Non-commutative probability and non-
commutative processes: Beyond the
Heisenberg algebra

Cite as: J. Math. Phys. 60, 093501 (2019); https://doi.org/10.1063/1.5089500
Submitted: 19 January 2019 . Accepted: 13 August 2019 . Published Online: 03 September 2019

R. Vilela Mendes

é N1

Export Citation

CrossMark

(7))
L
()]
>
<
o)
I
e
O™
T £
£
= =
O®
n3

AVS Quantum Science \ /i)

4% Ahighimpact interdisciplinary |
AL, g5 Journalfor ALL quantum science . ACCEPTING SUBMISSIONS

Publishing

J. Math. Phys. 60, 093501 (2019); https://doi.org/10.1063/1.5089500 60, 093501

© 2019 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1003520&setID=378398&channelID=0&CID=324397&banID=519753383&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=eee21a4f75b9fbd46976e6fb3269e910ffa05157&location=
https://doi.org/10.1063/1.5089500
https://doi.org/10.1063/1.5089500
https://aip.scitation.org/author/Mendes%2C+R+Vilela
http://orcid.org/0000-0002-4920-9214
https://doi.org/10.1063/1.5089500
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5089500
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5089500&domain=aip.scitation.org&date_stamp=2019-09-03

Journal of

Mathematical Physics ARTICLE scitation.org/journal/jmp

Non-commutative probability and
non-commutative processes: Beyond
the Heisenberg algebra

Cite as: J. Math. Phys. 60, 093501 (2019); doi: 10.1063/1.5089500 @
Submitted: 19 January 2019 « Accepted: 13 August 2019
Published Online: 3 September 2019

R. Vilela Mendes®

AFFILIATIONS
CMAFCIO and IPEN, Universidade de Lisboa, Lisboa 1649-003, Portugal

Arvilela.mendes@gmail.com and rvmendes@fc.ul.pt

ABSTRACT

A probability space is a pair (A, ¢) where A is an algebra and ¢ is a state on the algebra. In classical probability, A is the algebra of linear
combinations of indicator functions on the sample space, and in quantum probability, A is the Heisenberg or Clifford algebra. However,
other algebras are of interest in noncommutative probability. After a short review of the framework of classical and quantum probability,
other noncommutative probability spaces are discussed, in particular those associated with noncommutative space-time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089500

I. INTRODUCTION

Probability plays a prominent role in physics and in all other natural sciences. This is significant not only for the working scientist but
also for foundational questions. Most important issues are the interpretation of probability results as well as the existence of one or more
probability frameworks. Quantum mechanics has called our attention to the need to generalize the classical probability framework, the main
structuring role there being played by the Heisenberg algebra representations. This clearly suggests that other probability structures might be
associated with other algebras relevant to phenomena in the natural sciences. In this paper, after a short introduction to the formulation of
noncommoutative probability and the particular case of the (Heisenberg algebra) quantum probability, a construction is made of probability
structures associated with iso(1, 1) and iso(3, 1) algebras, which arise in some formulations of noncommutative spacetime.

A. Noncommutative probability

In classical probability theory, a probability space is a triple (€, F, P), where Q (the sample space) is the set of all possible outcomes, F
(the set of events) is a — algebra of subsets of Q, and P is a countably additive function from F to [0, 1] assigning probabilities to events.

Let H = L*(Q, P) be the Hilbert space of square-integrable functions on . In H, consider the set of indicator functions X = I {xeB}> With
x € Qand B € F. Given a unit vector 1 in H, the law of X3 is the probability measure,

B - (1,Xs1) = /Xg(x)dP(x) - P(B). (1)

Xp’s form a set of countably additive projections on functions that only depend on the events B. { X} with involution (by complex conjugation)
is a x— algebra A, the algebra of random variables. The algebra may be identified (by homomorphism) with the *— algebra £(H) of bounded
operators in H.

A spectral measure X over a measurable space E is a countably additive mapping from measurable sets to projections in some Hilbert
space. In this way, classical probability is reframed as a spectral measure over Q. When a non-negative real number is assigned to each positive
element in the algebra A (such a functional is called a state in A), one obtains von Neuman’s view of probability theory.
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In classical probability theory, A is a commutative algebra. Replacing it by a noncommutative *— algebra and keeping the prescription
of obtaining the law of X € A by computation in a state as in (1), one obtains noncommutative probability.

