
Volume 155, number  6.7 PHYSICS LETTERS A 20 May 199 t 

Variational formulation and ergodic invariants 

A. Carreira, M.O. Hongler  and R. Vilela Mendes 
Centro de Fisica da MatOria Condensada, Av. Gama Pinto 2, P-1699 Lisbon Codex, Portugal 

Received 26 September 1990; revised manuscript  received 14 March 1991; accepted for publication 15 March 1991 
Communicated  by A.R. Bishop 

A family of ergodic invariants for discrete t ime dynamical systems is constructed from a variational formulation of the dynam- 
ics. Some examples are presented for the case of  one-dimensional piecewise linear maps. 

I. Introduction 

In the ergodic theory of dynamical systems the central objects to be studied are the measures invariant under 
time evolution. Various parameters are associated to the invariant measures, namely the Lyapunov exponents, 
the entropy, the information dimension, Ruelle's rotation number. As emphasized by several authors [ 1 ] the 
characterization of the dynamics is in general not exhausted by the ergodic parameters listed above. Other er- 
godic parameters may play a useful role in the characterization of the probabilistic properties of dynamical 
systems. The following simple argument [2 ] shows why this must be so. Any given ergodic parameter is defined 
by an infinite time limit. This quantity will fluctuate and in general the fluctuations will not be Gaussian. The 
quantity describing the distribution of the fluctuations is again an ergodic invariant and the same reasoning 
applies in turn to its fluctuations, etc. 

The possible existence of an infinite number of independent ergodic invariants raises the question of its con- 
struction and classification. Constructions related to the reasoning above have been used to characterize the 
range of possible fluctuations around the Lyapunov exponent and to obtain "generalized Lyapunov exponents" 
which seem appropriate to characterize intermittent behavior [3,4]. 

In this paper we use a somewhat different approach to the construction of a family of ergodic invariants for 
a dynamical system. Rather than relating the new invariants to the fluctuations of a previously known quantity, 
we try to analyse the problem anew, attempting to extract the invariants from a general characterization of the 
dynamics. One of the aims of this approach would be to obtain a sort of complete set of ergodic invariants. 
This goal we do not claim to have achieved, in particular because the notion of completeness is not easy to 
characterize. 

Our basic tool is a variational principle for general maps [ 5] which describes the dynamics of the system 
by the critical points of an action functional. The functional may be constructed both for conservative and 
non-conservative maps. The action functional being critical if and only if the trajectories are determined by 
the dynamical system, it should contain all the information about the system. Thus suggests that whatever in- 
variant dynamical information may be obtained from the system it may also be obtained from the action. Of 
particular interest are the analytical properties of the action in the neighborhood of the critical points. It is 
then natural to look for a family of invariants in the coordinate invariant features of the Hessian, i.e. in the 
properties of its eigenvalue distribution. 

In section 2 we review briefly the variational formulation for dissipative maps proposed in ref. [ 5 ] and in 
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section 3 a family of ergodic invariants is constructed. Finally in section 4 several examples are worked out. 

2. Variational formulation for dissipative maps 

Let (M, ])  be a differentiable discrete time dynamical system defined by the mappingf.  M ~ M ,  M being an 
open set of Ed. Now we define the space Y~ of ordered (N+  1 )-tuples with initial condition Xo, 

Yx~ = {x = ( Xo, x l ..... Xs ); Xo fixed, x~...Xs ~ M}. ( 2.1 ) 

An orbit segment of f with initial condition Xo is an element of  Y~ for which xi=f(x~_ 1). 
In Y~ we define a topology by the metric 

Ix -y l  = s u p l x i - y ~ l  • 
i 

The dual Yx N* is the space of continuous functionals Y~--,N. A differentiable functional has a stationary (crit- 
ical) point ifOF/Ox'~=O, i=1  ..... N; a = l  ..... d. 

