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An extension of stochastic mechanics which allows for non-local potentials is described. It leads, in general, to integro-dif- 
ferential equations for the probability density and to a stochastic differential equation involving both diffusion and jump 
processes. A study of non-local potentials of convolution type is carried out in this framework. A simple stochastic description 
of rotons is obtained. 

Some years ago Nelson [1] proposed a formulation 
of quantum mechanics based on the theory of Markov 
processes in real time. Stochastic mechanics, as this 
formulation came to be known, has since been ex- 
tended and reviewed by several authors [2-4] .  

At first, the stochastic mechanics formulation of 
quantum mechanics generated some controversy [5,6]. 
For one thing the conservative diffusions that appear 
in stochastic mechanics are very different from those 
in the familiar dissipative Langevin equation. The 
mathematical problems raised, in particular, by the 
singular coefficients in the stochastic differential 
equations associated to quantum excited states have 
only recently been clarified [7,8]. 

The other class of questions raised by stochastic 
mechanics stem from the desire to interpret quantum 
mechanics in classical terms which, in my opinion, is 
a most unrewarding endeavour. In fact, although 
Nelson's equations are mathematically equivalent to 
Schr6dinger's and one can even derive the excited 
energy levels from the relaxation times of the ground 
state process, the process itself does not seem to be 
directly accessible to observation. For example [4], 
"... We cannot in fact measure the correlation 
between the values of the process at different times 
t 1 and t 2 because any attempt to localize the particle 
changes the velocity field b. Therefore after the mea- 
surement at t I we have a different process." 

Nevertheless, the mathematical equivalence of 
Nelson's and Schr6dinger equations enlarges the over- 
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lap between probability theory and quantum mechan- 
ics, making new probabilistic techniques available to 
the latter. For example the non-linear stochastic me- 
chanics singular perturbation problem associated to 
tunnelling in the semiclassical limit [9] turns out to 
be less difficult than the corresponding one for the 
Schr6dinger equation. This is probably tree in general 
for all effects that, having an essential singularity at 
h ~ 0 or g --> 0 (g is the coupling constant), cannot be 
approached by perturbation theory of the linear 
SchrOdinger equation. The technique that, in this 
case, is brought to quantum mechanics is the theory 
of small random perturbations of dynamical systems 
[10]. 

Stochastic mechanics provides also a new setting 
for (real time) stochastic simulation methods in lattice 
systems [11], excited states being then obtained by 
the technique of exit times [11,12]. 

Stochastic mechanics does not provide a new inter- 
pretation of quantum mechanics, but in the fact that 
it is a new set of mathematically equivalent equations 
of the same theory (which can be dealt with by new 
techniques) lies its main interest. 

Recently I have pointed out [13] that the occur- 
rence of non-local potentials in the Schr6dinger equa- 
tion requires a modification of the usual stochastic 
mechanics equations. In this paper after reviewing 
briefly the extended equations for the probability 
density, the drift and the non-local kernel, one discus- 
ses the processes and stochastic differential equations 
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associated to the stochastic mechanics description of  
non-local potential effects. One concentrates mostly 
on non-local potentials which lead to mixed diffusion 
and jump processes * 1 (in configuration space). 

From the Schr6dinger equation 

ihat~/~t = - (h2 /2m)A~ + V~ , (1) 

and its adjoint one obtains the following equation for 
the probability density p(x, t )=  IV(x, 012 

aO - V ( b p )  + yap + Im f2;(x,y)o(y, t) dny (2) i 

at 

where v = h/2m and 

b = (h/m)V lnl~l + (h/m)V arg $ = u + v ,  (3) 

(V~)(x)  = f V(x,y)~s(y) dny ,  

V(x, y)  = V* (y, x ) ,  (4) 

2;(x,y) = (21h)d/*(x, t )V(x,y)[~*(y,  t)] -1 . (5) 

Once a solution ~(x, t) of  the Schr6dinger equation 
is known, the drift b and the kernel E(x, y )  are com- 
pletely defined. Conversely, interpreting (2) as the 
density equation of  a stochastic process with u, v, and 
2; specified by its equations of  motion one obtains the 
point of  view of  stochastic mechanics. The equations 
of  motion for u, o and 2; are 

= -(h/2m)Vx(VxO ) - Vx(uV ) 

- (h/2m) Im V x f2;(y,x) d " y ,  

= ~- Vx(U2 -- 0 2) + (h/2m)Vx(VxU) 

- (fi/2m) Re V x f x~y, x) dny,  

~,(x,y)= Z(x ,y)  [(-(m/t~)uo(x) - ½ Vo(x) 

- (im/2tO[u2(x) - o2(x)] - ~ iVu(x) 

+~i f Y~(z,x) d n z ) -  { x ° Y ) ] .  

