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Abstract.  Results obtained in the past for free boson systems at zero and 
nonzero temperatures are revisited to clarify the physical meaning of current 
algebra reducible functionals which are associated to systems with density 
fluctuations, leading to observable eects on phase transitions.

To use current algebra as a tool for the formulation of quantum statistical 
mechanics amounts to the construction of unitary representations of 
dieomorphism groups. Two mathematical equivalent procedures exist for this 
purpose. One searches for quasi-invariant measures on configuration spaces, 
the other for a cyclic vector in Hilbert space. Here, one argues that the second 
approach is closer to the physical intuition when modelling complex systems. 
An example of application of the current algebra methodology to the pairing 
phenomenon in two-dimensional fermion systems is discussed.
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1.  Introduction

All representations of canonical fields with a finite number of degrees of freedom are 
equivalent to the Fock representation. However, for an infinite number of degrees of 
freedom there are, in addition to the Fock representation, infinitely many inequivalent 
representations of the canonical commutation relations. In relativistic quantum field 
theory, Haag’s theorem states that, with a space-invariant vacuum, any representation 
equivalent to Fock can only describe a free system. Therefore, to obtain a non-trivial 
theory, one either works with a non-Fock representation or with a Fock representation 
in a finite volume. In the latter case one considers N particles in a finite volume V. 
Calculations are then carried out in the Fock representation, but in the end one may 
take N, V → ∞ with the N/V = ρ ratio fixed. The N/V  limit thus provides a way to 
deal with non-trivial infinite systems using the Fock representation. However, by the 
very nature of the fixed ρ density limit, it is unable to deal with systems with density 
fluctuations. This shortcoming might be solved by the use of the reducible functionals 
to be described later on.

In the field theory description of matter, the field operators ψ(x) and ψ†(x) do not 
represent actual physical observables. This, together with the strong uniqueness results 
on the representation of the (finite-dimensional) canonical commutation relations, were 
the original motivations for the proposal by Dashen, Sharp, Callan and Sugawara 
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[1–4] to use local density and current operators as descriptors of quantum observ-
ables. Despite some early successes, mostly in the derivation of sum rules, relativistic 
current algebra in space-time dimensions higher than 1 + 1 faced serious diculties 
related to the non-finiteness of Schwinger terms. By contrast, no such problem occurs 
for non-relativistic current algebras which, already at a very early stage, have been 
proposed as a tool for statistical mechanics [5, 6]. Nonrelativistic current algebra was 
then extensively studied by Goldin and collaborators [7–9]. A relation with the classi-
cal Bogolubov generating functional has also been established, in particular as a tool 
for constructing the irreducible current algebra representations [10, 11]. From a math-
ematical point of view, the early considerations related to the N/V  limit have found a 
rigorous interpretation in the framework of the infinite-dimensional Poisson analysis in 
configuration spaces ([12] and references therein).

In this paper results obtained in the past for free boson systems at zero and nonzero 
temperature are revisited with a view to clarify the physical meaning and potential useful-
ness of current algebra reducible functionals. Reducible functionals are associated to sys-
tems with density fluctuations, which may lead to observable eects on phase transitions.

Using current algebra as a tool for the formulation of quantum statistical mechan-
ics is closely related to the problem of construction of unitary representations of 
dieomorphism groups. Two mathematical equivalent procedures exist for this pur-
pose. One searches for quasi-invariant measures on configuration spaces, the other for a 
cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the 
physical intuition when modelling complex systems. An example of application of the 
current algebra methodology to the pairing phenomenon in two-dimensional fermion 
systems is included.

2. Boson gas, the infinite-dimensional Poisson measure and reducible functionals

2.1.  Infinite-dimensional Poisson measures and free Boson gases

The framework of non-relativistic current algebra of many-body systems is a par
ticularly convenient way to establish the connection of the Boson gas functional with 
infinite-dimensional measures, as well as to explore generalizations. The basic variables 
of the many-body system are the smeared currents [6, 7] (see also [8, 9] and references 
therein)

� ( f) =

∫
d3xf(x)�(x)

J (g) =

∫
d3xJ(x) • g(x)

�
(1)

f(x) and g(x) being respectively smooth compactly supported functions and smooth 
vector fields. The smeared currents satisfy the infinite-dimensional Lie algebra,

[� ( f) , �(h)] = 0

[� ( f) ,J (g)] = i� (g • ∇f)

[J (g) ,J (k)] = iJ (k • ∇g − g • ∇k)
�

(2)

https://doi.org/10.1088/1742-5468/aa9342
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each particular physical system corresponding to a dierent Hilbert space representa-
tion of this algebra or of the semidirect product group generated by the exponentiated 
currents

U ( f) = ei�( f)

V (φg
t ) = eitJ(g)

� (3)

φg
t  being the flow of the vector field g

d

dt
φg
t (x) = g (φg

t (x)) .� (4)

For a system of N free bosons in a box of volume V, the normalized ground state is

ΩN,V (x1, · · · , xN) =

(
1√
V

)N

� (5)

and the ground state functional is

LN,V ( f) = (ΩN,V , UN,V ( f) ΩN,V )

=

(
1

V

∫

V

d3xeif(x)
)N

.
� (6)

Coupled with an equation of continuity relating � and J, this functional determines not 
only the representation of U ( f) but also that of V (φg

t ), up to a complex phase multi-
plier that satisfies a cocycle condition1.

In the N → ∞ limit with constant average density ρ = N
V  (also called the N/V  limit) 

one obtains

L ( f) = lim
N→∞

(
1 +

ρ

N

∫ (
eif(x) − 1

)
d3x

)N

= exp

(
ρ

∫ (
eif(x) − 1

)
d3x

)�

(7)

which one recognizes as the characteristic functional of the infinite-dimensional Poisson 
measure (see the appendix).

