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Abstract As a consequence of Haag’s theorem, to obtain a non-trivial theory, one
either works with a non-Fock representation or with a Fock representation in a finite
volume. Calculations in the Fock representation taking the N,V→ ∞ limit with
the ratio N/V =ρ fixed, show the equivalence of the free Boson gas and the infinite-
dimensional Poisson measure. The N/V limit provides a way to deal with non-trivial
infinite systems using the Fock representation. However, by the very nature of the
fixed ρ density limit, it is unable to deal with systems with density fluctuations, a
shortcoming that is solved by the use of reducible functionals. A particularly inter-
esting reducible functional is the one associated to the infinite-dimensional fractional
Poisson measure which we recall in this work.
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1 Introduction: Density Fluctuations, Reducible
Functionals and Fractional Gases

Systems with an infinite number of degrees of freedom have, in addition to the Fock
representation, infinitely many inequivalent representations of the canonical commu-
tation relations. Haag’s theorem states that, in a theory with a space-invariant vacuum,
any representation equivalent to Fock can only describe a free system. Therefore, to
obtain a non-trivial theory, one either works with a non-Fock representation or with
a Fock representation in a finite volume. In this latter case one considers N particles
in a finite volume V . Calculations are carried out in the Fock representation and in
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the end one takes N, V → ∞ with the ratio N/V = ρ being fixed. Thus, the N/V
limit provides a way to deal with non-trivial infinite systems using the Fock repre-
sentation. However, by the very nature of the fixed ρ density limit, this approach is
unable to deal with systems with density fluctuations. This shortcoming is solved by
the use of the reducible functionals to be described later on.

First, let us recall the connection of the infinite-dimensional Poisson measure to
the free Bose gas. A particularly convenient way to establish this connection, and
also to explore generalizations, is the framework of non-relativistic current algebra
of many-body systems. That is, the basic variables of the many-body system are the
smeared currents [1, 2] (see also [3, 4] and references therein)

ρ (f ) =
∫

d3x f (x) ρ (x)

J (g) =
∫

d3x J (x) • g (x)

f and g being respectively smooth compact support functions and vector fields. The
smeared currents satisfy the infinite-dimensional Lie algebra,[

ρ (f ) , ρ (h)
] = 0[

ρ (f ) , J (g)
] = iρ (g • ∇f )[

J (g) , J (k)
] = iJ (k • ∇g − g • ∇k)

each particular physical system corresponding to a different Hilbert space representa-
tion of this algebra or of the semidirect product group generated by the exponentiated
currents

U (f ) = eiρ(f )

V
(
φ

g
t

) = eiJ(g)

φ
g
t being the flow of the vector field g

d

dt
φ

g
t (x) = g

(
φ

g
t (x)

)
For a system of N free bosons in a box of volume V , the normalized ground state is

ΩN,V (x1, · · · , xN ) =
(

1√
V

)N

and the ground state functional

LN,V (f ) = (
ΩN,V , UN,V (f )ΩN,V

)
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= 1

V

(∫
V

d3x eif (x)
)N

In general, this functional determines not only the representation of U (f ) but also
that of V

(
φ

g
t

)
, up to a complex phase multiplier.

In the N → ∞ limit with constant average density ρ = N
V (also called the N/V

limit) one obtains

L (f ) = lim
n→∞

(
1 + ρ

N

∫ (
eif (x) − 1

)
d3x

)n

= exp

(∫ (
eif (x) − 1

)
ρ d3x

)
(1)

which one recognizes as the characteristic functional of the infinite-dimensional
Poisson measure. Identifying ρd3x as the measure dμ in the underlying space M
(see Appendix 1), the L functional may also be written as a vacuum expectation
functional. Expanding the exponential in (1)

L (f ) =
∞∑

n=0

e− ∫
V dμ

n!
(∫

V
eif (x)dμ

)n

(2)

one may write
L (f ) = (Ω, U (f ) Ω)

for
Ω =

⊕
n

e− 1
2

∫
V dμ11n

11n denotes the identity function in the n-particle space and the 1
n! factor in (2) is

recovered by the symmetrization operation.
The conclusion is that an infinite dimensional free Boson gas at constant density ρ

is completely characterized by the infinite-dimensional Poisson measure. However
(1) is not the most general consistent representation of the nonrelativistic current
algebra, a more general one being [2]