B. Noncommutative processes

Going from probability spaces to stochastic processes, a few more steps are required. Let us revisit Kolmogorov’s extension theorem. It
states that given some interval T in the real line, a finite sequence of points t1, t2, .. ., t, in this interval, a probability measure vy, .. s, in R"
and measurable sets By, . . ., B, satisfying

U Vag),ooon(ty) (Ba() X = % Ba(t,)) = Voo, (Byy % - x By,) for any permutation 7

2 vy, (By XX By) = w By, x - x By, x R--- x R |, then a probability space (Q,F,P) exists, as well as a stochastic
——

1 oobmotnelse - olnsk 1

k
process X; : T x Q — R such that

vtb“»tn(Btl X eee X Bt,,) = P(th € B],. .. ,Xt” € Bn)

The index set T may be thought of as a part of the spectrum of an operator. In the commutative case, it is a subset of a multiplicative
operator T. When going to noncommutative probability if the T operator commutes with the elements of the probability algebra A, then the
construction of the noncommutative process proceeds in a way similar to the Kolmogorov extension theorem. For each t;, a noncommutative
probability space (A;, P;), P; being a state, is constructed and then compatibility conditions as in the Kolmogorov’s theorem are imposed.
Processes of this type, of which quantum probability is an example, will be called noncommutative processes of type I.

If, however, the index set operator T has nontrivial commutation relations with the elements of the probability algebra A4, the
construction of the process will be different. Processes where T does not commute with A will be called noncommutative processes of
type II.

In Secs. II-1V, after a short review of the quantum probability setting, noncommutative processes for more general algebras will be
discussed as well as the construction of noncommutative processes of type II. Some results in this context were reported in Ref. 1. Here, a
more systematic presentation is given as well as some new results.

Il. QUANTUM PROBABILITY: NONCOMMUTATIVE PROCESSES AND THE HEISENBERG ALGEBRA

The main motivation to extend probability theory to the noncommutative setting came from the application of probabilistic concepts
such as independence and noise to quantum mechanics. For this reason, the class of developments in noncommutative probability inspired
by the structure of quantum mechanics carries the names of quantum probability or quantum stochastic processes or, more generally, quantum
stochastic analysis.”

The dynamics of a particle in classical mechanics is described in phase space by functions of its coordinate g and momentum p. Functions
f(g,p) form a commutative algebra, and a classical probabilistic description of the particle dynamics is an assignment of a probability Py to
each function f (g, p) by

Py = ff(P,q)d#(p»q), ©)

the measure u(p, q), with [ du(p,q) = 1, being the state.
In quantum mechanics, such functions do not commute. In particular, for the phase-space coordinate functions, one has the canonical
commutation relations (CCRs),

[4.p] = ifi, ®)

with /i = 1.054 x 107 J x s = 1.054 x 10™% g x cm* x s~ '. For phenomena at the scale of cm (g) and g x cm x s~ (p), A is a small quantity.
Nevertheless, being nonzero, it entirely changes the structure. For n particle species, it would be

(95 pj] = ihd;1
[4i-q;] = [pi-pj] = [pir1] = [x:,1] = 0. 4)
This is the Lie algebra of the Heisenberg group H(n), the maximal nilpotent subgroup in U(#n + 1,1). Quantum probability is the particular

case of noncommutative probability associated with this Heisenberg algebra. Let n = 1. In the unitary representations of %(1) in L*(R), the
Lie algebra operators are (Ref. 6, Chap. 12)
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af (x) = (x),
d
—— i L), 5
pf(x) = = id——f(x) (5)
If (x) =Af (%),
the representations being irreducible for A # 0. Defining creation and annihilation operators
a=—(q+ip)
a2t
i1 -
at = —(q-ip), (6)
7 (q-ip)
one obtains a representation of the operators in Fock space, a convenient dense set in Fock space being the set of exponential vectors,

(n)
{/ﬁ @ -, (7)

v(f)=1efeo

where f") is the n— fold tensor product of f.
To define processes, one considers an index set [0, T') and a family of operators {At, Al At} indexed by the characteristic functions [0, t).
These operators have the following action on exponential vectors:

Av(n) = [ af ),
Alw(f) = %Low(f + £[0s1)>
A = 2| wley). ©

Quantum stochastic differentials are defined by

dAt = At+dt - At»
dAT = AT — Al

t+dt

dAt = At+dt - At,
and quantum stochastic calculus is, in practice, an application of the rules
dAdA] = dt; dAdA; = dAs; dAAT = dAT; dAdA, = dAs,

all other products vanishing.