Likewise the functional

LN/V ( f,g) =
(
ΩN/V , e

i�( f)eiJ(g)ΩN/V

)

is [13] in the N/V  limit

L ( f,g) = exp

(
ρ

∫ {
eif(x) (det ∂mφ

g
n(x))

1/2 − 1
}
d3x

)

where det ∂mφ
g
n(x) stands for the Jacobian of the transformation x → φg(x).

Identifying ρd3x in (7) with the measure dµ in the configuration spaces discussed in 
the appendix, the L ( f) functional may also be written as a vacuum expectation func-
tional. Expanding the exponential in (7)

1 See equation (21).

https://doi.org/10.1088/1742-5468/aa9342
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L ( f) =
∞∑
n=0

e−
∫
dµ

n!

(∫
eif(x)dµ

)n

� (8)

one may write

L ( f) = (Ω, U ( f) Ω)� (9)
for

Ω = ⊕
n
e−

1
2

∫
dµ1n� (10)

1n denoting the identity function in the n-particle subspace of a direct sum Hilbert 

space, the 1
n!

 factor in (8) being recovered by the symmetrization operation.
However (7) is not the most general consistent representation of the nonrelativ-

istic current algebra of a free boson gas, a more general one being [7], the reducible 
functional

L ( f) =

∫ ∞

0

exp

(
ρ

∫ (
eif(x) − 1

)
d3x

)
dξ (ρ)� (11)

with ξ a positive measure on [0,∞) normalized so that 
∫∞
0

dξ (ρ) = 1. This inifinite-
dimensional compound Poisson measure may represent a boson gas with density 
fluctuations. As pointed out in [15], among the many possible reducible functionals 
consistent with (11) there is a fractional generalization of (8), namely

Lα ( f) =
∞∑
n=0

E
(n)
α

(
−
∫
dµ

)
n!

(∫
eif(x)dµ

)n

� (12)

(0 < α � 1), which corresponds to a vacuum state

Ωα = ⊕
n

√
E

(n)
α

(
−
∫

dµ

)
1n� (13)

E
(n)
α  denoting the nth derivative of the Mittag-Leer function [16]. Ωα diers from Ω 

in the weight given to each one of the n-particle spaces. The measure associated to the 
functional (12) was called the infinite-dimensional fractional Poisson measure and the 
corresponding physical system the fractional boson gas.

The reducible functional associated to the infinite-dimensional fractional Poisson 
measure was introduced because the Mittag-Leer is a very natural analytic general-
ization of the exponential function. The main interest in studying such an example is 
the possibility to analyse rigorously its support properties as well as the Hilbert space 
structure, in particular the nature of the n-particle subspaces. This is the mathemati-
cal motivation for the study of the fractional boson gases. Of course it also suggests 
that similar support and Hilbert space modifications would occur for other reducible 
functionals.

The study of the fractional boson gas has been carried out elsewhere [15] and, for 
the convenience of the reader, the main results are summarized in the appendix. The 
meaning and relevance of the reducible functionals of type (11) becomes clear when 

https://doi.org/10.1088/1742-5468/aa9342
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finite temperature functionals are computed. These were computed by Girard [17] in 
the current algebra framework.

2.2. The zero temperature limit of finite-temperature functionals

For T �= 0, instead of the matrix element (6), one computes

L
(T )
N,V ( f) =

Tr
(
e−βHei�( f)

)
Tr (e−βH)

� (14)

for the canonical ensemble and

L
(T )
µ,V ( f) =

Tr
(
eβµNe−βHei�( f)

)
Tr (eβµNe−βH)

� (15)

for the grand canonical ensemble. H is the free particle Hamiltonian, β = 1
kT

, µ is the 
chemical potential and N the particle number operator. Girard [17] obtains for the 
grand canonical functional

L
(T )
µ,V ( f) = det[I − (eif(x) − l)/(eβ(H−µ) − I)]−1.� (16)

However, taking the zero temperature limit of (16) one does not recover the infinite 
dimensional Poisson measure of (7). Instead of (7) the following functional is obtained 
[17]

L0 (ρ) =

(
1− ρ

∫ (
eif(x) − 1

)
dx

)−1

� (17)

which is seen to be a reducible functional, as in (11), with density

dξ (ρ) = (
1

ρ
)e−ρ/ρdρ.� (18)

Physically this makes sense, because since the grand canonical ensemble only fixes the 
particle number in average, it is reasonable that the corresponding ground state be 
a state with density fluctuations. The zero temperature limit of the grand canonical 
Boson gas is therefore a ground state with density fluctuations defined by (18). A natu-
ral question to ask is what is the physical meaning of all other reducible functionals. 
One possible answer is the following result:
# All reducible functionals of type (11) (infinite-dimensional compound Poisson mea-

sures) may be obtained as zero-temperature limits of superpositions of grand canonical 
free boson gases with dierent chemical potentials.

Consider a superposition of grand canonical free boson gases with dierent chemical 
potentials, hence with dierent average densities ρ. Let the superposition be described 
by the measure ν (ρ) with∫

dρν (ρ) = 1.

https://doi.org/10.1088/1742-5468/aa9342
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Then the corresponding reducible functional would be

Lν ( f) =

∫ ∞

0

exp

(
ρ

∫ (
eif(x) − 1

)
d3x

)
Γ (ρ) dρ.

with

Γ (ρ) =

∫ ∞

0

ν (ρ) (
1

ρ
)e−ρ/ρdρ.

Changing variables t = 1
ρ

Γ (ρ) =

∫ ∞

0

ν
(
1
t

)
t

e−ρtdt

Γ (ρ) is seen to be the Laplace transform of 
ν( 1

t )
t . Therefore, invertibility of the Laplace 

transform implies that given a Γ (ρ) one may find a ν (ρ)-superposition of grand canoni-
cal free boson gases with that particular reducible functional.

