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Abstract 

A quantum scar is a wave function which displays a high intensity in the region of a classical unstable periodic orbit. 
Saddle scars are states related to the unstable harmonic motions along the stable manifold of a saddle point of the potential. 
Using a semiclassical method it is shown that, independently of the overall structure of the potential, the local dynamics of 

the saddle point is sufficient to insure the general existence of this type of scars and their factorized structure is obtained. 
Potentially useful situations are identified, where these states appear (directly or in disguise) and might be used for quantum 
control purposes. @ 1998 Elsevier Science B.V. 

1. Introduction 

Until the early eighties it was widely believed that, 
for systems with an ergodic classical motion, the 
squared eigenfunctions must coincide, in the semiclas- 

sical limit, with the projection of the microcanonical 
phase-space measure. This idea found solid ground 

on the mathematical results of Shnirelman [ 11, 

Zelditch 121 and Colin de Verdi&e [3]. On closer 
scrutiny, however, what these results state is that, for 

a quantum system that is classically ergodic, there is 
an eigenvalue sequence of the density such that the 
corresponding quantum densities I$ (x) (* converge 
weakly to the Liouville measure. Therefore, the ob- 

servation of states that do not fit these expectations 
does not contradict the mathematical results. For one 

thing the convergence may be very slow and, on the 
other hand, nothing forbids the existence of other 
subsequences converging to measures different from 
the Liouville measure. 

’ E-mail: vilela@alf4.cii.fc.ul.pt. 

In fact wave functions were found which are con- 
centrated near the classical unstable periodic orbits. 

When this happens one says that the quantum state is 
scarred by the unstable periodic orbit or that one has a 

quantum scar. Such states have been observed at first 
in numerical simulations [4-61 and, more recently, 
experimental evidence was found [7] on a semicon- 

ductor quantum-well tunneling experiment. 

The first theory of scars was proposed by Heller [ 5 1, 
other theoretical formulations followed, developed by 
several authors [ 8-111. Heller’s theory studies the 

overlap integral 

for a propagating wave packet which at time zero has 
a Gaussian shape and initial conditions (~0, x0) cor- 
responding to an unstable periodic orbit. Expanding 
?P (0, x) in energy eigenstates 

0375.9601/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved 
P/I SO375960 I (98)00063-2 



224 R. vilela MendesIPhysics L.etters A 239 (1998) 223-227 

one sees that the Fourier transform S(E) of the over- 
lap C(r) is the spectral density weighted by the prob- 
abilities )c,/*, 

S(E) = c Jc,j28(E - En). (3) 
n 

Now, if the period r of the classical periodic orbit and 

the largest positive Lyapunov exponent A are such that 

e-rA/2 is not very small, the overlap C(t) will dis- 

play peaks at times nr. As the wave packet spreads, 
the amplitude of the peaks decreases after each orbit 
traversaJ at the rate e-‘A/2. The Fourier transform of 
C(t) will therefore have peaks of width h with spac- 
ing w = 27r/r. Referring to (3) one concludes that 

only the eigenstates that he under the peaks contribute 
to the expansion of the wave packet. Since the wave 
packet has an enhanced intensity along the region of 

the period orbit, this is expected to carry over to the 

contributing energy eigenstates. The stronger the over- 

lap resurgences are, the stronger the effect is expected 

to be. Therefore, the intensity of the effect varies like 

l/r/\. 
The above qualitative derivation [ 51 of the scar ef- 

fect is flawed if the product A.d(E) (where d(E) is 
the mean level density) is very large. Then the number 

of contributing eigenstates is very large and no indi- 
vidual eigenstate is required to show a significant in- 
tensity enhancement near the periodic orbit. Also the 
argument assumes the low period unstable orbits to be 

isolated. If there are several nearby orbits of different 
periods the argument breaks down. However, if it hap- 

pens that many periodic orbits of the same period are 
present in the same configuration space region, the ef- 
fect may even be enhanced. This is the situation for the 
periodic motions in the neighborhood of an unstable 
critical point (a saddle) of the potential V(x) . Near 
the critical point there are unstable harmonic periodic 
motions along the stable manifold of the critical point. 
As long as anharmonic corrections are unimportant, 
all the orbits will have the same period independently 
of their amplitude. The scars associated to these un- 
stable periodic orbits are called saddle scars in this 
Letter. 

Whenever a dynamical systems has a phase-space 
region with sensitive dependence to initial conditions, 
the periodic orbits in that region are unstable and, even 
when they are dense, they are a zero measure set in 
the smooth (Liouville) measure over the energy sur- 

face. Therefore, unstable classical orbits are in prac- 

tice never observed, because all typical motions are 
aperiodic and uniformly cover the support of the Li- 

ouville measure. The phenomenon of quantum scars 
may therefore have far-reaching implications for the 

applications of quantum systems. Whenever an unsta- 
ble periodic orbit scars a quantum eigenstate, the sys- 

tem may easily be made to behave like the unstable or- 
bit by resonant excitation to the corresponding energy 

level. In this sense, scars are a gift of Nature, for they 
allow the exploration of dynamical configurations that 
in classical mechanics are washed away by ergodicity. 

