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The problem of describing quantum thermal processes by stochastxc dxfferentlal equations is rewewed. Extensions to 
previous approaches are proposed In parucular, a general way is found to construct the dnft of the thermal process directly 
from the lnteractmn potential. 

The stochastic mechanics formulation of quan- 
tum mechanics, introduced by Frnyes and Nelson 
[1,2] and extended by other authors [3-5], pro- 
vides a set of equations, mathematically equiv- 
alent to the SchriSdinger equation, which can be 
dealt with by probabilistic techniques. Carrying 
over new tools to quantum mechanics, it seems 
particularly promising in situations not amenable 
to perturbation theory of the SchriSdinger equa- 
tion. Examples are the semiclassical limit of tun- 
nelling [6] and e x p ( - X / g  e) dependent mass gaps 
m lattice theories [7]. 

The extension of stochastic mechanics to non- 
zero temperature was discussed by a few authors 
[8-11], leading to several definitions of the ther- 
mal process. The main problem remaining in the 
applications of thermal stochastic mechanics lies 
in the fact that, except in cases where either the 
exact spectrum or a good set of coherent states are 
known, the process is not easily amenable to prac- 
tical computation. In particular for numerical 
simulation methods, it would be desirable to have 
a way to generate the drift of the thermal process 
directly from the potential, without explicit 
knowledge of the nature of the spectrum. 

After reviewing briefly the approaches of 
Guerra and Loffredo [10] and Ruggiero and Zan- 
netti [11], and pointing out some of their limita- 
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tions and possible extensions, an equation will be 
derived which, by evolution from the infinite tem- 
perature regime, defines the drift at any finite 
temperature. For definiteness let { ~k~ } be a com- 
plete orthonormal set of solutions to the Schrr- 
dinger equation 

ihOAb = - ( h 2 / 2 m ) a ~  + V ( x ) ~ .  (1) 

The quantum equilibrium state at temperature T 
is described by the density matrix 0 

pep = Z -  l( fl ) )-~e-/3e.~( ~, ,  ep ). (2) 
n 

In stochastic mechanics, to each state ~k~ one 
associates a stochastic process x , ( t )  solution to 
the stochastic differential equation 

dxn( t  ) = b~ dt + hvCh-~ dW(t ) ,  (3) 

where (dW(/))  = 0, (dW(t)  dW(/))  = dt, b, = u~ 
+v~, 

u~(x, t) = ( h / m ) V  In [ ~k,(x, t ) l ,  (4a) 

v , (x ,  t) = ( h / m ) V  arg ~k,(x, t) .  (4b) 

To the thermal mixture state at temperature T 
corresponding to the density matrix p [eq. (2)], 
Guerra and Loffredo [10] associate a stochastic 
process x(t)  which they define through the generic 
average 

<F(x( ta) . . .  X(ts))> 

= Z- l~_ ,e- /~E"(F(x , ( t l ) . . . xn( t s ) ) ) .  (5) 
n 
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One may actually give a more explicit char- 
acterization of the thermal process. From the posi- 
tion probability density 

p ( x ,  t) = T r ( [ x ) ( x l p )  

= z-l(f l)~_,e-ae"p.(x,  t), (6) 
n 

where p.(x, t) = I +.(x, t) [ 2 and eq. (3), one may 
compute 

d ( f ( x ( t ) ) )  = f dx f(x)Otp(x,  t) dt 

for an arbitrary function and obtain 

E, e-Pe"o.b. 
d x ( t )  ---  _-z-h--~Z ~ dt  + ~ dW( t ) .  

E, e- "0. 
(7) 

Using the decomposition b. = u. + v., the drift of 
the thermal process may be separated into its 
osmotic and current velocity parts. They are writ- 
ten in the following form which will be useful later 
o n :  

up(x, t) = (h/2m)V~ In p(x, t) 

h E. e-PE"(qJ*vq~. + 4J.v+*) 
2m ~ .  e-PE.O. 

(8a) 
S,. e-flE"p.o. op(x, t)= 
E. e-Pe'o, 

h E. e-Pr"(q,*Vq~.- q~.vqJ*) 
2ira ~ .  e-PE.p. 