If  the potential is a local (multiplicative) operator 

,1 Jump processes have already been used by several authors 
[ 14-16 ] to describe quantum dynamics in momentum 
~pace. In this paper one considers always stochastic pro- 
eessgs in configuration space and the most interesting situ- 
ations turn out to involve both diffusion and jumping. 

V(x, y)  = V(x)6(x - y), then 2;M(x,y) = (2/h)V(x) 
× 6(x - y), EM(x,y)  = Im EM(x,y)  = 0. Otherwise, 
in the non-local case, the kernel Z has non-trivial 
dynamics. 

In the local case (Im ]~M = 0) the eq. (2) reduces to 
a Fokker-Planck equation. This in turn is related to a 
(Langevin) equation for a diffusion process, 

dx = b dt + ~  dW, (6) 

W being a Wiener process normalized to (dW dW) = dt. 
There is an important class of  non-multiplicative 

potentials which also lead to diffusion processes. This 
is the class of  Sturm-Liouville potentials, 

• . a 2 3Ki/(x) O + U(x). 
VSL = -Kq(x)  OxtOx] 8x i axJ 

They also lead [13] to a density equation of the 
Fokker-Planck type 

ap/at = - a i[bi(x)pl + a i [vil(x)a] Pl,  (7) 

where now the diffusion coefficient is position depen- 
dent. In the corresponding stochastic differential 
equations care should therefore be taken in distin- 
guishing between Ito's and Stratonovich's interpreta- 
tion of stochastic integrals. 

Here however, one wants to concentrate on non- 
local potentials which lead to processes that are not 
pure diffusions. The examples to be studied will be 
taken from the class of  potentials of convolution type. 

Consider a non-local operator of  the convolution 
type (V(x ,y)  = V(x - y)) 

( v , ) ( x )  = f v(x - y ) , O , )  dny . (8) 

The potential being a symmetric operator (V(x - y) 
= V*Cv - x)), one may rewrite (8) as 

(Vql)(x) = ~ f [ V(~)~(x - 7/)+ V*(rl)*(x + n)] dnr/ ,  

(9) 

i.e. the convolution potential is a superposition of  
symmetric translation operators. This decomposition 
suggests the study of  a Schr6dinger equation with a 
single translation potential. Choosing one of  the coor- 
dinate axes along the translation direction, the non- 
trivial part of  the dynamics becomes a one-dimension- 
al problem. 
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- ( h 2 / 2 m )  d 2 ~ ( x ) / d x  2 + ~.~(x + a) + X*~(x - a) 

= E ' ~ ( x ) .  (10) 

Rewrite (10) as 

- ( h 2 / 2 m )  d2t~(x) /dx  2 + X[~b(x +a)  - ~(x)] 

+ X* [ff(x - a) - ~(x)] = E ~ ( x ) .  ( 1 1 )  

Using Fourier transforms and defining ~ = I XI exp(i0) 
one concludes that exp(ikx) is a (generalized) eigen- 
vector of  (11) with eigenvalue 

E k = h 2 k 2 / 2 m  + 21XI [cos(ka + 0) - cos 0] . (12a) 

The dispersion relation (12a) has roton-like features 
in the sense that E k has a local minimum at k :~ 0, 
provided IX l is such that the equation 

(h2 /2ma21XI)x  = sin(x + 0) 

has non-trivial solutions. 
Similar results hold for the general case H = (fi2/ 

2m)A + V with V defined in (9). The plane wave 
exp [ i ( k . x  - E k t )  ] is a (generalized) eigenvector with 
energy 

E k - h2[k12 + fRe(V(n) e x p ( - i k - r l )  ) dnr~ (12b) 
2m 

Returning now to the one-dimensional case (11), 
one wants to find out which stochastic processes are 
associated to the solutions of  the Schr6dinger equa- 
tion with symmetric translation potential. For a plane 
wave exp [i(kx - Ekt)]  the drift and the non-local 
kernel obtained from eqs. (3) and (5) are 

b = h k / m ,  (13) 

I m ~ ( x , y ) = a [ 8 ( x - y + a ) - 8 ( x - y - a ) l ,  (14)  

the coefficient a being (for a plane wave) 

a l = (21XI/h) sin(ka + 0 ) .  (15) 

The equation of  motion for the probability density 
(eq. (2)) becomes 

ap(x, t) _ hk  ap(x, t) + h aZp(x, t) 
at m ax 2m ax 2 

+ a [ o ( x  + a ,  t )  - o (x  - a ,  t ) l .  (16)  

Taking the Fourier transform an equation is obtained 

for the characteristic function of the process 

dC(u,  t ) /dt  

= [ i ( h k / m ) u  - (h /2m)u  2 - 2ia sin ua] C(u,  t ) ,  

where 

C(u, t) = f eiuX p(x, t) dx = E e iux(t) . 