Many deep results have been obtained in the quantum stochastic processes field”* of practical importance for physical systems perturbed
by quantum noise. Also, nonlinear extensions have been obtained.

In quantum mechanics, bosons satisfy CCR, whereas fermions have canonical anticommutation relations (CAR). Based on the fermion
Clifford algebra, a noncommutative stochastic calculus has also been developed.'’"” Nevertheless, boson and fermion stochastic calculus may
be unified in a single theory."”

Other extensions, closely related to the Heisenberg algebra, have been made by Boukas'* who deals with a discrete analog of the
Heisenberg algebra and Privault'” for Lévy processes on finite difference algebras. Generalized Gaussian processes have also been constructed
associated with the q-deformed Fock space'® or with extensions of this concept.'” "

1. NONCOMMUTATIVE PROCESSES BEYOND THE HEISENBERG AND CLIFFORD ALGEBRAS
A. Noncommutative processes for the iso(1,1) algebra

This probability space was first discussed in Ref. 1, and the main results are recalled here. The algebra is

[P,Q] = -7,

[Q7J] =-iP,

[P,7]=0. 9)
J. Math. Phys. 60, 093501 (2019); doi: 10.1063/1.5089500 60, 093501-3
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This is the algebra of one-dimensional noncommutative phase-space with the correspondence to the physical variables p, x established by
P={pand Q= 7, with £ being a fundamental length.

As in quantum probability, the first step is to obtain the representations of the algebra. The algebra (9) is the Lie algebra of the group of
motions of pseudo-Euclidean space iso(1, 1). The group contains hyperbolic rotations in the plane and two translations, being isomorphic to
the group of 3 x 3 matrices,

coshy sinhy ay
sinhy coshy a |, (10)
0 0 1

its elements being labeled by (u, a1, a2 ). The representations of the group in the space of functions in the hyperbola f (cosh v, sinh v) are

TR(‘M, ar, as )f(V) _ eR(—a] cosh p+a, sinhy)f(v _ [Ll) (1)
The T representation is unitary if R = ir is purely imaginary and irreducible if R # 0. For the Lie algebra, one obtains
.d
Q=i W
P = sinhy,
J = coshy, (12)

acting on the space V of functions on the hyperbola. The r = 1 representation has been chosen. A quite similar construction applies to all
r # 0 cases. It is convenient to define the operators

1
Ay = —(Q-iP),
5(Q-iP)

7
L
V2

Using the representation (12), the state in V; that is annihilated by A_ is

A_=—(Q+iP). (13)

_ 1 e—cosh,,:’ (14)

1/10 - \/N

with N being a normalization factor N = 2Ko(2) and K being a modified Bessel function of the 2nd kind.

With the algebra of the operators {A+, A_,J} and the state defined by yo— expectation values, the probability space is defined. The rest
of the construction is standard.

With the scalar product

(v 4), = [ duy* @), (15)

the space V) of square integrable functions in the hyperbola becomes, by completion, a Hilbert space, and let i = L*(R, ) be the Hilbert space
of square integrable functions on the half-line R, = [0, 00). One now constructs an infinite set of operators labeled by functions on h, with the
algebra

[A-(f)A+(8)] =T3(fg)
[A-(1):3(@)] = [4-(). 3@)] = 5 (A-(R) - A= (R)).
These operators acton H; = h ® V; by

i

A-wie) = (v sns)o o,

V2
A(F)v(e) - %((% —sinhu)w)(fg)»
3 )w(e) = (coshyx ¥) (). (16)

figehyeVi,y(g)e Hy.
Adapted processes are associated with the splitting

h=1*(0,t) ® L*(t,00) = h' @ h", (17)
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with the corresponding

H=HeH'-KHeViehlaV,. (18)
An adapted process is a family O = (O(t), t > 0) of operators such that O(t) = O’ ® 1. The basic adapted processes are

3(t) = j()([O,t]),
Av() = Ac(Xp0n)-
A-(t) = A (x10)- (19)

