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Abstract Models or theories that are stable, in lhe sense that they do not change in a qualiwtive 
manner under a small change of parameters, have a higher probability of having a wider 
range of validity. This also Seems to be true for the fundamental lheories of naturr. Using 
the deformation theory of algebras. we review the stabilizing deformations leading from non- 
relalivistic to relativistic and from classical to quantum mechanics. Unlike prrvious treatments, 
both deformations are e e d  Out on a finitedimensional algebra sening. One then finds tharthe 
resulting relativistic quantum algebra is itself unstable and admits a two-pnrameter stabilizing 
deformation. Taking into account reasonable physical constmints to identify the deformed 
variables, a new algebn is then proposed 35 the stable algebra of relativistic quantum mechanics 
in tangent space. This is isomorphic to the algebra of the pseudo-Euclidian group in five 
dimensions 

1. Deformations and stable theories 

When, in the course of development of physical science, models are constructed for the 
natural world, it is reasonable to expect that only the robust properties of the models have a 
chance of being reproduced in the observed phenomena. Models are mere approximations 
of the natural world and it is highly unlikely that properties that are too sensitive to small 
changes in the model (i.e. that depend in a critical manner on particular values of the 
parameters) will ever be observed. Alternatively, if a fine tuning is needed to reproduce 
some natural phenomenon, then it is certain that the model is basically unsound and its other 
predictions are unreliable. It is therefore a good methodological approach to concentrate 
on the robust properties of the models or, equivalently, on models which are stable, in the 
sense that they do not change in a qualitative manner, when some parameter changes. 

The stable-model point of view has come a long way in the field of non-linear dynamics, 
where it led to the rigorous notion of structural stability [l]. As emphasized by Flato [2] 
and Faddeev [3], the same pattern seems to occur in the fundamental theories of nature. In 
fact, the two physical revolutions of this century, namely the passage from non-relativistic 
to relativistic and from classical to quantum mechanics, may be interpreted as the transition 
from two unstable theories to two robust stable theories. 

In general, a mathematical structure is said to be stable (or rigidt) for a class of 
deformations if any deformation in this class leads to an equivalent (isomorphic) structure. 
The idea of structures stabifity provides a guiding principle to test either the validity or the 
need for generalization of a physical theory. Namely, if the mathematical structure of a given 

t For physical applications. it seems more "at& to call these structures stable structures. however, in the 
mathematical literature it is always the term rigid that is used. In this papr,  the two terms are used with 
equivalent meaning. 
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theory is not stable, then one should try to deform it until i t  falls into a stable structure, which 
has a good chance of being a generalization of wider validity. The mathematical theory of 
deformations developed along several lines, the most developed being the deformations of 
analytic structures, of algebraic manifolds and of algebras. In all cases, the co-homology 
groups play a key role in characterizing the stability of the structures. 

In physics, it is the theory of deformations of Lie algebras that has, so far, played 
the major role, although the deformations of other mathematical structures are petentially 
as useful as the deformations of algebras. For physics, it is useful to have an explicit 
representation of the deformation parameters, which play the role of fundamental constants 
in the deformed stable theories. I will therefore concentrate on the theory of formal 
deformations of Lie algebras [GI. A formal deformation of a Lie algebra Lo, defined 
on a vector space V over a field K ,  is an algebra L, on the space V @ K[r]  (where K [ t ]  
is the field of formal power series), defined by 

CO 

[ A ,  Blr = [ A ,  Blo + C@i(A. B)t' (1.1) 
i=l 

with A ,  E .  @ { ( A ,  E )  E V and t E K .  The adjoint representation of LO is 

P ( A ) ( B )  = [ A ,  Blo. ( 1.2) 

An n-co-chain (relative to the adjoint representation) is a bilinear skew-symmetric mapping 

v x . . . x v +  v 
and the n-co-chains form a vector space C"(p, V). In particular, @ ( ( A .  B )  in equation (1.1) 
must be a 2-CO-chain. 