(17) 

The solution of (17)  is 

C(u,  t) = CD(U , t) Cp(u, t) C~(u, t) , 

where 

CD(U , t) = e x p { [ i ( k h / m ) u  - (h /2m)u  2 ] t} , (18a) 

Cp(u, t) = exp{ t l a l  [ e x p ( - i u e a )  - 1]},  (18b) 

C~(u, t) = f ( u )  e x p { - t l a l  [exp( iuea)  - 1]}, (18c) 

e = sign(sin(ka + 0)) and f (u )  is a function o f u  to be 
specified later on. 

C D is the characteristic function of a diffusion pro- 
cess with coefficient h /2m and drift hk/m.  Cp is the 
characteristic function of a Poisson process with jump 
size - c a  and coefficient lal. 

For an appropriate choice o f f (u ) ,  C~ is the charac- 
teristic function of a time reversed Poisson process 
with jump size - c a .  This should be defined with care 
because a time-reversed process depends not only on 
the transition functions of the direct process but also 
on the choice of  a particular initial density [ 17]. 

Consider a Poisson process with jumps +ca starting 
at - e X  at time - T .  Then the density for the time- 
reversed process is 

pf,(x, t ) =  e x p [ - I ~ l ( T -  t)] 

o o  

× ~ l a i n ( T -  t)n 6(x  + e X -  nea )  (19) 
n=0 n! 

which obeys the equation 

ap~,(x, O/at  = lalp~(x,  t) - la lp~(x - ca, t ) .  

The process with density p~ is def'med in t E ( - %  7] 
and x E [ - e X ,  coo). The characteristic function is as 
in (18c) with 

f ( u )  = e x p { - i u e X  + I ~ l T [ e x p ( i u e a )  - 1]}.  

The transition functions Q(to,  x 0 ; t, x )  of the time- 
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reversed process P are obtained from [17] 

Q ( t , y ; s , A ) = ( f  dx op(X,S)lA(X)P(s,x;t,y)) 

(j ,)' X dx Op(X, s)P(s, x; t, y , 

where  pp  and P( ; ) are the density and transition 
functions of a direct Poisson process and IA(X) is the 
indicator function of the set A. Then, 

. , ' ( o  + ~)! ( t -  t o ) ~ ( T -  t) a 
Q(to,Xo;r,x)= ~T.~ T -(T-~ t -O~ ~ ' 

where ~ = e(x 0 - x)/a and o = e(x - X)/a. 
Unlike the transition function for the direct Poisson 

process P(to, x o; t, x) 

I s l ~ ( t -  t0)~ 
P(to,Xo;t ,x)= ~! e x p [ - l s l ( t -  to) ] , 

the transition function Q(to, x 0; t, x) for the time- 
reversed process depends on the density parameters X 
and T. Besides the time-reversed process is only de- 
fined up to the time T, all probability being then con- 
centrated at the point - eX .  For practical purposes 
(numerical solution of stochastic differential equa- 
tions, for example) it is convenient to choose a densi- 
ty distribution with large T and X parameters. Then 
Q(t O, x 0 ; t, x) becomes 

Q(to ,Xo . t , x ) .  ( t ~0)____~ ( 1 -  t i t  ~X/a ( ~ ) ~  
' \ , 1  - t o / T l  " 

(20) 

In the limit T, X + oo with Is [aT = X the right-hand 
side of (20) yields 

I s l ~ ( t -  t0)~ 
~! e x p [ - [ s l ( t -  to) ] , (21) 

i.e. for this limiting choice of initial density the tran- 
sition functions of the time-reversed process are iden- 
tical to those of a direct Poisson process. (The relation 
Is laT = X is the condition that, for the direct process, 
maximizes the transition probabilities from - e X  at 
t = T to the neighbourhood o fx  = 0 at small t). 

Having identified the nature of the processes one 

may now write the stochastic differential equation 
which corresponds to the density of eq. (16). 

x(t) = X(to) + ds + (h/m) 1/2 f dW(s) 
to to 

t t 

+ f de, , _,a(s) + f ( 2 2 )  

to to 

The third term is an (Ito) integral over a Wiener 
process of unit variance and the last two terms denote 
integration with respect to a Poisson and a time-re- 
versed Poisson process [ 18,19] with coefficients led 
and jump -ca. 