The strong inverse variational problem is: 
Given a dynamical system (M, f )  find a family of functionals AN~Y N* (VXo, VN) that are stationary if and 

only i f x e Y ~  (VXo, VN) is an orbit segment o f f  
Notice that it is not required that OAN/Ox~' = 0 coincides with the equations of  motion. Actually when this 

requirement is imposed on AN the problem has in general no solution unless (M, f )  is a conservative system. 
By contrast the inverse variational problem as formulated above has the general solution [ 5] 

d N 

A N =  ~ ~ [ X ° ~ - - f a ( x k _ t ) ] G k j [ x ~ - - f C ~ ( X j _ l ) ] ,  ( 2 . 2 )  
or= 1 k>~j>~o 

with 

Gkj = CkOkj (2.3) 

o r  

Gkj=CkOkj+l (N even) . (2.4) 

Both choices are solutions to the strong inverse variational problem. The restriction to N even in (2.4) comes 
from the " i f  and only if"  condition. The nature of the critical points is in general very different for the choices 
(2.3) and (2.4). Of  particular interest for the results of the next sections is the particular case Gkj=Okj. 

3. Ergodic invariants 

Here we consider the functional 

d N 

AN= ~ ~ [x~ ' - f~(x j_ , ) l[x}~- f '~(x j_ , )] .  (3.1) 
or= 1 j>~O 

Since there is a one-to-one correspondence between critical points of  As and orbits of the dynamical system, 
it is natural to assume that the essential dynamical information on the system is contained in the analytical 
structure of AN in the neighborhood of the critical points. The first non-trivial information is in the Hessian 
HN at the critical points, namely in its eigenvalue distribution, 
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1 02A~,, =Sa,//~j, k -  ( 1 --6k,~/)~J,,j-U 
~HN = 20x~Ox~ 

Of'(x,) Of ~'(xj) 
+ a,.k(1--c~j.N) OX~ OX~ 

Of"(xk) ore(x~) 
Ox~ ( 1 -  aJ'N)a"k-' O X ~  

(3.2) 

Lemma. The eigenvalues of the Hessian HN of the functional AN at the critical points are all positive. 

From (3.2) one obtains for the second variation of A N o n  the orbits (critical points) 

½~2AN-= Z ~iXT--(1--a,_l,N) Z~Yfl_, ~XT--(1--~j--,,N) E~X#_', 0fc~(A)-') ,,, , /~ Oxy '  " (3.3) 

Because 82AN> O, the eigenvalues cannot be negative. On the other hand if 82AN= 0 each term in (3.3) must 
vanish, i.e. 

O X f f  1 = 0  Vol, j .  

For j =  1 one obtains 6x? 8x~* =0  (recall that xo is the initial condition, not a functional variable). Therefore 
8ZAN=0 implies 8x] =0  roe, j, i.e. there are no zero eigenvalues. 

The next result shows that the momenta of the eigenvalue distribution are ergodic invariants. 

Theorem. Let (M, u) be a measure space, u a probability measure a n d f a  measurable mapping in M leaving 
v invariant. Let/~p(N) be the p-momentum of the eigenvalue distribution of the Hessian HN associated to f b y  
eq. (3.2), 

1 N 
/1} '') = ~ , ~ ,  2 , ,  (3.4a) 

~¢,N) 1 iv 
= ~,Z= (2,-£)~',  p=2 ,  3 . . . . .  (3.4b) 

Then, provided the /~v)  are of class L i (v), the limit l i m u ~  N - ~/~p(x) =/~p exists. (In (3.4b) we have used 
the notation 2-/1~. ) 

The quantities ¢zp (x) are related to the traces of powers of the Hessian 

1 
/~}x) = ~ T r  Hx ,  (3.5a) 

/z~N) = --1Nk ~ o (~ )  ( -  1 )k Tr HgTk2-k " (3.5b) 

From (3.2) it follows that each diagonal element of HYv is a function involving only coordinates defined at 
q different times, 

H q ( N)to~.tc~ = (S~q) io~, io t (x t  . . . . . . .  x i ,  ..., x i +  U ) , 

390 



Volume 155, number 6.7 PHYSICS LETTERS A 20 May 1991 

with ~ + ~' = q -  1 and I e -  ~' I ~< 1. 
Instead of H)~ consider the matrix H~  as a block of dimension N imbedded in a larger matrix of dimension 

N+q in such a way that all diagonal elements of H ~  have the generic form and are not truncated by the effects 
of proximity of the matrix boundaries. Then the sequence of functions Tr H~  satisfies the additivity condition 

Tr H'~+N(X ) = T r  H~(x) + T r  H ~ 0  r (M)x) . 