One also defines the following. 
(i) The co-boundary operator 

i= l  

+ ( - l ) ' + j @ ( [ A i , A j ] ,  A I , .  . . , A i , .  . . , i j . .  . . , A n + ] ) .  (1.3) 
I< I<j<"+l  

(ii) A co-cycle @ E C"(p, V )  whenever d@ = 0. The set of all n-co-cycles is a vector 

(iii) A co-boundary if @ E d(Cn-](p, V ) ) .  The set of all co-boundaries is a vector space 

(iv) The quotient space 

space denoted Z"(p). 

denoted E"@). 

is the n-co-homology group (relative to the p-representation). From (1.3), it follows that 
dz@ = 0. However, not all co-cycles need to be co-boundaries and the n-co-homology 
groups may be non-trivial. 

The relevance of these concepts to the deformation problem formulated in equation (1.1) 
is as follows. 
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Using the deformed commutation relations (1.1) and differentiating the Jacobi identity 

[ A ,  [ B ,  C11h + IB, [C, AItL + IC, [ A ,  BLIr = 0 (1.5) 

in variable t and then setting t = 0, one obtains 

d@i(A. B .  C) = 0 

that is, for the deformation in (1.1) to be a Lie algebra, $1 must be a 2-co-cycle. 

means that there is an invertible linear transformation TI : V + V such that 
A deformation of LO is said to be trivial if the algebra L, is isomorphic to Co. This 

T I ( [ A ,  Blc) = [TtA.  TIBIo.  (1.6) 

If all deformations LI are isomorphic to CO, then LO is said to be stable or rigid. Suppose 
now that the second co-homology H 2 ( p )  is trivial. This means that all 2-co-cycles are 
2-co-boundaries. Then there must be a I-co-chain y such that 41 = dy. Use the linear 
transformation M: = exp(-ty] to transform the algebra LI 

[ A ,  Bl:  = M;-' ( [M;A,  M;BI) ,  

From $1 = dy,  one now obtains, by a simple calculation [7] 

@ j ( A , B )  = @ i ( A , B ) - [ y ( A ) , B I -  [ A , y ( B ) I + y ( [ A , B I ) = O .  

Therefore, the power series expansion for [ A ,  B]:  begins with terms of second order in t 

[ A , B ] : = [ A , B ] o + @ ; ( A , B ) t Z + . .  

and from the Jacobi identity, as above, it follows that d@;(A, B )  = 0. 

that the limit 
By iterating the whole process, all powers o f t  are successively eliminated. This means 

r, = M; M: 

is the transformation that establishes the equivalence of C, and LO. In conclusion, the 
vanishing of the second co-homology group is a sufficient condition for the non-existence 
of non-trivial deformations, i.e. it is a sufficient condition for the stability (or rigidity) of the 
Lie algebra. This is the content of the 'rigidity theorem' of Nijenhuis and Richardson [ 5 ] .  

There is a nice geometrical interpretation of the role of CO-cycles and co-boundaries in 
the rigidity of Lie algebra structures. The set L" of all possible n-dimensional Lie algebras 
is an algebraic manifold embedded in CN (with N = (n' - n 2 ) / 2 ) ,  the defining algebraic 
relations being the Jacobi identity equations between the structure constants. Also, the 
natural topology in L" is the topology induced by the structure constants. Isomorphism 
relation (1.6) is an action of the linear group GL(n, @) 

L" x GL(n, U2) + L": (C, T) --t T-' o L o T x T (1.7) 

where L E L" denotes the Lie algebra law, 
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Denoting &(A, E )  = [A ,  B]o, & will be a rigid algebra if its orbit O(L0) under 
GL(n. @) is open. Every vector in  the tangent cone to L" at & is in the 2-CO-cycle spzce 
Z z ( p )  and the tangent space to the orbit O(L0) at LO is Bz(p ) .  