For each adapted process O(t), define dO(t) = O(t + dt) — O(t). Given adapted processes Eo, E., E, a stochastic integral
N(t) = fo "Eod3+ EvdA, + E-dA_ (20)
is defined as the limit of the family of operators (N(s);s > 0) such that N(0) = 0 and for t, < t < t, + df,
N(£) = N(t) + ES (3(£) = 3(82)) + B (A (1) = As(t)) + EY (A= (£) - A= (1)), (1)

with Ey, E+, E_ assumed to be simple processes,

Ep = ZE(E”)X[%JWA)’
n=0

E. = 3 E" X (),
n=0

oo

E =Y E”%0) (22)
n=0

Then, from (21) and (22), it follows that in H; = h ® V1, one has

GELNOVER) = [ (B0 Eals) (coshpx v) (gia)
+E_(s) %((% + sinhy)t//) (gxas)

+E+(s)%((% - sinhu)w)(gxds)>-

dA_(t) = A_(t+dt) — A_(1),
dA.(t) = AL (t+dt) — Au(2),
di(t) =3(t+dt) - 3(¢), (23)

Multiplication rules for the stochastic differentials,

are obtained taking into account the commutation relations and expectation values in the yy state. Nonvanishing products are
dA_(t)dA.(t) = 3(dt),
dJ(t)dA.(t) = —dA_(t)dI(t) = —%(Af(dt) - A, (dt)). (24)
Summarizing, this proves the following:

Proposition 1: Associated with each irreducible unitary representation of the iso(1, 1) algebra, there is a stochastic process characterized by
the operator set {A+(f), A-(f),J(g)} actingon Hy = h ® V| with adapted processes and stochastic integrals satisfying properties (19)-(24).

Of interest is also the characterization of the coordinate process Q(t) = % (A—(t) + A+ (t)). The characteristic functional is

o(2cos(L Ot s)ds
Com(f):K(2 éz(fz)f() ) (25)
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B. Noncommutative processes for the iso(3,1) algebra

The algebra here is

ARTICLE

scitation.org/journal/jmp

(26)

This is, in three dimensions, the phase space algebra of noncommutative space-time. It is the algebra of the Poincaré group. For those familiar
with the use of this group in relativistic quantum mechanics, notice that here the three Q"s play the role of the boost generators and 7 the role

of the generator of time translations.

The group iso(3, 1) is isomorphic to the group of matrices (

Ma
01

), where M € SO(3,1) and a € R

A representation of the iso(3, 1) algebra that generalizes the representation (12) is obtained in the space V3 of functions in the upper
sheet of the hyperboloid 3 with coordinates

& = sinhysin 6; cos 6,,
& = sinh psin 0 sin 0,,

&3 = sinh pcos 61,

& = cosh . (27)
The representation is
J = coshy,

P! = sinh ysin 0; cos 0,,

P? = sinh psin 0; sin 0,,

P’ = sinhycos 6,
M"? = ia%z,
M = i(cos 628161 — cot 6 sin 026162),
M = —i(sin Hzaiel + cot 6 cos 6, % ),

Q' - i(sin 01 cos 92(% + coth y(cos 01 cos 92% - ZE Zj %))’

Q = i(sin 0, sin 62% + cothy(cos 0, sin Hzaiel + :jglz %)),

Q3 = i(cos@laﬁ‘u —cothysin@laiel). (28)
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Define the following operators

1
V2
Ak = %(Qk - iPk), (29)

to which in H; = h ® V3 correspond the operators A* (t) = A% (X[O,t])>A}i(t) = Ak (x[0.7) as well as T(£) =3 (x[o,] ),Mkj(t) = Mkj()([oﬂ) with
algebra

[A’i(t),A};(s) 893(tns) - kf(ms)

[450), j(s)] éPk(tAs),

i(89AL(tns) - 8" A, (¢ 1)),

|-
[A’i(t),:r(s)]
[AL(0),M" ()] =
]

[MY(), M ()] = =i( " MY + 607" — 8" 0" = "M ) (£ 1 5), (30)

which follows from the commutation relations (26). The normalized spherical symmetric state y =

all A* (1),

\/m exp(— cosh ) is annihilated by

AS(D)yo = 05 k=1,2,3. 31)

In conclusion,

Proposition 2: The operators {Ali(t),AJ;r(t), J(t),Mkj(t)} the representation (28), and expectations on the yq state define a probability
space. Multiplication rules for the stochastic differentials dA* (t) = AX (t + dt) — A% (¢), etc., are

dAX (1)dA (1) = 69 3(dt),
dAk (t)dA (1) =0,

A (1)d3(t) = —d3(t)dA" (1) = %(A’i(dt) - AL(dr)). (32)

The multiplication rules for the stochastic differentials are obtained, as before, by taking into account the commutation relations and
expectation values in the yy state.