Because the eigenvalues are all positive f Tr H'~(x) d r >  0. 
For a probability space with a measure v and a measure-preserving t ransformat ionf  Kingman's sub-additive 

ergodic theorem [ 6,7 ] states that, if a sequence (g,)  of L ~-functions satisfies g, + k <~ g, + gk°f ~ almost every- 
where (a.e.) and 3M>_-0 such that fg, d v >i -M,  then lim n -  tg, exists almost everywhere and 

f l imlg ,  dv=liml  ~ g. dv 
A A 

for every invariant measurable set A. All conditions of the sub-additive ergodic theorem are fulfilled for 
Tr H~  and therefore limN~oo N - l  Tr H'~(x) exists v-almost-everywhere. Furthermore for every measurable 
invariant set A 

1 
f lim ~ T r  H ~ ( x )  d r =  lim 1 f T r i l l ( x )  dv 
• t N ~ o o  u ~ o o N . 1  " 
A A 

Then the same statements hold for l i m ~  N -  ' Tr H~,(x) because the sums in the traces differ at most in q 
terms. 

Existence of these limits implies the existence of the/Zp'S. 

Explicit expressions for the invariants/tp as functions of the orbit coordinates are easily obtained from (3.2) 
and (3.5). For example for one-dimensional mappings X.+l=f(x.) one obtains 

½#, = 1 + tv~lim 1N ~ [f'(xi)]2 , (3.6a) 

-~#2= lim 1 ~  [ f , ( x ~ ) ] 4 + 2 p  ' --~/lll 2__3 (3.6b) 
N ~ o o  N i 

1 i f ,  L+x" [ f , ( x i ) ] 6 + 3  lim ~vV~-~E (x , ) lZ[ f , (x ,+ , ) lZ+3/ t z_~ /z l  3 2 ~/~3= lim " ~ 2 ~ 1  - -  3 / [ / 1 ] ~ 2  l 3 • - g / q + 1 0  (3.6c) 
g ~ o o  g - g ~ o ~  

4. Hessian spectrum and ergodic invariants. Examples 

From (3.2) and (3.5) the invariants are obtained as explicit functions of  the orbit coordinates and may in 
all cases be computed numerically by iterating the maps and taking limiting averages. In simple cases they may 
be obtained directly from the spectrum of the Hessian. Furthermore, the fact that the moments of the eigen- 
value distribution are ergodic invariants, implies that the spectrum itself may be taken as ergodic character- 
ization of the dynamical system. This point of view is emphasized in our second example where some features 
like the spectral gaps are found to be related to dynamical properties. Even the (numerically computed) in- 
tegrated density of eigenvalues may provide useful characterizations of the dynamics (see ref. [ 5 ] ). 

The spectrum is found by solving the characteristic equation 
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Sx().)=Det[{Hx-).] = 0 .  (4.1) 

For one-dimensional maps x,,+ ~ = f ( x , , ) ,  H x is a tridiagonal matrix. The Sx(Z) form a Sturm sequence of pol- 
ynomials [8] with the recurrence relation 

S, , (2)= 1, S , ( Z ) = ' , I + [ / " ( x , ) ] 2 - 2 ' , ,  . . . .  (4.2a) 

S , + , ( 2 ) = ' , I + L / " ( x \ + ~ ) ] 2 - 2 I S x ( ) . ) - [ I " ( _ r A ) ] 2 S . ,  , ( ) . ) .  (4.2b) 

In particular, if the motion is chaotic, this will be a random Sturm sequence. 
We now discuss a few examples chosen from the class of  piecewise linear maps, for which analytical results 

may be obtained. 
Consider the following one-dimensional maps, 

a-~ [ 0 ,  ½[ , 

xe[½, 1], (4.3) 

x,,+ ~ = 2ax,,. 

= 2 a (  l -_r,,), 

and 

x,,+ ~ = 2ax, , .  

= 2 - 2ax, , ,  

x e [ O ,  l / 2 a [  , 

x~ [ l / 2 a ,  1 ] .  