The drift b and the jump coefficient s 1 in (13)-  
(15) were derived for a plane wave state. For a wave 
packet 

g/(x, t) = f F(q) exp[i(qx - Eqt)] dq, 

with Fourier transform F(q) strongly peaked around 
k the drift computed from (3) can still be approxi- 
mated by ~k/m. For the non-local kernel 

Im Z(x, y)  = (2/h) 

[ fqJ*(x, t)qJ(x + a, t) x Im[XL -+--Z, 8(x-y +a) 

a, )1} . . . .  O ( x - a , t )  6 ( x - y - a  , 

the k peaking hypothesis is not very helpful and the 
computation of the coefficients of the delta functions 
is more delicate. This can be seen, for example, by con- 
sidering the small a limit, where the order a contribu- 
tions from the first and second terms to the density 
equation cancel each other. The easiest way to fLx the 
jumping coefficient for wave packet propagation is to 
adjust it in such a way that the mean displacement of 
the process coincides with the group velocity obtained 
from the dispersion relation (12a). From (16) or (22) 
one obtains for the mean displacement 

(x(t)> = (hk/m - 2as)t . 

Comparing with the group velocity (1/h) aEk/OK one 
obtains (for wave packet propagation) 

s 2 = (IXI/h) sin(ka + 0) .  
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Fig. 1. (a) Dispersion relation for #t = m = a = 1 and h = 1. (b) 
Sample paths for k = 1.895. 

Fig. 2. (a) Dispersion relation for h = in = a = 1 and h = -7 .  
(b) Sample paths for k = 5.8519. 

Figs. la  and 2a display the dispersion relations for 
IXI = 1 , 0  = 0 ; a n d  IXI = 7,  0 = ~r. In figs. l b  and 2b 
one sees a few sample paths for the wave packet  pro- 
cess at k = 1.895 and k = 5 . 8 5 1 9  respectively,  i.e. at 
the non-trivial min ima ofE k. In these (roton)  sample 
paths one  sees h o w  cancel lat ion in the average of  dif- 
fusion and jumping  leads to a vanishing mean  dis- 
p lacement .  

These results can be extended  to  the case o f  a gen- 
eral convo lut ion  potent ia l  def ined by (8) ,  (9)  w i th  
dispersion relation (12b) .  The corresponding process 
is a diffusion wi th  drift #ik[m plus a jumping part 
which  is a superposi t ion o f  Poisson processes  def ined 
by the characteristic funct ions  

Cp(U, t ) =  e x p ( t  ]a3[ f dnr//~(r/) 

X { e x p [ - i u r / e ( r / ) ]  - 1}) , 

C~(u,t)=exp((T- t ) [a3[  f dn~ { - i u X e ( ~ )  

+/~(r/) {exp[ iur /e (r / ) ]  - 1} } ) ,  

where  

, f  ~3 = ~ d . n  I V ( , ) l l s i n [ k . n -  e ( n ) ] l ,  

e(77) = sign(sin [k" q - 0 ( r / ) ] ) ,  
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~z07 ) = (2 Io~ 3 Ih ) - I  I V(r/)II s in[k .  I! - 0(,7)]1, 

V(r/) = IV(r/)l e x p [ i 0 0 / ) ] .  

The balance of diffusion and jumping leading to 
roton effects is an interesting consequence of  transla- 
tion potentials (or convolution potentials in general). 
If  the space where the jumping takes place is compact  
(an angular variable, for example) the situation is 
somewhat different. Here one considers only the sim- 
plest situation where the potential  

( v ~ ) ( x )  = V(r)C4x) + X~(R~x) + X*~(R~lx) 

- 2 R e  X ~k(x) 

contains a radial part  plus a symmetric rotat ion of/3 
around a fixed axis. Choosing this one as the angular 
momentum quantization axis and writing the wave- 
function as 

~ ( x ) = F ( r ) Y l m ( ~ 2 ) ,  X = IXl e i0 , 

one obtains 

tt 2 [ 1 a L + / ( l + l )  
- ~m \ - ~ ~  r2 ar " r 2 . + g(r) 

+ 2 IM [cos(m/3 + 0) - cos 0 ] ) F(r)  = E F ( r ) .  

This implies that the (n l )  levels will have an (anoma- 
lous) splitting 

E = E n l  + 21),1 [cos(mr + 0) - cos 0 ] .  
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