The rigidity theorem of Nijenhuis and Richardson establishes only a sufficient, and not a 
necessary, condition for stability. Semi-simple Lie algebras, for example, have a vanishing 
second co-homology group [e ]  and are stable. However, whenever there are non-trivial 
2-co-cycles, these may still not be the infinitesimals of a deformation, i.e. they may not be 
integrable. Primary obstructions to integrability are to be found in the structure of the third 
co-homology group. Examples of rigid algebras with non-vanishing second co-homology 
group [9-111 were constructed and this fact led to the development of different non-co- 
homological techniques for classifying rigid Lie algebras [ 11-15]. 

Here an important simplifying role is played by the techniques of non-standard analysis. 
A Lie algebra law LO is then said to be rigid if any perturbation L is isomorphic to CO. A 
perturbation of LO is an algebra C such that 

L(A7 E )  .- Lo@, B )  (1.8) 

for A, B standard or limited. The symbol - means infinitesimally close. 
The decomposition of any perturbation of Lo is as follows 

= LO + €141 + EI62@2 + ' ' ' €162 ' ' ' 6h@k (1.9) 

and is unique up to equivalence, where 6 are standard antisymmetric bilinear mappings, E 

are non-zero infinitesimals and k < N. 
The most useful result for the characterization of rigid Lie algebras is the theorem 

that states that if LO is rigid, there is a standard non-zero vector X such that ad& X 
(ad& X ( Y )  = [X. Y]) is diagonalizable, The converse result is not true and to classify 
the rigid algebras in dimension n one still has to exclude the non-rigid algebras with a 
diagonalizable vector. A large number are simply excluded by checking the rank of the 
root system and, for the rest (which are a finite number), one has to check explicitly the 
isomorphism of the perturbation. This method allows, in principle, the classification of all 
rigid algebras in any dimension. For details I refer the reader to [12, 14, 151. 

I will now review, briefly, the way in which deformation theory interprets the passage 
from non-relativistic to relativistic and from classical to quantum mechanics as stabilizing 
deformations of two unstable theories. 

The Lie algebra of the homogeneous Galileo group, the kinematical group of non- 
relativistic quantum mechanics, is: 

(1. loa) 

(1.10b) 

(1.10c) 

The second co-homology group does not vanish because, for example, @I(&,  Kj) = isijh J k ,  
and @ I  = 0 for all other arguments, is a 2-CO-cycle that is not a 2-CO-boundary. In fact, the 
deformation 

1 
C2 

[K,, K,] = -i--EijrJh (1.106) 
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leads to the Lorentz algebra which, being semi-simple, has a vanishing second co-homology 
group and is stable. 

For the deformation leading from classical to quantum mechanics, recall that the phase 
space of classical mechanics i s  a symplectic manifold W = ( T * M ,  w )  where T*M is the co- 
tangent bundle over configuration space M and w is a symplectic form. In local (Darboux) 
coordinates { p i ,  q i ) ,  the symplectic form is 

The Poisson bracket gives a Lie algebra structure to the Cm-functions on W 

(1.11) 

in local coordinates. 

algebra [16]. Let, for example, T " M  = Pz". Then 
The transition to quantum mechanics is now regarded as a deformation of this Poisson 

w = wijdx' A d x j  

= dx' ~ d x ' + " .  

l < i , j < Z n  

l<i<n 

Consider the following bidifferential operator: 

(1.12) 

PI( f, g) is simply the Poisson bracket. P3(f, g) is a non-trivial 2-co-cycle and, baning 
obstructions, one expects the existence of non-trivial deformations of the Poisson algebra. 