This is one possible physical interpretation of the meaning of the reducible func-
tionals. Alternatively we might consider the reducible functionals in (11) simply as 
zero-temperature limits of statistical ensembles with density fluctuations. In favor of 
this alternative interpretation is the fact that particles with dierent chemical poten-
tials would be dierent particles, but for example both the infinite dimensional Poisson 
measure and the infinite dimensional fractional Poisson measure have the same sup-
port, the configuration spaces of locally finite point measures without any additional 
labelling (see the appendix).

The study of the support of the measures associated to the irreducible and the 
reducible cases gives some hints on their role as far as physical modeling is concerned. 
For example, although the support for the infinite dimensional Poisson measure and the 
fractional one (fractional boson gas) are the same, the weights given to the n-particle 
states are dierent. The grand canonical ensemble might not be the only useful particle 
number fluctuation ensemble and dierent types of particle density fluctuations might 
imply dierent low-temperature phase transition behaviors.

Here we explore this possibility by computing the modifications introduced on the 
thermodynamic functions near the Bose–Einstein condensation temperature when, 
instead of the usual grand canonical ensemble, we have other types of particle number 
fluctuations, which would correspond in the zero-temperature limit to general classes 
of reducible functionals. Based on the equivalence result proved above this may be 
obtained by considering the superposition of grand-canonical free boson gases with 
dierent chemical potentials. For the grand-canonical free boson gas the number den-

sity 〈N〉
V  is

N

V
=

1

V

z

1− z
+

1

λ3
g3/2(z)

the first term being the fraction of particles condensed in the ground state, z = eβµ, 

λ =
√

2π�2
mkT

 and g3/2(z) is the function

https://doi.org/10.1088/1742-5468/aa9342
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g3/2(z) =
∞∑
k=1

zk

k3/2
.

For a superposition of grand-canonical free boson gases with dierent chemical potentials 
we replace eβµ by eβµx and integrate over x with a measure ν such that 

∫
dxν(x) = 1. 

Then

Nν

V
=

∫ ∞

0

dxν(x)

{
1

V

zx

1− zx
+

1

λ3
g3/2 (z

x)

}
.

Likewise the free energy becomes

U

N
=





3
2
kTV
Nλ3

∫∞
0

dxν(x)g5/2 (z
x) T > Tc

3
2
kTV
Nλ3 g5/2(1) T < Tc

with

g5/2(z) =
∞∑
k=1

zk

k5/2
.

For T > Tc, z (T ) is obtained from
∫ ∞

0

dxν(x)g3/2 (z
x) =

Nν

V

(
2π�2

mk

)3/2

T−3/2

and the specific heat CV = ∂U
∂T  for T > Tc

CV =
15

4
kV T 3/2

(
mk

2π�2

)3/2 ∫ ∞

0

dxν(x)g5/2 (z
x)

+
3

2

kTV

λ3

∫ ∞

0

dxν(x)g3/2 (z
x) xz−1dz (T )

dt
.

Let, as an example, ν(x) be a lognormal distribution peaked at x = 1

ν(x) =
1

xσ
√
2π

e−
(ln x−σ2)

2σ2 .

Computing CV  from the equations above for several values of σ one obtains the results 
plotted in figure 1, where

T ∗ =
mk

2π�2ρ2/3
T.

One sees that as σ becomes larger the specific heat behavior, above the condensation 
point, becomes sharper, more λ-like than the grand canonical Bose condensation trans
ition. Physically a larger σ means that the particle number fluctuations are larger than 
in the grand canonical ensemble. Notice that this is a purely statistical eect associated 
to the number fluctuations, no interaction being assumed in the Bose gas.

https://doi.org/10.1088/1742-5468/aa9342
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3. Current algebra of many-body interacting systems

3.1. Representations of nonrelativistic currents, quasi-invariant measures and the ground 
state formulation

The search for representations of the current commutators (2) or of the semidirect 
product group generated by the exponentiated currents (3) is a very general method to 
characterize many-body quantum systems. In particular the current algebra structure 
is independent of whether one deals with Boson or Fermi or even other exotic statistics.

If the relevant configuration space is Rd, a unitary representation of the exponenti-
ated currents in (3)

U ( f) = ei�( f)

V (φg
t ) = eitJ(g)

is a unitary representation of a semidirect product of infinite dimensional Lie groups

G = D ∧Diff
(
Rd

)
� (19)

D being the commutative multiplicative group of Schwartz functions f ∈ C∞
0

(
Rd

)
 and 

Diff
(
Rd

)
 the group of smooth dieomorphisms of Rd. Of special concern here is the 

restriction to the connected component of the identity Diff0

(
Rd

)
. The group composi-

tion laws are

U ( f1)U ( f2) = U ( f1 + f2)

V (φ)U ( f) = U ( f ◦ φ)V (φ)

V (φ1)V (φ2) = V (φ2 ◦ φ1) .
�

(20)

Taking the currents as the fundamental structures of quantum mechanics, all physi-
cal models of (nonrelativistic) quantum mechanics should be obtained as the unitary 
representations of the group G. A very general formulation for the representations of 

this group starts from a space of square-integrable functions H = L2
µ (∆,W) where ∆ is 

a configuration space, W an inner product space and µ a measure on ∆ quasi-invariant 
for the dieomorphisms action V (φ). Then

(V (φ)Ψ) (γ) = χφ (γ)Ψ (φγ)

√
dµφ

dµ
(γ)� (21)

where γ ∈ ∆, Ψ ∈ H and χφ (γ) : W → W is a family of unitary operators in W satisfy-
ing the cocycle condition

χφ1 (γ)χφ2 (φ1γ) = χφ1◦φ2 (γ) .� (22)
Quasi-invariance of the measure µ is essential to insure the existence of the Radon–
Nikodym derivative in (21). On the other hand the unitary operators U ( f) are assumed 
to act by multiplication

(U ( f)Ψ) (γ) = ei〈γ,f〉Ψ(γ)� (23)

https://doi.org/10.1088/1742-5468/aa9342
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the meaning of 〈γ, f〉 depending on the particular choice of configuration space.
A popular configuration space for statistical mechanics applications has been the 

space of locally finite configurations, for which the Poisson measure and some Gibbs 
measures have been extensively studied [12]. However other, more general, configuration 
spaces have been proposed, the space of closed subsets of a manifold [18], the space 
of distributions D′ or S ′, the space of embeddings and immersions and the space of 
countable subsets of Rd (see for example [8, 19]). Other configuration space worth to 
explore, when dealing with accumulation points of infinite cardinality, is the space of 
ultradistributions or ultradistributions of compact support, which have been found use-
ful in another context [20].