(8b) 
There is another way to look at the thermal pro- 
cess which, although leading to the same observa- 
ble average values, would correspond to different 
sample paths. Instead of the process with a fixed 
average drift function, as in eq. (7), one might 
consider a stochastic drift and define the thermal 
process as the solution x'(t) of the stochastic 
equation 

d x ' ( / )  = b.,x(t ) d t  + ~ dW( t ) ,  (9) 

where now b.,x(t ) is also a stochastic process with 
values in the space of functions {b.(x, t ) =  
u.(x,t)  + o.(x,t)} and probability law p(n, x, t) 
= E, e-PE"p.b./Z, e-P~-p.. 

The finite temperature formulations specified 
by eqs. (5) or (7) and (9) require either global 
knowledge on the space of solutions to the 
SchriSdinger equation or, alternatively, some indi- 
rect way to find the thermal drift functions (see 
below). Guerra and Loffredo [10] show that for 
the harmonic oscillator the summation in (5) be- 
comes simpler when one uses a coherent state 
basis. In any case, summing or integrating over an 
infinite set of states seems adequate only when 
either the exact solutions to the SchriSdinger equa- 
tion are known or they can be approximated by 
some set of generalized coherent states. Such m- 
finite sums are certainly difficult to handle when 
numencal methods are called for. 

A technique that does not require a priori 
knowledge on the space of solutions was proposed 
by Ruggiero and Zannetti [11]. Considering quan- 
tum processes x(t)  which are decomposable into a 
classmal q(t) plus a ground state quantum motion 
~(t), they write the multivariable process 

d p ( t )  = - (aH/Oq) dt, (lOa) 

d q ( t )  = (aH/ap) dt, (10b) 

d x ( t )  = [aH/Op + bo(x - q, t)] dt  

+ ~ dW( t ) ,  (10c) 

where b0(~, t ) = u 0 +  % is obtained from the 
ground state ~k0 as in eqs. (4). 

To construct the thermal process, Ruggiero and 
Zannetti connect the system to a heat bath with 
which it interacts through the dynamics of the 
p(t), q(t) variables. Hence the first equation m 
the set (10) is replaced by 

d p ( t )  = (aH/Oq) dt - TP dt + n '/2 d*/(t) ,  

(11) 

where ~(t)  is a Wiener process uncorrelated to the 
one in (10c), and y and D are related in such a 
way that a balance between energy absorption 
from the random driving force and dissipative 
transfer to the bath is obtained at temperature T. 
Eqs. (10b) and (10c) with the new eq. (11) describe 
the thermal process. 

This approach will lead to a correct quantum 
behaviour only if b ' =  OH/ap + bo (x -  q, t) is a 
quantum drift, i.e., if, for each pair (p(t), q(t)), 
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there is a s t a t e  ~p,q such that b ' = ( h / m ) ×  
v(lnlqJp,ql +arg  Ipp,q). This holds for quadratic 
potentials but is not true in general, meaning that 
a generic quantum motion cannot be simply de- 
composed into classical plus ground state motion. 
This is the reason why, in order to deal with 
anharmonic interactions, Ruggiero and Zannetti 
actually replace the potential by an effective 
harmonic one, in a self-consistent approximation. 

The idea of defining the thermal state as a 
multivariable process can, however, be formulated 
in a way that does not assume the particular 
x( t ) = q( t ) + ~( t ) decomposition of Ruggiero and 
Zannetti. In stochastic mechanics, a quantum pro- 
cess can be completely defined (without any refer- 
ence to a SchrSdinger equation) as a solution to 
the following set of equations: 

dv = [½V(u 2 -  v 2) + ( h / 2 m ) V ( V  . u) 

- m - ' V V ( x ) ]  dt, (12a) 

d u = [ - ( h / Z m ) V ( V . v ) - V ( u ' v ) l  dt ,  (12b) 

dx = (u + v) dt + ( h / m )  1/2 dW(t ) .  (12c) 

The osmotic velocity u depends only on the den- 
sity of the process [see eq. (8a)], and its role is to 
damp the fluctuations. Interaction with external 
sources [the potential V(x) for example] is carried 
by the current velocity v. The equation of motion 
(12a) for v is equivalent to a Newton law in the 
mean 

ma = - V  V(x) ,  (13) 

where a = ½(D+D_ + D D+)x(t) with the mean 
forward (backward) derivative D+ (D_) being 
defined by 

D ± f ( x ,  t ) =  lim E{ ++_[f(xt±at, t + A t )  
At--,O 

- f ( x , ,  t ) ] / A t l x , = x ) .  