Existence of non-trivial deformations has indeed been proved in a very generd context 
[17-20]. Non-trivial deformations always exist if W is finite-dimensional'and, for a Bat 
Poisson manifold, they are all equivalent to the Moyal [213 bracket 

Moreover [f, g ] ~  = $(f,*h g - g *fi f )  where f *h g is an associative star-product 

(1.14) 

Correspondence with quantum mechanics formulated in Hilbert space is obtained by the 
Weyl quantization prescription. Let f(p,  q )  be a function in phase space and f its Fourier 
transform. Then, if we associate the Hilbert space operator 
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where Qi* = x, @ and Pi = -ih$$, to the function f, one finds 

with, on the left-hand side, the usual commutator of Hilbert space operators. Therefore, 
quantum mechanics may be described either by associating self-adjoint operators in Hilbert 
space to the observables or, equivalently, remaining in the classical setting of phasespace 
functions but deforming their product to a **-product and their Poisson brackets to Moyal 
brackets. 

In both the Galileo and the Poisson algebra cases, the deformed algebras are all 
equivalent for non-zero values of $ and h. This means that although we could have 
derived relativistic and quantum mechanics purely from considerations of the stability of 
their algebras, the exact values of the deformation parameters cannot be obtained from 
algebraic considerations. The deformation parameters are therefore the natural fundamental 
constants to be obtained from experiment. In this sense, deformation theory is not only the 
theory of stable theories, it is also the theory that identifies the fundamental constants. 

There is a basic difference in the deformations leading from non-relativistic to relativistic 
and from classical to quantum mechanics. In the first case, one deals with the deformation 
of a finite-dimensional algebra and, in the second, with the more complex case of the 
deformation of an infinite-dimensional algebra of functions. With the benefit of hindsight, 
one may now simplify the presentation by using, for classical mechanics, instead of the 
Poisson algebra in phase space, a formulation in Hilbert space. Then, the transition appears 
in both cases as a simple deformation of finite-dimensional Lie algebras. This not only 
simplifies the presentation but is the appropriate setting for further analysis of the stability 
of relativistic quantum mechanics. This is the subject of section 2. 

2. The stable finite-dimensional Lie algebra of relativistic quantum mechanics 

A description of classical mechanics by operators in Hilbert space was proposed, soon 
after the discovery of quantum mechanics. by Koopman [22] and von Neumann [231. A 
constant energy surface S ~ E  in the phase space of N particles carries an invariant measure 
/*E, which is the restriction of the,Liouville measure d 3 N ~ d 3 N p  to RE. In the space of 
square-integrable functions LZ(S&, /*E), the Hamiltonian flow & induces a unitary operator 
by 

where w E and f E L 2 ( i 2 ~ ,  @E). Unitarity is a consequence of the invariance of the 
measure /*(?-IF) = / * (F) ,  for a measurable set F E RE. 

In the Hilbert space L2(52~, /*E), classical mechanics has an operator formulation. 
The time evolution is induced by a unitary operator U,, as in quantum mechanics, and 
the observables are the smooth functions on QE which act as multiplicative operators in 

Considered as multiplicative operators in Hilbert space, the functions of coordinates 
and momenta are an infinite-dimensional Abelian algebra. However, in the Hilbert space 
formulation, we need not consider explicitly the infinite-dimensional algebra because the 
full content of the theory is obtained by selecting a finite set of paired observables (p i ,  x i )  

LYRE, ,U€). 
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and defining its ransformation properties under U, and its algebraic properties which, in 
classical mechanics, are 

[Pi, X j l  = [Pi, P j l  = [Xi, X j l  = 0. (2.2) 

The transition to quantum mechanics is now effected by the replacement of this Abelian 
algebra by the Heisenberg algebra 

[Pi, Pi1 = [Xi, xi1 = 0 ( 2 . 3 ~ )  

[ x i .  pi] = ihZ (2.3b) 

where Z is the identity operator, a mvial centre of the algebra of observables. 
The infinite-dimensional Moyal algebra is therefore replaced by the simpler finite- 

dimensional Heisenberg algebra. The role of this Heisenberg algebra, in the context of 
deformation theory, has however to be discussed carefully. Consider the one-dimensional 
case of a classical Abelian algebra [ x .  p ]  = 0. This Abelian algebra is clearly not stable 
and in its neighbourhood there is the algebra 