The characterization of quantum systems through the construction of quasi-invari-
ant measures on configuration spaces is quite general. However, a basic diculty with 
this approach is that once a quasi-invariant measure is obtained it might not be easy 
to figure out what is the physical interaction (potential) that originates such measure. 
An alternative constructive approach, already foreshadowed in [7, 14], is suggested by 
the following construction.

Let for definiteness the configuration space be S ′ and assume the representation to 
be cyclic, that is, there is a normalized vector Ω ∈ H such that the set {U ( f) Ω| f ∈ S} 
is dense in H. Then the functional

L ( f) = (Ω, U ( f) Ω)� (24)
with L(0) = 1 is positive definite and continuous. By the Bochner–Minlos theorem it is 
the characteristic funtional of a measure on H. The cyclic vector Ω becomes the central 
ingredient of the construction and, as will be seen later on, it relates in an easy manner 
to the interactions of the system.

In this spirit, Meniko [14] proposed a set of axioms for the construction of (non-
relativistic) quantum models: let H be a Hilbert space and H a positive self-adjoint 
operator,

	 (i)	There is a normalized state Ω of lowest energy. Then, by eventually subtracting 
a constant from H

HΩ = 0.� (25)

	 (ii)	D = Span {U ( f) Ω; f ∈ S} is dense in H and D is in the domain of H.

	 (iii)	Current conservation

[H, ρ ( f)] = −iJ (∇f) .� (26)
	 (iv)	There is an antiunitary time reversal operator T

T ρ ( f) T −1 = ρ ( f) ; T J (g) T −1 = −J (g) ; T Ω = Ω.� (27)

		  In this framework it is proved [14] that the matrix elements of J (g) and H are 
expressed in terms of those of ρ ( f), namely

https://doi.org/10.1088/1742-5468/aa9342
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〈e ( f1) |J (g)| e ( f2)〉 =
1

2
〈e ( f1) |ρ (g · ∇ ( f1 + f2))| e ( f2)〉

〈e ( f1) |H| e ( f2)〉 =
1

2
〈e ( f1) |ρ (∇f1·∇f2)| e ( f2)〉

�
(28)

		 with e ( f) = exp (iρ ( f) Ω). With time reversal invariance the equation (28) follow 
from the commutation relations

[exp (iρ ( f)) ,J (g)] = −ρ (g · ∇f) exp (iρ ( f))

[exp (iρ ( f)) , H] =

(
−J (∇f) +

1

2
ρ (∇f · ∇f)

)
exp (iρ ( f))

		  easily obtained from (2). A Hermitian form on a dense set of states does not 
uniquely determine an unbounded operator. Nevertheless, equation  (28) show 
the central role played by the density operator ρ ( f) and the ground state Ω 
in the formulation of a quantum theory. This information is summarized in the 
generating functional

L ( f) = (Ω, U ( f) Ω) .

Many-body quantum systems are usually explored by postulating a interparticle 
potential and then obtaining the spectrum and eigenfunctions of the corresponding 
Hamiltonian. What the above current algebra characterization suggests is that a more 
natural (and complete) specification of the system is through a guess to the ground 
state which may be easier to infer from the macroscopic properties of the system than 
the microscopic potential that leads to such behavior. The idea of ‘quantum mechan-
ics from the ground state’ traces its origin to the papers of Coester and Haag [21] and 
Araki [22]. It has been further developed for single particle nonrelativistic quantum 
mechanics in several papers [23–25]. In this setting situations that would correspond 
to singular or nonlocal potentials are easily handled. The current algebra formulation 
now suggests that such an approach should also be carried out for many-body statisti-
cal mechanics.

Once a ground state function Ω = exp (−W ) without nodes is defined, by adding a 
constant to the Hamiltonian

H = −�+ V

such that

HΩ = 0

the corresponding potential is

V =
�Ω

Ω
= −�W +∇W • ∇W.

Whereas in the approach through potentials, one usually restricts to a sum of two 
body interactions, if an arbitrary ground state function is postulated, it will in general 
correspond to potentials involving more than two particles. Some exceptions are the 
harmonic interaction ground state in arbitrary dimensions

https://doi.org/10.1088/1742-5468/aa9342
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W1 =
ω

2

N∑
i,j=1

(xi − xj)
2

and also

W2 =
ω

2

N∑
i,j=1

(xi − xj)
2 +

λ

2

N∑
i �=j

log |xi − xj|

in one dimension [26, 27].
In the following subsection one shows how the search for the ground state,inspired 

by an algebraic structure of the currents may shed light on the relevant physical prob-
lem of pairing in two-dimensional fermion systems.

3.2. Hole pairing and current quivers

Here, using currents, one attempts a formulation of a model for pairing as is required 
in the high-temperature superconductor phenomenon. First a short outline of the 
most relevant phenomenological facts which inspire the search for the elements of the 
model.

		 First:  the role of hole carriers and antiferromagnetic interactions
		 Experiments have shown that the charge carriers have hole character for all 

classes of high-temperature superconductors and the superconducting state 
arises near the antiferromagnetic phase, experiments on the inelastic magnetic 
scattering of neutrons indicating the existence of strong magnetic fluctuations 
in the doped region, even beyond the limits of the antiferromagnetic phase. 
Though the long-range order disappears in the metallic and the superconducting 
phases, strong fluctuations with a wide spectrum of excitations are conserved, 
suggesting at least some local antiferromagnetic order. The closeness of the 
superconducting to the antiferromagnetic transition emphasizes the important 
role of spin fluctuations.

