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Abstract

In the framework of a non-commutative space-time model obtained
from deformation theory, the QED correction to the anomalous magnetic
moment, arising from non-commutativity, is computed.

1 Introduction

Several authors (see for example [1] [2]) have emphasized that the transition
from nonrelativistic to relativistic theory as well as the from classical to quan-
tum theory correspond to the stabilization of two unstable theories. In fact,
because experimental parameters cannot be known with absolute precision, it
makes good sense, when constructing physical theories, to choose those that do
not change in a qualitative manner for a small change of parameters. This is
a principle that extends well beyond the fundamental theories of Nature [3].
In the transition from nonrelativistic to relativistic theory one stabilizes the
Galilean algebra by deforming it to the Lorentz algebra and in the transition
from classic to quantum by deforming the Poisson to the Moyal algebra or,
equivalently, to the Heisenberg algebra. It turns out that the full algebra of
non-relativistic quantum theory, the Poincaré-Heisenberg algebra, is also not
stable [4] [5] [6]. One way to stabilize it, introduces two new small parameters
` and φ, of dimensions L and L−1, associated to the commutators

[x̂µ, x̂ν ] = −iε`2M̂µν (1)

and
[p̂µ, p̂ν ] = −iε′φ2M̂µν (2)

ε and ε′ being ±1.
Other authors in the past have suggested non-commutativity of the space-

time coordinates, mostly in connection with gravity at short distances (see [5]
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and references therein), leading to linear or nonlinear extensions of the space-
time algebra. A novel feature in the approach of stabilization by deforma-
tion is the emergence of two independent fundamental length scales. Non-
commutativity of momenta being associated to gravity, the fundamental length
scale associated to the commutator (2) might be the Planck length. However
the parameter ` associated to the commutator (1) is an independent parameter
and if, for example, ` ' 10−18− 10−19cm (or τ = 1

` ' 3.3× 10−29− 3.3× 10−30

s) the space-time non-commutative effects might already be observable in the
laboratory [7] [8].

2 Non-commutativity and star product

For the QED calculations in this letter only the subalgebra generated by
{
x̂µ, M̂µν

}
will be needed, namely

[x̂µ, x̂ν ] = −iε`2M̂µν (3)

as well as the usual commutator of the Lorentz group generators Mµν . A way

to deal with the non-commuting variables
{
x̂µ, M̂µν

}
is to map them into a

commutative space {xµ,Mµν} with a modified ∗−product. If the right-hand side
of the commutator were a c−number θµν , instead of M̂µν , the Moyal ∗−product
might be used

f (xµ) ∗ h (xν) = f (xµ) e−i
ε`2

2

←−
∂µθµν

−→
∂νh (xν) (4)

This reproduces the commutator [x̂µ, x̂ν ] but not necessarily the commutators
of arbitrary elements of the enveloping algebra. Because M̂µν is a non-trivial
operator a more careful definition should be done. A simple way to do it is to
associate each arbitrary polynomial on the commuting variables xµ and Mµν to

the corresponding symmetrized element of the enveloping algebra of
{
x̂µ, M̂µν

}
.

In this way the association of the non-commutative space {xµ,Mµν} is not to
the full enveloping algebra of

{
x̂µ, M̂µν

}
but to the symmetrized subalgebra.

Finally on obtains a ∗−product, correct to order `21

f (xµ) ∗ h (xν) =|O(`2) f (xµ)

(
1− i ε`

2

2

←−
∂xµMµν

−→
∂xν

)
h (xν) (5)

The association of the commuting space, with a ∗−product, to a subset of the
non-commuting space rather than to its full enveloping algebra arises from the
fact that one wants to maintain the usual variables xµ,Mµν in the commuting
space.
A more general construction, correct to all `2 orders is obtained as follows.

Represent the operators
{
x̂µ, M̂µν

}
by operators {ξa, πa} in a 5−dimensional

1The notation f (x)
←−
∂x
−→
∂xg (x) means limx→y ∂x∂yf (x) g (y)
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space with metric gab = (1,−1,−1,−1, ε), a ∈ {0, 1, 2, 3, 4}; µ ∈ {0, 1, 2, 3}

Mµν = ξµπν − ξνπµ
xµ = ξµ + `

(
ξµπ4 − ξ4πµ

)
(6)

with the {ξa, πa} obeying commutation relations[
πa, ξb

]
= igab (7)

Because {ξa, πa} have Heisenberg algebra commutation relations, one may use
for them a Moyal-type star product, which is known to be well defined and
associative for polynomials.

f (ξ, π) ∗ h (ξ, π) = f (ξ, π) e
i
2

(←−−
∂πag

ab−→∂
ξb
−←−∂

ξb
gba
−−→
∂πa

)
h (ξ, π) (8)

Computing the star product of two functions of {xµ}, using this representation
and star product, one obtains the same result as with (5) in `2order.