[ x ,  p ]  = isx (2.4) 

or the Heisenberg algebra 

[ x ,  p ]  = ihZ (2.5) 

which is the central extension of the Abelian algebra. 

to [ 151 
(2.4) is a stable algebra Indeed, the only stable algebra in two dimensions is isomorphic 

tY ,  X1l= XI (2.6) 

however, the Heisenberg algebra itself is not stable. 
There are two ways of looking at the instability of the Heisenberg algebra. First, if 

we consider it as a tridimensional algebra [ X Z .  X3l = X I  (all the other commutators being 
zero), the complete structure of its neighbourhood, in the space of Lie-algebra laws, is 
known [14]. Namely, the Heisenberg algebra is a contraction of any algebra of the same 
dimension that canies a linear contact form. Conversely, any perturbation of the Heisenberg 
algebra supports a linear contact form. For example, from the Lie algebra of SO(3) 

1x2, X3l = XI [ X I ,  x21= x3 [ X 3 ,  XI1 = x2 

which is semi-simple and therefore stable, with the following linear change of coordinates 

YI = EX, Y2 = f i x 2  Y3 = fix, 
one obtains 

FYI* Yzl = QY3 [YZ, Y3l = Yt ly3, Yl l  = CY2 

and in the E -+ 0 limit one obtains the Heisenberg algebra. 
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We could also have considered the Heisenberg algebra as a two-dimensional algebra 
with a trivial centre. That is, we restrict our deformations to those that preserve the zero 
commutator of X I  with the other two elements. Consider in this case the deformation 

1x2, X3l  = XI t ax2 + 6 x 3  

With the linear change of variables 

Yz =ax? + XI t f i x 3  Y3 = aY-1x, 

we now fall on the stable two-dimensional algebra (2.6) [Yz, Y3]  = Y2. 
We conclude in both cases that the Heisenberg algebra is unstable and has a stable 

algebra in its neighbourhood. Therefore, it would seem, at first sight, that the Hilbert-space 
construction leads to conclusions different from the phase-space construction described 
in section I, which interprets the transition from classical to quantum mechanics as a 
deformation from an unstable Poisson algebra to a stable Moyal-Vey algebra. A simple 
reasoning shows, however, that this is not the case and that the constructions are indeed 
equivalent and are both the transition from an unstable classical algebra to a stable quantum 
algebra. The apparent difference is merely an artefact of the singling out of x as the 
observable, when in fact the observables are all smooth functions of x (and p ) .  Consider 
the explicit representation 

The physical content of the theory will be the same if, instead of the coordinate x ,  we 
consider any linear or non-linear function of x .  In particular, considering y = exp(ix), one 
obtains the algebra 

[PI Y1 = f iy  

which is isomorphic to the stable two-dimensional algebra (2.3). Hence, the Heisenberg 
algebra is equivalent, through a non-linear coordinate transformation that preserves the 
physical content, to a stable algebra. In this sense, the transition from classical to quantum 
mechanics is again,seen to be a stabilizing deformation of an unstable algebra. The main 
reason why the coordinate choice leading to the Heisenberg algebra is physically convenient 
is that the observable p then has a simple interpretation as the generator of translations in 
x .  This example also shows that, when selecting a finite subset of observables rather than 
an infinite-dimensional space of functions, the notion of linear equivalence of algebras, in 
the sense of equation (1.6). is not sufficient for the stability analysis and one should also 
consider non-linear transformations that preserve the physical content of the theory. 

