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Brownian motion may be embedded in the Fock space of bosonic free fields in one dimension. Extending this correspondence
to a family of creation and annihilation operators satisfying a g-deformed algebra, the notion of g-deformation is carried from the
algebra to the domain of stochastic processes. The properties of g-deformed Brownian motion, in particular its non-Gaussian

nature and cumulant structure, are established.

The concept of symmetry plays an essential role in
the description of physical phenomena. In most cases
this symmetry is related to covariance under the
transformations induced by a Lie algebra. A gener-
alization of this mathematical structure, the g-de-
formed (or quantum) algebras, has recently emerged
{1-7]. g-deformed algebras, first discovered in the
context of integrable lattice models, were later iden-
tified as an underlying mathematical structure in
topological field theories [8] and rational conformal
field theories [9]. Other attempts to apply the no-
tion of g-deformed algebras cover a wide range of
different domains, from space-time symmetries [10-
12] to gauge fields [13], to quantum chemistry [14].

In view of the actual and potential applications of
g-deformation in the context of Lie algebras and su-
peralgebras, it is interesting to ask whether the no-
tion of g-deformation can also be extended to other
(non-algebraic) mathematical structures. In this pa-
per we try to extend this notion to stochastic pro-
cesses. Our starting point is the well-known embed-
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ding of Brownian motion in the Fock space of bosonic
free fields in one dimension [15,16]. Extending this
correspondence to a time family of creation and an-
nihilation operators satisfying a g-deformed algebra
we establish a g-deformation of Brownian motion.

g-deformed creation and annihilation operators
were defined by several authors [17-20]. They sat-
isfy the algebra

aal—q~ata=q", (1a)
aat—qgata=q~", (1b)
where N is the number operator,

[N, at]=at, [N,al=-a. (2)

The operators a, a’ may be realized as infinite-di-
mensional matrices on a vector space by

atiny=/[n+1]|n+1>, alnd=/[n]|n-1>,

Nind=n|n)>, 3)
where we used the notation

_y _ sinh(XIng)
[X]=X,= sinh(lngq) ’ (4)

X being a number or an operator. g-deformation of
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single boson operators is invariant under the replace-
ment g—q~! and we write the algebra in an explic-
itly symmetric form which will be useful later on,

aat—4(g+q "ata=4(q"+4~") (5)

(notice that g+¢~'=[2]).

We now consider a family {a,, al} of g-deformed
operators labelled by a continuous time parameter
and a scalar field

¢.=a.+al. (6)

For the family {a,, al} we generalize the relations
(5) and (2) to

aﬂalz _%(q+q_l)alzar|
=43(g"+q ")o(1 —12), (7)
[N, all=al, [N, a.l=-a,. (8)

This is the simplest extension of the relations to a
family of g-deformed operators labelled by a contin-
uous parameter. Other generalizations of (5) are
possible, involving for example braid relations at
different times. Notice also that, for our purposes of
constructing a stochastic process, no assumptions are
needed concerning the commutation properties of
a,a,, and a} al, at different times.

Smearing the fields with characteristic functions
Xto,n of the interval [0, ¢],

4, =a,(x) = | dra,. (%)
0

al(t)=aj(X.n)= jdraI, (9b)
0

0u(1) =0, (ti0) = | a0, (10)
o]

the algebraic relations become
a,(ty)al(t)—4(qg+q " al(t)a,(t)
=3 (g"+g ") (), (11)

where (7,|7,)> =min(¢, ).

We now use (11) to construct a g-deformation of
Brownian motion. Let (2, F,, u, B,) be the usual
Brownian motion. £ is the set of continuous func-
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tions vanishing at =0, u is the Wiener measure and
F, is the o-ring generated by {B;: 0<s<t}. On the
other hand let (#, A, v, ¢,(1)) be the free quan-
tum field over K=L?([0, o), R). ¢,(#) =¢,(X10,1)
(for g=1), A is the symmetric Fock space over K,
W, 1s the Fock vacuum and 4, is the W*-algebra gen-
erated by {¢,(s): 0<s<t}. Then [16], interpreting
B, as a multiplication operator in L2(£, F,, u), there
is a unitary operator V: L?(, F,, u)— 2 such that
VB,V -'=¢(t). That is ¢(¢) as a stochastic process
with expectation

E(f(9(1))) = <o, (9()) o> (12)

coincides with Brownian motion. For this identifi-
cation of the free scalar field with Brownian motion
it is useful to characterize the filtration 4, by the con-
ditional expectation of Wick products [21 ]

EC:01(uy)..0(un): ] A4r)
=:61 (X101 ¥1)--01 (X1 (X[o0, qUn) : - (13)

Recall that the Wick products span the algebra gen-
erated by ¢, («). Hence, by linearity, definition on
Wick products suffices to define conditional expec-
tations on the complete algebra.