Equivalence of (13) and (12a) is easily proved by 
noticing that D +x(t) = v + u. 

The equivalence of (12a) to a Newton law in 
the mean suggests a way to construct a thermal 
process. To describe the interaction of the system 
with the thermal bath, one replaces the Newton 

law (13) by 

ma = - V V(x)  - ymv + D 1/2 d~ /d t .  (14) 

From (14), one now obtains 

dv = [½V(u 2 -  v 2) + ( h / 2 m ) V ( V .  u) 

- m - ' V V ( x ) -  yv] dt 

+ (D ' /2 /m)  dT/(t). (15) 

Eqs. (12b), (12c) and (15) would then define the 
quantum thermal process. 

Although, in principle, this way of defining the 
thermal process is more general than that of Rug- 
giero and Zannetti, the resulting equations are not 
very easy to use; in particular, the stability of 
numerical solutions is hard to control. For this 
reason, I now turn to an attempt to construct the 
average thermal drift for the stochastic equation 
(7) directly from the potential. For this purpose, 
one defines the quantities 

r(z ,  x, r )  = Y'~e-Be"q~,(z, t)qJ*(x, t), (16) 
n 

h 1 
u(z ,  x, r ) =  2m r(z,  x, r )  

x ( v x  + V2)r(z,  x, fl), (17) 

h 1 
v(z ,  x, r )  2im r(z,  x, r )  

X ( V z - V x ) r ( z ,  x, fl). (18) 

From eqs. (8), it is clear that 

lim u(z,  x, r )  = u/~(x, t), (19a) 
Z ---~ X 

llm v(z,  x, r ) =  vp(x, t). (19b) 
Z - - - ~ X  

The reason for defining these quantities is that 
their r-derivatives can be represented as differen- 
tial expressions of the same quantities. 

(3/af l )uJ(z ,  x, r )  = - ( h l 2 m ) V l V ( z )  

+ ( h 2 / 2 m ) A z u ' + h ( v z u  ') . ( u + i v ) ,  (20) 

(O/3fl)ivJ(z, x, f l )=  - ( h / 2 m ) V / V ( z )  

+(hZ /2m)A  fivJ + h ( v f i v J ) . ( u + i v ) .  (21) 

Now eqs. (20) and (21) are interpreted as evolu- 
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tion equations (in j3) and the quantities U(Z, x, j3) 
and u(z, x, p) may be obtained by integration 
from the neighbourhood of the infinite tempera- 
ture limit (p = 0). In this limit, one has in leading 
order 

u(z, x, P) “0, (22a) 

iu(r, x, P) = (VP>(x -z>, (22b) 

which may easily be checked from the fact that 
dominance of the kinetic energy terms at T -+ co 
makes u(z, x, p) proportional to exp[ - (m/2p) 
1 z - x I*] in leading order. 

By integration from the initial conditions (22) 
at some small &, the quantities u(z, x, /3) and 

U(Z, x, /?) may, in principle, be obtained for any p 
and any smooth potential. The components of the 
thermal drift are then picked up at the z + x limit 
[eqs. (19)]. Before discussing the problems m- 
volved in the numerical integration of eqs. (20) 
and (21) an approximate solution will be obtained 
which is useful in improving the boundary condi- 
tions at small p. Define 

f(z, x, P) = u(r, x, P) + iu(z, x, P), (23) 

which obeys the equation 

aflap = - (h/m)vJq z) + ( A2/2m)A,f 

+hf.v,f. (24) 

In many cases, f is actually the only quantity of 
interest, because for isolated systems with real 
potentials u(z, x, /3) vanishes in the z + x limit 
and 

limf(r, x, P) 
Z’X 

is the physical drift at inverse temperature j3. 
For simplicity, I will restrict myself to the 

one-dimensional case. Assuming the existence of a 
solution to eq. (24) analytic at z - x = 0, one 
writes 

(25) 

From (24) and (25), one now obtains an (infinite) 
system of ordinary differential equations in /?. 