The transitions from non-relativistic to relativistic and from classical to quantum 
mechanics have thus been cast as deformations of a finite-dimensional Lie algebra of 
operators in Hilbert space. A trivial point in this construction, which, however, has non- 
trivial consequences, is the fact that, to have both these constructions in a finite-dimensional 
algebra setting, it is essential to include the coordinates as basic operators in the defining 
(kinematical) algebra of relativistic quantum mechanics. The full algebra of relativistic 
quantum mechanics will be the Poincari algebra (2.7a, b . 4 ,  the Heisenberg algebra for 
the momenta and spacetime coordinates (P,,x.) in Minkowski space together with the 
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commutators that define the vector nature (under the Lorentz group) of the P, and xy. 
Defining 

M.. - E . .  J - yk P M o ~  = Ki 

and measuring velocities and actions in units of c and h (that is c = h = l), one obtains 

[M,,, Mpcl = i(Mw,,gvp + M,g,, - M,,g,, - M,,,g,,) ( 2 . 7 ~ )  

[MWw,,, 9 1  = i(P,g,l- Pug,,) (2.7b) 

IMw, XAl = i(X,guA - Xd,A)  ( 2 . 7 ~ )  

[P,, P”l = 0 (2.74 

[x,, X”1 = 0 (2.7e) 

[P,,x,l = ig ,J .  (2.7fi 

We know that the Lorentz algebra, being semi-simple, is stable and that each one of the 
two-dimensional Heisenberg algebras (P,,, x, )  is also stable in the nonlinear sense discussed 
above. When the algebras are combined through covariance commutators (2.76) and (2.7c), 
the natural question to ask is whether the whole algebra is stable or whether there are any 
non-trivial deformations. 

Actually the algebra 80 = [MWy, Pw,x, ,Z)  defined by equation (2.7) is not stable. 
This will be shown by exhibiting a two-parameter deformation of % to a simple algebra 
which itself is stable. To understand the role of the deformation parameters, consider first 
the Poincari subalgebra P = [M,,, P,). It is well known already that this subalgebra is 
not stable and may be deformed [Z, 241 to the stable simple algebras of the De Sitter groups 
O(4, 1) or 0(3 ,2) .  Writing 

1 
P - -M,4  

P - R  

the commutation relations [M,,, Mp,] and [M,,, PA] are the same as before, that is ( 2 . 7 ~ )  
and (2.7b), and [P,, Pu] becomes 

(2.9) 
€4 

IP,, pul = - i S M , ” .  

Equations (2.7a), (2.7b) and (2.9) together, are the algebra 

[Mob, Mcdl = i(-&dgoc - Mucgbd 4- Mbcgod + Modgbc) (2.10) 

of the five-dimensional pseudo-orthogonal group with metric 

g,, =(1,-1,-1,-1,€4) € 4 = f l .  

That is, the Poincari algebra deforms to the stable algebras of 0(3 ,2)  or O(4, 1). according 
to the sign of 64. 

This instability of the Poincari algebra is, however, physically harmless. It simply 
means that flat space is an isolated point in the set of arbitrarily curved spaces. As long as 
the Poincari group is used as the kinematical group of the tangent space to the spacetime 
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manifold, and not as a group of motions in the manifold itself, it  is perfectly consistent to 
take R -+ 00 and this deformation goes away. 

For the full algebra FRO = [M,”, P , , x , , Z ) ,  the situation is more interesting. In this 
case, the stabilizing deformation is obtained by setting 

1 P - - M , 4  
@ - R  

x, = eM,s 

(2.11a) 

(2.116) 

e 2= -M 45 (2.1 IC) 
R 

to obtain 

(2.126) 

(2.12c) 

(2.124 

[x,, z] = it5tzP, (2.12e) 

with [M,,, M,,,,], [M,, ,  PA] and [M,,, X A ]  being the same as before. 

dimensional pseudo-orthogonal group with mekic 
The stable algebra &.R, to which 80 as been deformed, is the algebra of the six- 

g,, = (1. -1, -1, -1, e4, e5) eh. c5 = i l  

As in the case of the Poinca.4 algebra discussed above, if one is mostly concerned with 
the algebra of observables in the tangent space, one may take the limit R -+ 00 and finally 
obtain 