The characteristic functionals of the coordinate processes Q*(t) = % (A]i (t) + A]i(t)) are

Cow ) = 4 K(Z) /dQKo(Zcos(gk( 1,6) ff( )ds)) (33)

with g1(61,6,) = sin6; cos 6»; £2(61,6,) = sin 0 sin 05 g3(61,62) = cos 6 and dQ = sin 0,d6:d6,. Notice, however, that these processes are
not independent being related by the rotation process M¥(t),

[Qk(t),Qj(s)] =—iMM(tns). (34)

IV. NONCOMMUTATIVE PROCESSES OF TYPE Il

In Secs. I1I A and III B, the index set of the stochastic processes (or the - space) may be looked at as the continuous spectrum of
an operator that commutes with all other operators in the algebra. Here, the case where such operator does not commute with the algebra
operators will be analyzed.

In this case, the H space, where the stochastic process operators act, can no longer be a direct product as before; rather, it is
a representation space for the whole set of operators, including the one that generates the index set. An example is the following
algebra:
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[E,T] = i3,

[T,7] = iE,

[QP] =7,

[Q7J] =P,

[P,3] =[P, T] = [M",3] =0,

[QT] = -iM",
[M",Q] =T,

[M",P] = iE,
[M",T]=iQ,

[M'",E] = iP. (35)

This iso(2,1) algebra is the algebra of two-dimensional noncommutative space-time. Notice that as a real algebra, it is different from the
algebra studied in Ref. 1 because a different metric is used in the deformed space. For consistency with the physical interpretation of T as
the time operator, T will be the operator that generates the index set of the stochastic process. A representation of this algebra is obtained on
functions f (o, 0) in the C? cone,

o}
T=-i—,
"0
E=o0sin0,
J=o0cosH,
P=o,
Q= i(acos 9% - sinﬁ%),
MY = i(asin@% +cos€%). (36)
T has discrete spectrum, with eigenfunctions
T(e"f(0)) = ne"’f (o), (37)

with f (o) being an arbitrary function of o.

In the cases studied before, the space H, where the stochastic process operators act, is a direct product h ® V, that is, the space V is the
same for all times. Here, however, once a normalized cyclic vector [exp(—a2 / 2) / (711/ 4) for example] of o is chosen to generate a v, space, the
space V, attimenis V,, = "%, and

H=9V, (38)

An adapted, discrete time, stochastic process is
O(t) = @1=9Om, (39)

with O, being one of the operators in (36) acting on V. The fact that in this case, the space H is not a direct product is the main difference
from the previous cases. Otherwise, the construction is similar with (discrete) stochastic differentials defined by

dO(n) = Ops1 — O,

with O, operating in V41 and O, on V.
For example, for functionals F(Q(t)) of the coordinate process Q(t), expectation values are obtained by

(FQ(1)) = i i f dodb¢* (o)e ™ F(Q(0,0))e™¢(0). (40)

V. REMARKS AND CONCLUSIONS

1 von Neuman’s view of probability theory as a pair (A, ¢), where A is an algebra and ¢ is a state, is a powerful insight with far reaching
implications. The main purpose of this paper was to emphasize that in addition to the many results already obtained in quantum prob-
ability, where the Heisenberg or the Clifford algebras play the central role, other algebras are of potential interest, in particular in the
noncommutative space-time context.””**
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In addition, it has been pointed out that in some cases, the index set of the stochastic process might be generated by a nontrivial operator
in the algebra, the consequence being that the space where the stochastic process operators act is no longer a direct product.

Most results on the processes associated with the iso(1,1)-algebra were previously reported in Ref. I but not those related to the iso(3,1)-
algebra. Also, concerning the processes of type I, a different metric structure is used, which might be physically more relevant.

2 Inthe past, a central role is played in quantum probability by the algebra of the second quantization operators, the creation and annihi-
lation operators. In 1977, Palev’” had shown that the basic requirements of the second quantization formulation may also be obtained by
operators that lead to generalized quantum statistics.”’ The algebras of these generalized quantum statistics operators would also provide
new examples of noncommutative processes.
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