Saddle points are the typical critical points of 
generic (Morse) functions. Therefore, once their ex- 

istence is established, saddle scars are expected to 
be quite abundant. In the remainder of the Letter a 
semiclassical method is used to establish that, inde- 

pendently of the overall structure of the potential, 
the local dynamics of the saddle point is sufficient 
to insure the existence of this type of scars. Then, 

in the closing section, potentially useful situations 
are identified where these states appear (directly or 

in disguise) and may be used for quantum control 

purposes. 

2. Semiclassical estimates 

In the neighborhood of a saddle point, there is a 
choice of coordinates such that, up to higher order 

terms, the potential is 

V(x) = c a;xf + . . . (4) 

For two dimensions ui > 0 and (~2 < 0. In this case 
one obtains the following result: 

There are scar states concentrated along the stable 
manifold of the saddle point and, on the neighborhood 
of the stable manifold, 

@,,(xl) being close to an harmonic oscillator wave- 
function and W, a function of the monodromy matrix 
in the transverse direction. (Explicit expressions for 
W,, under different approximations are given below.) 

The result is obtained following Bogomolny’s semi- 
classical construction of wave functions [ 81. From 
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the series expansion of the energy Green’s function in 

terms of eigenfunctions it follows that the averaged 
squared wave function is proportional to the imaginary 

part of the Green’s function, 

(I%,(X)(~) cx (ImG(x.x,Eo)), (6) 

the average being taken over a small energy interval 

AE around Eo, which corresponds, in the semiclassi- 
cal approximation, to restricting the contributions to 
orbits with times of motion of order < Zi/AE. Like- 

wise, if an average is taken over small intervals of 
the variable X, the dominant contributions come from 
classical trajectories for which the change of momen- 

tum on the closed orbit is small. I will discuss later 
the role of these two averages. 

The next step is to use the semiclassical approxi- 

mation for the Green’s function 

G(xo,x,E) =G(xo.x,E) 

1 0 
Cd+1 J/2 

+ ri 
GOSC(~O~~~E), (7) 

Gosc(xo.x, E) = 1 
Cd-‘)/2 

x~,/~exp(~S~(re,x,E)-i:~p). 

P 

(8) 

For the contributions in the neighborhood of a classi- 
cal periodic orbit it is convenient to choose one of the 
coordinates along the orbit (xl) and the others (x;; 
i=2 , . . . , n) along the transverse directions [ 12,8]. In 

the neighborhood of an unstable periodic orbit along 
the stable manifold of the saddle point the action is 

expanded up to quadratic terms in the transversal co- 
ordinates and one has 

1 
Gocc(x. X, E) = c 

D@(X,) 

i (2ri)“’ P lil I 

(9) (15) 

with D( x1 ) and M’ij (xl ) functions of the monodromy G( xi, E) being the harmonic oscillator Green’s func- 

matrix in the transverse coordinates, tion. From 

with 

D(xI) = Idet(m,‘)), 

W(xl) = rn,‘rnll + (m22 - 1) ~5~ - (m:J’ 

(11) 

and rt the period of the periodic orbit along x1. These 
expressions hold for any number of transverse direc- 
tions. I now specialize to a two-dimensional saddle 

point. Non-trivial orbits along the stable manifold are 
harmonic motions of period TI = 2n-&/2at inde- 
pendent of the amplitude of the oscillation. Therefore, 

defining 

D= 
e 

sinh(2rdmm) ’ 
(12) 

2 cosh( 2r,/w~) - 2 

w = (l/d=) sinh(2ads[) ’ ( 13) 

D and W do not depend on xt and the dependence 
on the transverse coordinate factors out for each term 

of the sum in Eq. (9). However, for each primitive 
trajectory, one also has to sum over multiple passings 

obtaining the following sum, 

c (2rn?r2) ‘/4 sinhh”2 (no) 
n 

nS+ 
cosh(n6) - I z 

2rnp2 sinh (nO>” 

(14) 

where 6 = 21rds. There are two situations 
where simple closed form results may be obtained: 

- When exp (0) > 1, the x2-dependence factors 
out from the sum and the result is 

(IPE(x)j2) cx (Im [exp (k;x:) G(.rt.E)]) I 
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(16) 

it follows that the principal part drops out under av- 

erages over small energy intervals and the result (5) 

follows with IV,, = W for n = 1,2, . . _ The lowest lying 
state, however, corresponds to the orbit of the unsta- 
ble fixed point and the period of this orbit is no longer 

ri . The value of Wa in this case may be calculated by 

considering an orbit from the coordinate (0, x2) to the 
fixed point (0,O) and back along the unstable mani- 

fold, which is equivalent to taking the limit ui -+ 0 
in Eq. (13). Then 

wa=2JG. (17) 

- If exp (8) is not large then the x2-dependence 

does not factor out in the sum ( 14). Notice, however, 
that the sum in (14) is not a sum over multiple pass- 
ings of the same orbit, but a sum over different orbits 

because, for x2 # 0, the initial and final momenta are 
different, and the difference grows with n. Therefore, 

if, in addition to the average over small energy inter- 

vals, one also averages over small coordinate inter- 
vals, then the contribution of the primitive orbit dom- 

inates the leading semiclassical approximation. The 
same factorization of the x2-dependence, as before, is 

obtained. However, the $(xi ) function in this case 
is not exactly an harmonic oscillator wave function, 
but a function corresponding to a sum restricted to the 
primitive orbits. 

