b In the present 

form eq. (21 ) is only of formal interest. For computation purposes one has to evaluate the fermion coordinates 
in each configuration• 

The generator (hamiltonian) of the process being time invariant one may use a (t = 0) free field expansion of 
and ~ and evaluate arbitrary functions of the fermion coordinates by its expectation values in an occupation 

number basis 

F( O~u(~) -> F( O f f ) = ( f  fl F( Oq/~ ) If f'~ • (23) 

For details on the occupation number basis to be used see ref. [ 2 ]. 
Note that because the occupation number basis is constructed from operators defined at t=  0, the configura- 

tions ( f f )  are not configurations of real physical fermions, although the basis I Off') is a quite legitimate one to 
describe the evolution of the process. 

With the replacement (23) the stochastic eq. (21 ) becomes 

~t g2 02 0 
p(Off)  =~a ,~.zE uv z~--zYsP(Off) - .E. ~ t  (ib",p) + E [J(Offl Of ' f '  )p(Of' f ' )  - J ( O f ' f '  Off)p(Off)] (24) 

• f ' f ,  

with a, in the drift definition, given by 

a=aG + ( f f l av  I f f  ) (25) 

and 

J( Off  l Of' f '  ) = - O - '  ( Of' f '  ) ( Of' f '  l VR Io f f  )o( o f f )  , (26a) 

O(Off) =exp(g2aUa) (Off lexp(g2aF/a)IOff)  , (26b) 

gZ 02 g2 0a 0a (26c) 

Eq. (24) involves diffusion in the 0 variables and jumping between fermion configurations. Fermion-boson 
coupling takes place through the dependence of the drift on the ( f  f )  configurations and the dependence of the 
jumping transition functions on 0. Eq. (24) describes, in the same sense as eq. (1), and euclidean evolution for 
QCD-like fields. A proof of existence of a pathwise unique solution defining a Dirichlet representation, Schwin- 
ger functions and mass gap scaling (as in the pure gauge case) seems within reach and is in progress. 

In conclusion, stochastic differential equations seem to be a promising tool to construct non-trivial quantum 
field theories in spacetime dimension four. In this connection one should also mention the important work of 
Albeverio and Hoegh-Krohn [ 9 ] and Haba [ I 0]. 
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