[M,, ,  Mpol = W,,s, + M,sW - Mu0s, - M-g,) (2.13a) 

[M,,, 9 1  = i(P,g”i - P,g,i) (2.1 36) 

[M,,, x ~ l  = i(x,gvi - w , d  (2.13~) 

[P,. P”l = 0 (2.13d) 

[x , ,  xy] = -i&M,M,, (2.13e) 

[p,,.~l = i g , J  (2.13j’) 

[P,,Zl=O (2.13g) 

= ic5ezp, (2.13h) 

as our candidate for a stable algebra of relativistic quantum mechanics. The main features 
are the non-commutativity of the x, coordinates and the fact that 2, previously a trivial 
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centre of the Heisenberg algebra, now becomes a non-trivial operator. These are, however, 
the minimal changes that seem to be required if the stability of the algebra of observables 
(in the tangent plane) is to be a good guiding principle. Two fundamental constants define 
this deformation. One is e ,  a fundamental length, the other is the sign of € 5 .  

The idea of modifying the algebra of the spacetime components xp in such a way that 
they become non-commuting operators has already appeared several times in the physical 
literature. Rather than being motivated (and forced) by stability considerations, the aim 
of these proposals has been to endow spacetime with a discrete structure, to be able, for 
example. to construct quantum fields free of ultraviolet divergences. Sometimes they simply, 
postulate a non-zero commutator, at others they are guided by the formulation of field theory 
in curved spaces. Although the algebra we anived at, in equations (2.13), is so simple and 
appears in such a natural way in the context of deformation theory, it seems that, strangely, 
it differ? in some way or another from the past proposals. In one scheme, for example. 
the coordinates are assumed to be the generators of rotations in a fivedimensional space 
with constant negative curvature. This possibility was proposed by Snyder [25] and the 
consequences of formulating field theories in such spaces have been extensively studied 
by Kadishevsky and collaborators [26,27I. The commutation relations of the coordinates 
[x , ,xv ]  are identical to (2.13e) however, because of the representation chosen for the 
momentum operators: the Heisenberg algebra is different and, in particular, [Pp,x,] has 
non-diagonal terms. Banai [28] also proposed a specific non-zero commutator which only 
operates between time and space coordinates, braking Lorentz invariance. Many other 
discussions exist concerning the emergence and the role of discrete or quantum spacetime, 
which, however, in general, do not specify a complete operator algebra [2942].  

Notice that there are other ways to deform algebra 30 to the simple algebra of 
the pseudo-orthogonal group in six dimensions. These correspond to different physical 
identifications of the generators M@e, M,,s and M45. For example, putting 

(2.14a) 
1 

pp = j p p 4  + M p 5 )  

(2.14b) 
t' 

x p  = 2 (Mp4 - Mp5) 

et z= -M 4s (2.14~) 

and E )  = -64 = 1, the coordinates and momenta become commuting variables and the 
changes occur only in the Heisenberg algebra and the nature of  Z, namely 

R' 

(2 .15~)  
[ P ~ , ~ . I  = i ( l i ; ~ , u + g , , ~ )  et 

e l  
(2.1Sb) [P,,TJ = -i-Pp 

R' 

(2.15~) 

However, this identification of the physical observables in the deformed algebra does not 
seem so natural as the previous one. In particular, equation (2.15a) implies a radical 
departure from Heisenberg algebra and the fundamental length scale is tied up to the large 
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scale of the manifold curvature radius, in the sense that, if we  take R’ -+ CO, the whole 
deformation vanishes. 

The Ille,, algebra (2.13) has a’simple representation by differential operators in a fiv* 
dimensional space with coordinates &, 7) 

a P,, =i- 

a 
a 4  

Z = 1 + it-. 