3. Applications 

The canonical form of the potential near a saddle 
point establishes a local separation of variables which, 
of course, does not hold far away from the saddle point. 
However, what the semiclassical estimate of the pre- 
vious section shows is that the local dynamics of the 
saddle point is sufficient to insure the local existence 
of a factorized quantum state (5). If the separation of 
variables extends over a sufficiently large range, then 
the transverse shape of the wave function may be ap- 
proximated by the solution of a one-dimensional prob- 

Fig. 1. One-dimensional density for a wave function concentrated 

around an unstable point and the semiclassical approximation ( +). 

lem. Consider, for example a one-dimensional Hamil- 

tonian 

H = -&--2 + 2gcos(x) (18) 

with 2n--periodic boundary conditions. The eigen- 
states are Mathieu functions and there is a state of 

energy slightly above 2g with the squared amplitude 
IF12, as shown in Fig. 1 (for g = 50, 1/2m = I, 

E = 101.189). In the figure the state is also compared 
with the local approximation following from (5) 

and ( 17). The width of the state depends on the factor 

fi and the energy is approximately 2g plus the 
kinetic localization energy. For a higher dimensional 

problem one must also add the quantized energy of 
the harmonic oscillation along the stable manifold. 

These considerations provide a simple rule for the ap- 
proximate energies at which saddle scars are expected 
to be found. 

Among the physical situations in which saddle scars 

might appear, an interesting example is probably the 
quantum collision of systems containing both attrac- 
tive and repulsive interactions (chemical ions, nu- 

clei, etc.) [ 131. When a system contains several pos- 
itive and negatively charged particles, there are clas- 
sical configurations of close proximity of the particles 
which are of low energy because the repulsion between 
the like-charged particles is compensated by the attrac- 
tion of unlike-charged particles. These configurations, 
however, are highly unstable and the chance to ob- 
serve (or stabilize) them in classical mechanics is nil. 
They are zero measure configurations on the energy 
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surface. For smooth potentials these unstable configu- 

rations would be saddle points of the potential, hence 
they are expected to give rise to saddle scars. These 
states would correspond to well-defined energy levels 
and might be prepared by resonant excitation. That is, 

quantum control through scars makes accessible some 
states that, classically, are essentially unobservable. 

Another interesting aspect of saddle scars is their 
generality, because saddle points are the typical crit- 
ical points of generic functions. There are also other 
features of the classical phase space which the wave 

functions imitate and that, in some limit or by change 
of coordinates, may be related to the saddle scars. This 

concerns in particular the regularization of singular 
potentials. An example is the collision states found for 

a three-dimensional periodic Coulomb problem [ 131. 
In this case the quantum collision states correspond to 

wave functions concentrated along a phase-space fea- 
ture which is not an actual orbit, but the separatrix of 
two classes of unstable orbits. 

ing classical motion is planar motion in the plane of the 

two unlike Jacobi coordinates, for example (r) ,772). 

The stable direction, of the regularized potential sad- 
dle point, becomes then a separatrix of unstable or- 
bits in the E --f 0 limit. Nevertheless, for the periodic 

Coulomb problem [ 131 a low energy eigenstate is 
found that is concentrated along the separatrix. There- 

fore, in this case, the saddle scar effect is seen to 
survive the E --f 0 limit. Separatrixes or stable sad- 

dle ridges are zero measure features, essentially non- 
observable in classical systems. It is interesting that, 

through the scar effect, they do correspond to well- 
defined energy levels, accessible by resonant excita- 

tion. 

In Jacobi coordinates (r = XI - x2, 7 = x3 - i ( x1 
+.\-I ) ) the potential between three unlike-charged par- 
ticles is 

The existence of saddle scar states implies a certain 
amount of localization of the particles in, at least, one 

of the coordinates. Therefore, if at least one of the 
particles is light, the low energy eigenstates of this type 
must be delocalized in the other coordinates. Hence. 

they are not expected to be important (at low energies) 

for the near-collinear configurations studied [ IS, I6 ] 
for two-electron systems. 

v(r.v) = & - ,;rlVj - ,& (19) 

The dynamics of binary collisions in the three-body 
problem may be regularized, but the case of interest 
here is a triple collision which, except for exceptional 
cases [ 141, is not regularizable. The potential, how- 
ever. may be regularized by addition of a small quan- 
tity to the definition of the distances 
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