3 Vertex corrections from non-commutativity

The Dirac equation for a spin 1
2 fermion interacting with an external electro-

magnetic field is

i
∂

∂t
ψ = Hψ =

{
γ0−→γ ·

(
1

i
5−e−→A

)
+ γ0m+ eA0

}
ψ (9)

The magnetic moment contribution in the Hamiltonian is extracted by writing

ψ =

(
Φ
χ

)
and taking the non-relativistic limit [9]

i
∂

∂t
Φ '


(

1
i 5−e

−→
A
)2

m
− e

2m
−→σ · −→B + eA0

Φ (10)

from which the magnetic moment −→µ = 2
(

e
2mc

)
h̄−→σ
2 is obtained. Hence the QED

gyromagnetic ratio g = 2.
With the ∗−product

Aµ (x)ψ (x)→ Aµ (x) ∗ ψ (x) = Aµ (x)

(
1− i ε`

2

2

←−
∂αMαβ

−→
∂β
)
ψ (x) +O

(
`4
)
(11)

the Hamiltonian gains an additional term

HNCψ (x) = −i ε`
2

2
γµ∂αAµ (x)Mαβ∂

βψ (x) (12)
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which, p0 being the energy of a positive energy spinor, is

HNCψ (x) =
(
−ηγµ∂αAµ (x)σαβp

β
)
ψ (x) (13)

with η = eε`2

4 . Expanding this term for a constant external field, one obtains

HNCψ (x) =
{
−ηEk

(
σk0p

0 + σklp
l
)
− ηp0−→B · −→σ + η

(
5 · −→A−→α · −→p +−→p · ∂k−→Aαk

)}
ψ (x)

(14)
It is the second term in (14) that leads to an additional contribution to the
gyromagnetic ratio

gNC = 2

(
1 +

mp0ε`2

2

)
If ` = 4.3×10−18cm, ε = +1, m = 105 MeV and p0 = 3.1 GeV one would obtain
a positive correction of order 2.5 × 10−9. This would be in a range relevant to
the current theory-experiment disagreement in the measurement of the muon
magnetic moment.
Estimates of ` based on the spectral lags of gamma ray bursts [8] suffer

from great uncertainties concerning the intrinsic lags at the source and the
large error bars on the delayed correlation measurements. Nevertheless these
estimates rather suggest a value of ` in the range of 10−19 cm. With this value
the muon anomalous magnetic moment correction would be 1.3× 10−12, much
too small to be experimentally relevant.

References

[1] M. Flato; Deformation view of physical theories, Czech J. Phys. B32 (1982)
472-475.

[2] L. D. Faddeev; On the relationship between Mathematics and Physics, Asia-
Pacific Physics News 3 (1988) 21 and in “Frontiers in Physics, High Tech-
nology and Mathematics”(ed. Cerdeira and Lundqvist) pp.238-246, World
Scientific, 1989.

[3] R. Vilela Mendes; The stability of physical theories principle, in "Beyond
Peaceful Coexistence-The Emergence of Space, Time and Quantum", I. Li-
cata (ed.), pgs. 153-200, Imperial College Press 2016.

[4] R. Vilela Mendes; Deformations, stable theories and fundamental constants,
J. Phys. A: Math. Gen. 27 (1994) 8091-8104.

[5] R. Vilela Mendes; Geometry, stochastic calculus and quantum theories in a
noncommutative spacetime, J. Math. Phys. 41 (2000) 156-186.

[6] C. Chryssomalakos and E. Okon; Generalized quantum relativistic kinemat-
ics: A stability point of view, Int. J. Mod. Phys. D 13 (2004) 2003-2034.

4



[7] R. Vilela Mendes; A laboratory scale fundamental time?, Eur. Phys. J. C 72
(2012) 2239.

[8] R. Vilela Mendes; Commutative or noncommutative spacetime? Two length
scales of noncommutativity, Phys. Rev. D99 (2019) 123006.

[9] C. Itzykson and J.-B. Zuber; Quantum field theory, McGraw-Hill, Singapore
1980.

5