+h 
k 

= 0 {J+J’=k) J 

A,+,A,~- (26) 

In general these equations are difficult to solve. 
However, if the derivatives of the potential a,V( x) 
above k = 2 can be neglected, eqs. (26) imply that, 
starting from an initial condition where A,( &) = 0 
for J > 2, then A,(P) = 0 for J a 2 and all p. In 
this case, the set (26) has only two non-trivial 
equations which, with the initial condition 

[A,(&) = 0, A,(&) = -h/PO], lead to the solu- 
tions: 

a v 
A,(P) = -x 

cosh( h/$/-) - 1 

/m sinh( tia/w) ’ 

if ape, 

ay cos( h/+/m) - 1 

= Jm sin( tt&/m) ’ 

if a,2v<o, 

= - (hp/2m)a,v, 

if a,Zv= 0, (27) 

A,( /3) = - /mcoth( a&/m), 

if a,Zv> 0, 

= - i/i-qipycotg( h&7$iq, 

if a,Zv<o, 

= -l/h/3, 

lf a,Zv= 0, (28) 

where the limit /?a -+ 0 has been taken. 
For anharmonic potentials, these solutions are 

not expected to hold beyond the region of small 
p, because as the temperature decreases one needs, 
at each point x in the integration of eq. (24), 
detailed mformation on the local analytic struc- 
ture of the potential to be able to account for the 
global behaviour of the lowest-lying eigenstates. 
However, even for general potentials, the ap- 
proximate solutions are useful because they supply 
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improved boundary conditions at small fl0 for the 
numerical integration of eq. (24). 

Numerical integration of eq. (24) is relatively 
simple. For each point x, one defines initial condi- 
tions f ( z ,  x, flo) = Ao(flo) + Al(fl0)(z - X) -1 at a 
mesh of 2 N +  1 points ( z  = x +_ tAz; t = 
0 . . . . .  N ) .  After each iteration the outermost 
points must be dropped, because of the finite 
difference evaluation of the derivatives. Therefore 
the integration extends to, at most, f l m a x  = NAil + 

t 0. 
Being a non-linear relative to the heat equation, 

eq. (24) needs the same careful treatment to en- 
sure stability of the finite difference scheme. 
Applying von Neumann's criterion [12] and a lo- 
cal analysis of the Lyapunov exponents, the fol- 
lowing conditions are obtained: 

Aft < (Az)  2, (29a) 

FAil < 2Az, (29b) 

D F ( A z )  2 < 1, (29c) 

where F and D F  are upper bounds on the ab- 
solute values of the function f and its first deriva- 
tive. The condition (29a) is a familiar one from the 
heat equation, whereas (29b) and (29c) are char- 
acteristlc of the non-lineanty. Being obtained from 
worst-case estimates, these conditions should be 
taken as order-of-magnitude guides, not as strict 
inequalities. Taken literally, they would imply that 
f l m a x  ~ 2f10. In fact, with appropriate care on can, 
in practice, carry the integration to values of fl, 
where the drift is already close to the ground state 
drift. 

The conditions (29b) and (29c) are taken into 
account, in the integration program, by inspecting 
at each iteration the absolute values of the func- 
tion and its derivative and, if at a point K of the 
mesh they exceed a prescribed bound, all points 
beyond K are discarded. The integration then 
proceeds with the remaining inward part of the 
mesh. In fig. 1 is shown the result of one such 
integration for the potential V ( x )  --- x 4 - x 2 ,  with 
h = m = 1. Only the positive x-axis is shown, the 
dnf t  being antisymmetric. One sees clearly how 
the thermal drift reflects the fact that, as the 
temperature decreases, the average position spread 
of the particle moves inwards. 
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Fig. 1. Thermal drifts at positive temperature for the potential 
V ( x ) = x 4 - x  2 (h = m =1). 
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