They are sketched in fig. 1. 
The maps (4.3) and (4.4) lead to identical Sturm sequences: 

So(2) = 1, $1(2) = 1 + 4 a 2 - 2  . . . . . .  ~ + l ( 2 ) = ( l + 4 a 2 - 2 ) g ~ ( 2 ) - 4 a 2 S ~  , i ( ) - ) .  

Using the results of  ref. [9],  it can easily be shown that 

S ' ( ) ~ ) = ( - l ) X ( 2 a ) X s i n  ( N +  1 ) arc°slk "[sxn[arc°slk ~aa 

From (4.6) one obtains for the Hessian spectrum 

/ "  1 + 4 a - ' + 4 a  c o s ( x ~ )  /-~ x = k = 1, N 

The momenta  of  the eigenvalue distribution are obtained explicitly, 

IH[ ,X)  2 g l ~pH(.~;) ) ~ , L Z  2~,~ = l + 4 a  = ( 4 a  p cos 
I 

In the limit N~oo one obtains for the invariants 

{lq = 1 + 4 a  -~ , 
7[ 

(½)"/1,,-- (4a)"  ~ x  (cos u)P d u =  (4a)"  (P-p??l)?? (p even ) . 

O 

(4.4) 

(4.5 

(4.6 

(4.7 

(4.8a 

= 0  (p odd ) .  (4.8b) 

Notice that, from the point of  view of  the invariants derived from the Hessian, the dynamical systems defined 
by eqs. (4.3) and (4.4) are entirely equivalent. This reflects the similarity of  their measure properties. From 
ref. [ 10] it is indeed known that they share a lot of  common  properties. They both have a unique invariant 
measure and the dynamics induced by the Perron-Frobenius  operator is asymptotically periodic. 
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Let us now turn our attention to the asymmetric roofmap [11] and a closely related monotonic piecewise 
linearsystem. These dynamicalsystems are defined by the equations (a>0 .5)  

Xn+l =2ax,, xe[O, 1/2a], 

2 a ( 1 - x n )  xe]l /2a,  1] (4.9) 
- -  ) , 

2 a - 1  

and 

x,+l =2axn, x e  [0, 1/2a] , 

2axn- 1 
_ - -  xe l l /2a ,  l] .  

2a-1 ' 
(4.10) 

These maps are sketched in fig. 2. 
Eqs. (4.9) and (4.10) present a richer behavior than the previous maps (4.3), (4.4). The Sturm sequence 

(4.2) involves again identical coefficients for both systems; however, the recurrence depends now on the tra- 
jectories. Let us discuss some properties of the spectrum of the Hessian. Consider the eigenvalue problem 

½HNU=2U, U=(Ul ..... U~), (4.11) 

where HN is the Hessian matrix of eq. (3.2). Defining 

( u' ) 1=1 N _ I ,  ..... (4.12) 
V l +  I = Ul+ 1 

the eigenvalue problem (4.11 ) may be rewritten in the equivalent form 

Vt+,=TtVt, /=1 ..... N - 1  , 

where the transfer matrix T~ for a one-dimensional map is 

(4.13) 

0 1 

Tl= f ' ( x t - l )  1 + f '  (X/) x-,~ (4.14) 

f '  (X/) f '  (X/) 

For the examples (4.9) and (4.10) we observe that the transfer matrix Tz takes along the trajectory one of the 

following four values, 

1 a 1 

I 
1/2 

Fig. 1. (a) Mapping ofeq. (4.3). (b) Mapping ofeq. (4.4). 

1 

0 L 1/2a R 
¢ 

0 L 1/2a R 

Fig. 2. (a) Asymmetric roof map, eq. (4.9). (b) Monotonic map, 
eq. (4.10). 
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+ 

T ~  ~ = 

T~ 4) = 

+ 

I ° l  1 +4a2-2~ 
1 2a 

o l 

1 1 + 4 a  2 -  ' 

2a- -  1 2a 

0 1 

2 a -  1 ( 4a 2 
_ + ( 2 a - l )  T - ~  1+ ( 2 a _ l )  ~ 

0 , )] 
2 a -  1 ( 4 a  2 " 