		 Second:  the dual role of a gap and the phase coherence
		  In high-temperature superconductors, a gap is present even in the absence of 

phase coherence, i.e. in nonsuperconducting specimens. It appears at temper
atures less than some characteristic temperature which depends on the doping. 
The (pseudo)gap is related to the appearance of coupled pairs, even before the 
onset of the phase coherence responsible for the change of the resistance.

		 Therefore a key question is the nature of the mechanism of pairing of the car-
riers. Many dierent models were proposed, among which the following ones: the 
magnon model, the exciton model, the resonant valence bond, bipolaronic model, 
bisoliton model, anharmonic model, local pairs model, plasmon model, etc. All 
these models use the concept of pairing with the subsequent formation of a Bose-
condensation at the superconducting transition. Pairing is therefore the central 
physical mechanism to be explained.

https://doi.org/10.1088/1742-5468/aa9342
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All this experimental information led to relate high-temperature superconductivity 
to the class of strongly correlated systems, the Hubbard model, the t− J  model, the 
antiferromagnetic Heisenberg model, etc. At the basis of these models are two simple 
ideas: first that in a regular array of lattice positions, the dominant positive contrib
ution to the energy is the Coulomb repulsion when two (opposite spin) electrons occupy 
the same site, modelled by a term∑

a

c†a↑ca↑c
†
a↓ca↓� (29)

and second that the energy decreases when the electrons are allowed to hop between 
closeby sites, modelled by

−
∑
(a,b),σ

c†aσcbσ� (30)

(a, b) meaning closeby sites, nearest-neighbors or next-to-nearest neighbors. caσ and 
c†aσ destruction and creation electron operators at the site a and σ is the spin orienta-
tion (↑, ↓). The interacting terms (29) and (30) form the basis of the Hubbard model. 
However, there is some evidence (see for example [28]) that by itself the Hubbard 
model is not sucient to provide an hole pairing mechanism and that extra interactions 
must be called into play. We discuss this matter in terms of currents.

The interaction terms may be expressed in physical variables, that is, currents and 
densities. Notice however that the most appropriate algebraic structure for these physi-
cal variables might not be a Lie algebra. Consider a 2D square lattice with the atoms 
at the lattice vertices. The physical variables are the densities at each site a

ρσ(a) = c†aσcaσ� (31)

and the currents

Jσ (a, b) = −i
(
c†bσcaσ − c†aσcbσ

)
� (32)

corresponding to electron fluxes between the sites a and b. The commutation relations 
are

[ρσ(a), Jσ′ (m,n)] = −i (δa,n − δa,m)K (m,n) δσσ′

[ρσ(a), Kσ′ (m,n)] = i (δa,n − δa,m) J (m,n) δσσ′

[Jσ (a, b) , Jσ′ (m,n)] = i (−δa,mJ (b, n) + δa,nJ (b,m)− δb,nJ (a,m) + δb,mJ (a, n)) δσσ′

[Jσ (a, b) , Kσ′ (m,n)] = i (−δa,mK (n, b)− δa,nK (m, b) + δb,nK (m, a) + δb,mK (n, a)) δσσ′

[Kσ (a, b) , Kσ′ (m,n)] = i (δa,mJ (n, b) + δa,nJ (m, b) + δb,nJ (m, a) + δb,mJ (n, a)) δσσ′

� (33)
Kσ (m,n) being the operator

Kσ (m,n) = c†nσcmσ + c†mσcnσ.� (34)

This is the operator that in the continuum case leads to the term � (g • ∇f) in right 
hand side of (2). Notice that Kσ (m,m) ≡ 2ρσ(m).

One sees from the commutation relation of the currents that starting from currents 
connecting close neighbors one obtains, by successive commutators, currents involving 
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direct hoppings between all sites in the lattice which, for the strongly correlated sys-
tems, are of no immediate physical interest. Therefore a Lie algebra is not an useful 
algebraic structure for these currents. Instead, restricting to nearest neighbor and next-
to-nearest neighbor hoppings one obtains the following quiver (figure 2). A quiver is a 
directed graph. A representation of a quiver assigns a vector space N  to each vertex, 
and a linear map to each edge (arrow). In the current quiver of figure 2 the arrows 
connecting the vertices to themselves are charge density contributions ρσ(a) and those 
connecting dierent vertices correspond to the operators

Vσ (a, b) =
1

2
(Kσ (a, b) + iJσ (a, b))� (35)

Vσ (a, b) being a directed map corresponding to an hop from site a to site b. Notice that 
Vσ (a, a) ≡ ρσ(a).

To each vertex one assigns a four-dimensional space corresponding to the electron 
configurations (↑↓,↑,↓,©), respectively double occupancy, spin up, spin down and a 
hole. The directed hop maps Vσ (a, b) are represented by 4× 4 matrices with elements

V↑ (a, b) =




0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0


 ;V↓ (a, b) =




0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0


� (36)

each element of the matrices accounting for the possible hopping contributions from 
vertex a to b. For the arrows connecting one vertex to itself, the representation maps 
are

ρ↑(a) =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 ; ρ↓(a) =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


 .� (37)

The relevant algebraic framework is therefore the quiver with maps ρσ(a) and Vσ (a, b) 
and composition laws

Vσ (a, b)Vσ (m,n) = δanVσ (m, b) + δmnV (a, b)− Vσ (m, b)Vσ (a, n) .� (38)
In particular from Vσ (a, a) ≡ ρσ(a) it follows that

Vσ (a, b)Vσ (b, a) = ρσ(b) (1− ρσ(a)) .� (39)
The state Ψ of the system is the tensor product of the states ψi ∈ N  for each ver-

tex. Stationary states of the quiver are states that are invariant for some iteration of 
the quiver. Collecting the simplest quiver operations that leave a state Ψ invariant, a 
general form for the stationary energy associated to the quiver is