(2.164 

(2.16b) 

(2.16~) 

(2.164 

In this representation, the deformation has a simple interpretation. The spacetime 
coordinates x,,, in addition to a usual (continuous spectrum) component, have a small 
angular-momentum component corresponding to a rotation (or hyperbolic rotation) in the 
extra dimension, and the centre of the Heisenberg algebra picks up a small momentum in 
the extra dimension. 

Algebra (2.13) is seen to be the algebra of the pseudo-Euclidean groups E(1,4) or 
E(2,3), depending on whether €3 is -1 or +I .  For the construction of quantum fields it 
is the representations of these groups that should be used. Notice however that only the 
Poincark part of E(1.4) or E(2,3) corresponds to symmetry operations and only this part 
has to be implemented by unitary operators. The spacetime fields @ ( x )  are functionals over 
the auxiliary variables (6, q) the correspondence being established by representation (2.16). 
The consnuction of the generalized version of the usual quantum field-theory models may 
then be carried out in a fairly simple manner. 

Being mostly concerned with the characterization of a general stable framework for 
relativistic quantum mechanics, i t  is outside the scope and the spirit of this paper to 
discuss specific models. I would like, however, to mention that a simple model-independent 
quantum mechanical sum rule follows from the double commutator 

[ x ,  ip. XI] = d p .  (2.17) 

Taking the expectation value of both sides in a normalized state i )  and using generalized 
momentum eigenvectors for the decompositions of the unit Jdkl k ) ( k l ,  one obtains 

~d~kll(llrlxlk)I’-Re((llrlx21k)(kli))l = :e*(i)lplf). (2.18) 

If the state 9 has a large momentum component, the right-hand side becomes large and this 
dipole momentum-type sum rule may lead to observable effects. 

3. Remarks 

(i) Faddeev 131 pointed out that, besides the stabilizing deformations leading from non- 
relativistic to relativistic and from classical to quantum mechanics, the Einstein theory of 
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gravity might also be considered as a deformation in a stable direction. This theory is 
based on curved pseudo-Riemann manifolds. Therefore, in the set of Riemann spaces, 
Minkowski space is a kind of degeneracy, whereas a generic Riemann manifold is stable in 
the sense that, in its neighbourhood, all spaces are curved. The deformation parameter is 
the gravitation constant y .  which thus gains the same status, as a fundamental constant, as 
fi and c. 

We have, however, seen that a natural way of stabilizing the algebra is through a two- 
parameter deformation (!, R). It seems that R is the parameter that relates predominantly 
to the curvature of the manifold, and this is the reason why I have called %t,m in equations 
(2.13) the deformed algebra in tangent space. 

On the other hand, many of the authors that have concerned themselves with the issue 
of the fundamental length were aiming to obtain a natural scale for the masses of the 
elementary particles. However, the inverse of the mass scale of what are now called the 
elementary particles leads to such length values that, for example, the effect of the deformed 
commutators (2.13e) and (2.13h) should by now have been detected. So, in the end, it might 
well be that the deformation parameter e ,  if it exists, is not directly related either to the 
mass scale of elementary particles or to the gravitational constant. 

(ii) In this paper, all the algebra deformations that were considered are deformations in 
the classical sense of Gerstenhaber, Nijenhuis and Richardson. Another type of deformation 
that has received a great deal of attention lately, not only for algebras and groups [43,44] 
but for other mathematical structures as well [45], is the notion of q-deformation. The 
q-deformations involve exponential functions of the algebra elements and, therefore, are 
deformations of the universal enveloping algebra, not deformations of the algebra in the 
classical sense. However, first steps have been given to establishing a stability theory for q-  
deformations [46] and, recently, a connection was also established between q-deformations 
and regular *-deformations in an enlarged phase space [47,48]. Therefore, it is probably 
interesting to reanalyse the problem of stability of relativistic quantum mechanics in a 
q-deformation context as well. 
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