- 1  T- ~ 14 ( 2 a _ l )  ~ 2 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

where 7"L '~ refers to the map (4.9) and T~ ~ to the map (4.10). 
The spectral properties of  the Hessian may now be discussed using the same techniques that are used to study 

the vibrations of  disordered lattices [ 12 ]. One might think in terms of  a lattice with four different a tom species 
leading to the four different transfer matrices ( 4.14a ) -  (4.14d ). However, the analogy is not complete because, 
in a sequence generated by eq. ( 4.13 ), T ~ ~ ) and T (z) can only be followed by T ( ~ ~ or T (3 ~ and T (3) and T (4 
by T ~2~ o r  T (4) .  In particular repetition of  T ~2) and T (3) is not possible. Products o f  the matrices T (2~ and 
T ~3) repeat themselves when a trajectory oscillates between the two regions ( L =  left and R =  right, see fig. 2) 
of  the partition of  the interval. Hence, to analyse the spectral gaps, rather than the transfer matrices T(2~ and 
T (3), we consider the products 

1+0~2 ~" 
+-P  T 

T[2) T~+3) = o~ 
+_ 1 + f l 2 - - 2  + o~ 1 + f l 2 _ 2 1 + ~ 2 _ ) ,  , (4.15a) 

+ 0¢ 1 + / 3 2 - 2  

T ~ '  T ~+ 2)= - fl fl (4.15b) 
_ 1 + f l 2 - 2  1 + o ~ 2 - 2  ' 1 + c ~ 2 - 2  + fl-T- - -  

fl - o t  o~ fl 

w h e r e o ~ = 2 a ( 2 a - 1 )  1 a n d f l = 2 a .  
Using eqs. (4.14a,d) and (4.15a,b) we can now discuss the properties of  the spectrum of  H~. as for a tetra- 

atomic disordered lattice. This analogy leads to the calculation of  the spectral gaps which, according to the 
phase-angle representation [ 12 ], occur when the eigenvalues of  the transfer matrices (4.14a,b) and (4.15a,b ) 
are real. This implies the following allowed regions for the Hessian eigenvalues, 

2~ [1 + 4 a 2 - 4 a ;  1 + 4 a 2 + 4 a ]  , (4.16a) 

4a2 4a . 4a2 4a ] 
),e 1+ ( 2 a _ l )  2 - 2 a - ~ '  1 + ( 2 a _ 1 ) ~ + 2 ~ _ ] ,  (4.16b) 
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2C 

0 0,5 I 
Fig. 3. Spectral regions associated to the three types of  transfer 
matrices and spectral gaps. ~= ( a -  1 )/a. The 2-axis is a symme- 
try axis for the graph. 

;t~ [ 1 ; l + l { a 2 + f l z - x / ( a z + f l z ) z - 1 6 a f l }  l or [l+½{a2+flz+x/(aZ+fl2)2-16afl};l+aZ+flz]. 
(4.16c) 

Eqs. (4.14a,d) imply the relations (4.16a,b) while the last relation (4.16c) follows both from (4.15a) and 
(4.15b). The allowed regions for the spectrum of the Hessian are the same for the maps (4.9) and (4.10). As 
in the first example, this is related to the similarity of their invariant measure properties. In fig. 3 we have 
marked the boundaries of the spectral regions associated to each one of the relations (4.16 ). 

It is known [ 10,11 ] that both maps (4.9) and (4.10) ( a>  ½ ) have the Lebesgue measure as their invariant 
measure. Therefore a typical trajectory will contain sequences of transfer matrices of the three types (4.14a), 
(4.14d) and (4.15). Invoking the Saxon-Hutner theorem [ 12 ] we conclude that spectral gaps exist in the in- 
tersection of the complements of the domains defined by (4.16). These are the shaded regions in fig. 3. 

The density of eigenvalues in the complement of the spectral gaps is however expected to depend on the 
relative frequency of occurrence of sequences of each type. For example, for a in the interval [ ½, ½ + ~ ], where 

is a small positive quantity, one has intermittent behavior with long sequences of T t ' ) type dominating the 
dynamics. Then one expects relation (4.16a) to characterize the region of higher density of eigenvalues, with 
only a few eigenvalues lying in the complement of this region (excluding the gaps). This also suggests that the 
spectral distribution and gaps of the Hessian HN might provide a rigorous characterization of intermittency. 
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