E =U
∑
a

ρ↑(a)ρ↓(a)− t
∑
〈a,b〉,σ

Vσ (a, b)Vσ (b, a)

+ k
∑
〈a,b〉,σ

(1− ρσ(a)) (1− ρ−σ(a)) (1− ρσ(b)) (1− ρ−σ(b))

− J
∑
a,σ

{α + β (1− ρσ(a)) (1− ρ−σ(a))}
∑

[nan′
σ ],σ

′

Vσ′ (na, n
′
a)Vσ′ (n′

a, na)

� (40)
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where 〈a, b〉 denotes nearest-neighbors and [a, b] next-to-nearest-neighbors.
The first term is a positive contribution from Coulomb repulsion of two electrons 

in the same lattice site. The second is a symmetric hopping term between nearest-
neighbor sites. The third is a hole repulsion term for holes at nearest-neighbor sites and 
finally the last term accounts for the hopping contributions between the neighbors of 
site a, which in the square lattice are next-to-nearest neighbors. In this last term two 
main possibilities are considered. If α = 1 and β = 0 one has an unconditional next-to-
nearest hopping contribution of intensity −J. However, if α = 0 and β = 1, hopping 
between the neighbors of site a only takes place if there is an hole in this site. The 
physical idea behind this possibility is that the hole distorts the orbitals in its neighbor-
hood increasing the overlap of the wave functions of its neighbors.

Notice that our definition of the quiver energy does dier from similar operators 
derived from the Hubbard model by canonical transformations and leading order trun-
cations. Using (39) the quiver energy is rewritten

E =U
∑
a

ρ↑(a)ρ↓(a)− t
∑
〈a,b〉,σ

ρσ(b) (1− ρσ(a))

+ k
∑
〈a,b〉,σ

(1− ρσ(a)) (1− ρ−σ(a)) (1− ρσ(b)) (1− ρ−σ(b))

− J
∑
a,σ

{α + β (1− ρσ(a)) (1− ρ−σ(a))}
∑

[nan′
σ ],σ

′

ρσ′ (n′
a) (1− ρσ′ (na)) .
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Figure 1.  Specific heat behavior, above the condensation point, for dierent 
particle number fluctuations.
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Having the stationary energy fully expressed in number operators, the search for mini-
mum energy states becomes a simple counting matter. Consider a 2D square lattice 
with N sites, N −H electrons and H holes (H � N) and

U � t, t > J, 4J > k.

To lower the energy, the large U value implies single occupancy of the lattice sites and 
t > J  (local) antiferromagnetic order. In the case α = 1, β = 0 a lowest energy estimate 
yields

E1,0 � −t
(N −H) (N −H − 1)

2
− 4JH

the holes being spread over the lattice without any special correlation among them. 
Any hole pairing would imply a k positive contribution. In contrast for the case α = 0, 
β = 1 the minimum energy estimate is

E0,1 � −t
(N −H) (N −H − 1)

2
− 2JH + k

H

2
.

The physical mechanism is clear. Although the wave function overlap in the neighbor-
hood of an hole facilitates hopping between the neighbors of the hole, the local anti-
ferromagnetic order frustrates this hopping. Hence, to lower the energy, another hole 
must be attracted to the neighborhood of the first hole and all holes are paired. Larger 
hole clusters will be avoided if 2k > 5J .

Hole pairing is a precondition to the latter formation of the coherent state leading 
to superconductivity. The hole-induced hopping described here is a plausible mech
anism for a possible hole pairing mechanism.

Figure 2.  A current quiver.
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4. Conclusions

	 1	 In contrast with the quantum fields of canonical quantization, local currents are 
directly related to physical observables. In addition, whereas there are strong 
uniqueness results for the representation of finite-dimensional canonical commu-
tation relations, the algebra of nonrelativistic currents has many non-equivalent 
represenations, each particular physical system corresponding to a dierent one. 
These two facts make (non-relativistic) current algebra a candidate of choice for 
the formulation of the statistical mechanics of many-body systems.

	 2	The construction of representations of the current algebra may be carried out 
either by defining quasi-invariant measures on configuration spaces or by a gen-
erating functional obtained from a (ground state) cyclic vector. It is argued in 
this paper that the second approach is more appropriate as a modeling tool for 
physical systems. An extensive application of this approach was done in the 
construction of a hole pairing model. It has also been found that for some models, 
instead of the full current algebra, a subset of operators is sucient. A current 
quiver is used in the hole pairing model.

	 3	For boson systems, in addition to the ground state of the fixed density N/V limit, 
other reducible functionals might be useful to describe systems with number 
density fluctuations. A reducible functional is already implicit in the use of the 
grand canonical ensemble, but other functionals provide alternative phase trans
ition behaviors.
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Appendix. The support of the infinite-dimensional Poisson and fractional Poisson 
measures

Here, for the reader’s convenience and in particular as a background to section 2, a 
short summary is given of the properties of the infinite-dimensional Poisson measure, 
its support on configuration spaces [29–35] as well as of a fractional generalization  
[15, 36].

A.1. The infinite-dimensional Poisson measure

The Poisson measure π in R (or N) is

π (A) = e−s
∑
n∈A

sn

n!� (A.1)
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the parameter s being called the intensity. The Laplace transform of π is

lπ (λ) = E
(
eλ·

)
= e−s

∞∑
n=0

sn

n!
eλn = es(e

λ−1)

and for n-tuples of independent Poisson variables one would have the Laplace transform

lπ (λ) = e
∑

sk(eλk−1), λ = (λ1, . . . , λn).

Continuing λk to imaginary arguments λk = ifk, yields the characteristic function,

Cπ (λ) = e
∑

sk(eifk−1).� (A.2)

An infinite-dimensional generalization is obtained by generalizing (A.2) to

C (ϕ) = e
∫
(eiϕ(x)−1) dµ(x)� (A.3)

for test functions ϕ ∈ D (M), M being the space of C∞-functions of compact support 
in a manifold M. It is easy to prove, using the Bochner–Minlos theorem, that C (ϕ) is 
indeed the Fourier transform of a measure on the distribution space D′ (M).