We now use a minimal version of this correspond-
ence to define g-deformed Brownian motion.

Definition. g-deformed Brownian motion is the
process (£, F,, p,,, ¢,(t)) where

(1) ¢,(t) is the operator defined by (9)-(11).

(ii) Expectations of field functionals f(¢,) are ob-
tained by

E(f(¢q) ) = <W0af(¢q)y/0> 5
¥o being defined by a, =0 (14)

(iit) The filtration F, is characterized by the con-
ditional expectations of Wick products

E( . ¢q(tl )---¢q(tn) . | Fs)
= @e(Xi051X10,11) - Pa(X10,51X10,m1) : - (15)

Notice that the algebraic relations (11) allow all
elements of the algebra generated by ¢,(?) to be re-
duced to Wick products, hence all conditional ex-
pectations may be computed. Notice also that in this
minimal definition the family F, of measurable events
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is fixed in advance and we avoid an explicit reali-
zation of the probability space £2.

Theorem 1. g-deformed Brownian motion

(i) has zero mean, E(¢,(?))=0;

(ii) has variance E(¢,(¢)9,(s))=min(s, ¢);
(ii1) has independent increments in the sense

E({9,(11)—0,(12) }{0,(13) —0,(24) })
=E(9,(11) —0,(2) YE(8,(13) —$,(14) ) =0,

if there is no overlap between the intervals [¢,, #,]
and [t?n t4];

(iv) is a martingale. Properties (i)-(iii) follow by
a simple computation using (10), (11) and (14).
The martingale property is a consequence of (15).
If s<t

E(¢q(l) IFS) =¢q(X[0,s]X[0,t] ) =¢q(s) .

Theorem | summarizes the similarities of g-de-
formed Brownian motion to the usual Brownian mo-
tion. The next result displays their main differences
as well as an explicit characterization in terms of
cumulants.

Theorem 2.

(i) g-deformed Brownian motion is not a Gaus-
sian process.

(ii) The cumulants are

Ex(¢,(t1) -.0,(2,))
= Y Cnrizytinoniny lit [t D oee iy | tin D (16)

where (t;|;> =min(¢, t;), the sum is over all (3)
different partitions of the set (¢,...f,) into pairs and
the coefficients ¢(;,,)...(in_1i) ar€ obtained by the fol-
lowing graphical rules.

(a) For each term in eq. (16) one draws the
{ti | tay, > contractions as follows,

asliciiass

1 2 3 4 5 6 7 8 9 10
(17)

(b) For each crossing of lines there is a factor
1(g+g™") = 1in Chn).(inmrim) -
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(c) For each contraction contained at depth « in-
side other contractions there is a factor
$(g%+q7%) =1 1D Chiry...(inriny -

(d) If there are no crossings nor inner contrac-
tions the coefficient ¢(;;)..in_1isy Vanishes.

In example (17) the contribution of the diagram
to the coefficient is

{§(g+q= ") -1}*{3(g*+q ) -1}
x{i(g+qg=")-1},

the first factor coming from the crossings and the last
two from the inner contractions at levels 2 and 1.

A necessary and sufficient condition for a process
to be Gaussian is that it possesses cumulants of all
orders and that they vanish for orders higher than 2.
Computing the four-time correlation one obtains us-
ing (11) and (14)

E(t1t:8:314) =E(@g(11)0,(12) 0,(23) $4(14) )
=LYty +i(gtga )Y (LIt
+3(g+q )<t )1t ,

implying that the cumulant

Er(tihtsty)=E(t 1 hists) —E(t L) E(t51s)
—E(tL)E(LL) —E(L 1) E(L L)

does not vanish. Hence the process is not Gaussian.
The explicit expression for the cumulants of ar-
bitrary orders is obtained by systematic reduction of
the expectation values using the algebraic relations
(11). The “crossing lines” factor comes from the
coefficient of the second term in the Lh.s. of (11)
and the “inner contractions” factor from the r.h.s.
together with (8).
As a final remark we point out that using the g-fer-
mions b and bt with
bb*+qbtb=¢q™,
[M, bt1=bt, [M,b]=-b, (18)

and a generalization along the lines of (6)~(11) one
may construct a g-deformation of the non-commu-
tative Clifford process [21]. We leave the details to
the interested reader.
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Note added

After this paper was circulated in preprint form we
have learned that Bozejko and Speicher [22] have
also proposed a deformed generalization of Brown-
ian motion. Unlike the authors, instead of general-
izing the g-deformed oscillator, they use as a starting
point the quon commutation relations [23] which
interpolate between bosons and fermions. The de-
formed process is therefore different, although some
of the ideas are of course related. The authors are
grateful to Professor O.W. Greenberg for calling their
attention to Bozejko and Speicher’s work.
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