A support for this measure is obtained in the space of locally finite subsets. The 
configuration space Γ := ΓM over the manifold M is defined as the set of all locally finite 
subsets of M (simple configurations)

Γ := {γ ⊂ M : |γ ∩K| < ∞ for any compact K ⊂ M}.� (A.4)
Here |A| denotes the cardinality of the set A. As usual one identifies each γ ∈ Γ with a 
non-negative integer-valued Radon measure,

Γ � γ �→
∑
x∈γ

δx ∈ M(M)

where δx is the Dirac measure with unit mass at x and M(M) denotes the set of all 
non-negative Radon measures on M. In this way the space Γ can be endowed with the 
relative topology as a subset of the space of measures M(M) with the vague topology, 
i.e. the weakest topology on Γ for which the mappings

Γ � γ �→ 〈γ, f〉 :=
∫

M

f(x)dγ(x) =
∑
x∈γ

f(x)

are continuous for all real-valued continuous functions f on M with compact support. 
Denote the corresponding Borel σ-algebra on Γ by B (Γ).

For each Y ∈ B(M) let us consider the space ΓY  of all configurations contained in 

Y, ΓY := {γ ∈ Γ : |γ ∩ (X\Y )| = 0}, and the space Γ
(n)
Y  of n-point configurations,

Γ
(n)
Y := {γ ∈ ΓY : |γ| = n} , n ∈ N, Γ

(0)
Y := {∅} .

A topological structure may be introduced on Γ
(n)
Y  through the natural surjective 

mapping of Ỹ n := {(x1, ..., xn) : xi ∈ Y, xi �= xj if i �= j} onto Γ
(n)
Y ,

symn
Y : Ỹ n −→ Γ

(n)
Y

(x1, ..., xn) �−→ {x1, ..., xn}
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which is at the origin of a bijection between Γ
(n)
Y  and the symmetrization Ỹ n/Sn of Ỹ n, 

Sn being the permutation group over {1, ..., n}. Thus, symn
Y  induces a metric on Γ

(n)
Y  

and the corresponding Borel σ-algebra B
(
Γ
(n)
Y

)
 on Γ

(n)
Y .

For Λ ∈ B(M) with compact closure (Λ ∈ Bc(M)), it clearly follows from (A.4) that

ΓΛ =
∞⊔
n=0

Γ
(n)
Λ

the σ-algebra B(ΓΛ) being defined by the disjoint union of the σ-algebras B
(
Γ
(n)
Y

)
, 

n ∈ N0.
For each Λ ∈ Bc(M) there is a natural measurable mapping pΛ : Γ → ΓΛ. Similarly, 

given any pair Λ1,Λ2 ∈ Bc(M) with Λ1 ⊂ Λ2 there is a natural mapping pΛ2,Λ1 : ΓΛ2 → ΓΛ1. 
They are defined, respectively, by

pΛ : Γ −→ ΓΛ

γ �−→ γΛ := γ ∩ Λ

pΛ2,Λ1 : ΓΛ2 −→ ΓΛ1

γ �−→ γΛ1

.

It can be shown that (Γ,B(Γ)) coincides (up to an isomorphism) with the projective 
limit of the measurable spaces (ΓΛ,B(ΓΛ)), Λ ∈ Bc (M), with respect to the projection 
pΛ, i.e. B(Γ) is the smallest σ-algebra on Γ with respect to which all projections pΛ, 
Λ ∈ Bc (M), are measurable.

Let now µ be a measure on the underlying measurable space (M,B(M)) and consider 

for each n ∈ N the product measure µ⊗n on (Mn,B(Mn)). Since µ⊗n(Mn\M̃n) = 0, one 

may consider for each Λ ∈ Bc(M) the restriction of µ⊗ to (Λ̃n,B(Λ̃n)), which is a finite 

measure, and then the image measure µ
(n)
Λ  on (Γ

(n)
Λ ,B(Γ(n)

Λ )) under the mapping symn
Λ,

µ
(n)
Λ := µ⊗n ◦ (symn

Λ)
−1.

For n = 0 we set µ
(0)
Λ := 1. Now, one may define a probability measure πµ,Λ on (ΓΛ,B(ΓΛ)) 

by

πµ,Λ :=
∞∑
n=0

exp(−µ(Λ))

n!
µ
(n)
Λ .� (A.5)

The family {πµ,Λ : Λ ∈ Bc(M)} of probability measures yields a probability measure on 
(Γ,B(Γ)) with the πµ,Λ as projections. This family is consistent, that is,

πµ,Λ1 = πµ,Λ2 ◦ p−1
Λ2,Λ1

, ∀Λ1,Λ2 ∈ Bc(M),Λ1 ⊂ Λ2

and thus, by the version of Kolmogorov’s theorem for the projective limit space (Γ,B(Γ)), 
the family {πµ,Λ : Λ ∈ Bc(M)} determines uniquely a measure πµ on (Γ,B(Γ)) such that

πµ,Λ = πµ ◦ p−1
Λ , ∀Λ ∈ Bc(M).

The next step is to compute the characteristic functional of the measure πµ. Given 
a ϕ ∈ D(M) we have suppϕ ⊂ Λ for some Λ ∈ Bc(M), meaning that

〈γ, ϕ〉 = 〈 pΛ(γ), ϕ〉, ∀ γ ∈ Γ.

https://doi.org/10.1088/1742-5468/aa9342


Current algebra, statistical mechanics and quantum models

20https://doi.org/10.1088/1742-5468/aa9342

J. S
tat. M

ech. (2017) 113104

Thus ∫

Γ

ei〈γ,ϕ〉dπµ(γ) =

∫

ΓΛ

ei〈γ,ϕ〉dπµ,Λ(γ)

and the definition (A.5) of the measure πµ,Λ yields for the right-hand side of the equality
∞∑
n=0

exp(−µ(Λ))

n!

∫

Λn

ei(ϕ(x1)+...+ϕ(xn))dµ⊗n(x) =
∞∑
n=0

exp(−µ(Λ))

n!

(∫

Λ

eiϕ(x)dµ(x)

)n

which corresponds to the Taylor expansion of the characteristic function (A.3) of the 
infinite-dimensional Poisson measure

exp

(∫

Λ

(eiϕ(x) − 1) dµ(x)

)
.

This shows that the probability measure on (D′
(M), Cσ(D

′
(M))) given by (A.3) is actu-

ally supported on generalized functions of the form 
∑

x∈γ δx, γ ∈ Γ. Thus, the inifinite-
dimensional Poisson measure πµ can either be considered as a measure on (Γ,B(Γ)) or 
on (D′, Cσ(D′(M))). Notice that, in contrast to Γ, D′(M) ⊃ Γ is a linear space. Since 
πµ(Γ) = 1, the measure space (D′(M), Cσ(D′(M)), πµ) can, in this way, be regarded as a 
linear extension of the Poisson space (Γ,B(Γ), πµ).

A.2. The infinite-dimensional fractional Poisson measure

The Poisson process has a fractional generalization [37, 38], the probability of n events 
being

P (X = n) =
sαn

n!
E(n)

α (−sα)� (A.6)

E
(n)
α  denoting the nth derivative of the Mittag-Leer function.

Eα(z) =
∞∑
n=0

zn

Γ (αn+ 1)
, z ∈ C� (A.7)

(α > 0). In contrast with the Poisson case (α = 1), this process has power law asymp-
totics rather than exponential, which implies that it is not longer Markovian. The 
characteristic function of this process is given by

Cα (λ) = Eα

(
sα

(
eiλ − 1

))
.� (A.8)

By analogy with (A.3) an infinite-dimensional generalization is obtained by generalizing 
(A.8) to

Cα (ϕ) := Eα

(∫
(eiϕ(x) − 1) dµ(x)

)
, ϕ ∈ D (M)� (A.9)

with µ a positive intensity measure fixed on the underlying manifold M. Using the 
Bochner–Minlos theorem and the complete monotonicity of the Mittag-Leer function 
Cα is shown [36] to be the characteristic functional of a probability measure πα

µ on the 
distribution space D′ (M)
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It turns out that this measure is also supported in configuration spaces and the 
formulation in configuration spaces provides, through the Kolmogorov’s theorem for 
projective limits, an alternative construction of the measure.

As in (A.5), for each 0 < α < 1 one defines a probability measure πα
µ,Λ on (ΓΛ,B(ΓΛ)) 

by

πα
µ,Λ :=

∞∑
n=0

E
(n)
α (−µ(Λ))

n!
µ
(n)
Λ .� (A.10)

The family {πα
µ,Λ : Λ ∈ Bc(M)} of probability measures yields a probability measure 

on (Γ,B(Γ)) with the πα
µ,Λ as projections, which being consistent uniquely determines a 

measure πα
µ on (Γ,B(Γ)) such that

πα
µ,Λ = πα

µ ◦ p−1
Λ , ∀Λ ∈ Bc(M).

For the characteristic functional of the measure πα
µ one obtains

Cα (ϕ) =
∞∑
n=0

E
(n)
α

(
−
∫
Λ
dµ(x)

)
n!

(∫

Λ

eiϕ(x)dµ(x)

)n

=
∞∑
n=0

E
(n)
α

(
−
∫
Λ
dµ(x)

)
n!

∫

Λn

ei(ϕ(x1)+ϕ(x2)+···+ϕ(xn))dµ⊗n

= Eα

(∫

Λ

(eiϕ(x) − 1) dµ(x)

)

the last equality obtained by Taylor expansion of the Mittag-Leer function. Similarly 
to the α = 1 case, one sees that the probability measure πα

µ on (D′
(M), Cσ(D

′
(M))) is 

actually supported on generalized functions of the form 
∑

x∈γ δx, γ ∈ Γ.
One sees from (A.10) that, instead of the uniform combinatorial weight exp(−µ(Λ))

n!
 for 

n particles of the Poisson case (α = 1), one now has E
(n)
α (−µ(Λ))

n! , the rest being the same. 

Therefore the main dierence in the fractional case (α �= 1) is that a dierent weight 
is given to each n -particle space, although the support is the same. Dierent weights, 
multiplying the n-particle space measures, may be physically significant in that they 
have decays, for large volumes, smaller than the corresponding exponential factor in 
the Poisson measure.

It is not surprising that the support of the measure πα
µ coincides with the support 

of the Poisson measure (α = 1). Using the spectral representation of the Mittag-Leer 
function

Eα (−z) =

∫ ∞

0

e−τzdνα (τ)

να being the probability measure in R+
0

dνα (τ) = α−1τ−1−1/αfα
(
τ−1/α

)
dτ
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and fα the α-stable probability density given by
∫ ∞

0

e−tαfα (τ) dτ = e−tα , 0 < α < 1

one may rewrite (A.9) as

Cα (ϕ) =

∫ ∞

0

exp

(
τ

∫
(eiϕ(x) − 1) dµ(x)

)
dνα(τ)

the integrand being the characteristic function of the Poisson measure πτµ, τ > 0. This 
shows that the characteristic functional (A.9) coincides with the characteristic functional 
of the measure 

∫∞
0

πτµ dνα(τ). By uniqueness, this implies the integral decomposition

πα
µ =

∫ ∞

0

πτµ dνα(τ)� (A.11)

meaning that πα
µ is an integral (or mixture) of Poisson measures πτµ, τ > 0.

A fractional Poisson analysis may be developed along the lines of the inifinite-
dimensional Poisson analysis [36].
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