L (f ) =
∫ ∞

0
exp

(
ρ

∫ (
eif (x) − 1

)
d3x

)
dμ (ρ) (3)

with μ a positive measure on [0,∞) normalized so that
∫ ∞

0 dμ (ρ) = 1.
Physically this reducible functional represents a Boson gas with density fluctua-

tions. Among the many possible reducible functionals consistent with (3) there is a
fractional generalization of (2), namely

rvmendes@fc.ul.pt
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Lα (f ) =
∞∑

n=0

E(n)
α

(− ∫
V dμ

)
n!

(∫
V

eif (x)dμ

)n

(4)

(0 < α ≤ 1), which corresponds to a vacuum state

Ωα =
⊕

n

√
E(n)

α

(
−

∫
V

dμ

)
11n

E(n)
α denoting the n-th derivative of the Mittag-Leffler function [5]. Ωα differs from

Ω in the weight given to each one of the n-particle spaces.
The measure associated to the functional (4) is called the infinite-dimensional

fractional Poisson measure and the corresponding physical system the fractional
Boson gas.

In the same way as the infinite-dimensional Poisson measure completely char-
acterizes the Boson gas, the infinite-dimensional fractional Poisson measure will
characterize a “fractional Boson gas” and the remainder of this work is dedicated to
recall the main properties of this measure [6]. A detailed analysis of the mathemat-
ical properties of the fractional Poisson measure is a precondition for the rigorous
formulation of some of the already explored physical implications of fractality (see
for example [7, 8]).

2 The Infinite-Dimensional Fractional Poisson Measure

2.1 The Fractional Poisson Process

The Poisson measure π in R (or N) is

π (A) = e−σ
∑
n∈A

σ n

n!

the parameter σ being called the intensity. The Laplace transform of π is

lπ (λ) = E
(
eλ·) = e−σ

∞∑
n=0

σ n

n! eλn = eσ
(
eλ−1

)

For n-tuples of independent Poisson variables one would have

lπ (λ) = e
∑

σk
(
eλk −1

)

Continuing λk to imaginary arguments λk = ifk , the characteristic function is

rvmendes@fc.ul.pt
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Cπ (λ) = e
∑

σk

(
eifk −1

)
(5)

Looked at as a renewal process, P (X = n) = e−σ σ n

n! would be the probability
of n events occurring in the time interval σ . The survival probability, that is, the
probability of no event is

Ψ (σ) = e−σ

which satisfies the equation

d

dσ
Ψ (σ) = −Ψ (σ) (6)

Replacing in (6) the derivative d
dσ

by the (Caputo) fractional derivative

DαΨ (σ) = 1

Γ (1 − α)

∫ σ

0

Ψ ′ (τ )

(σ − τ)α
dτ = −Ψ (σ) (0 < α < 1)

one has the solution
Ψ (σ) = Eα

(−σα
)

with Eα being the Mittag-Leffler function of parameter α

Eα (z) =
∞∑

n=0

zn

Γ (αn + 1)
, z ∈ C (7)

(α > 0). One then obtains a fractional Poisson process [9, 10] with the probability
of n events

P (X = n) = σαn

n! E(n)
α

(−σα
)

E(n)
α denoting the n-th derivative of the Mittag-Leffler function. In contrast with the

Poisson case (α = 1), this process has power law asymptotics rather than exponential,
which implies that it is not anymore Markovian. The characteristic function of this
process is given by

Cα (λ) = Eα

(
σα

(
eiλ − 1

))

2.2 The Infinite-Dimensional Fractional Poisson Measure

For the Poisson measure (α = 1) an infinite-dimensional generalization is obtained
by generalizing (5) to

C (ϕ) = e
∫ (

eiϕ(x)−1
)

dμ(x)

rvmendes@fc.ul.pt
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for test functions ϕ ∈ D (M), D (M) being the space of C∞-functions of com-
pact support in a manifold M (fixed from the very beginning), and then using the
Bochner-Minlos theorem to show that C is the Fourier transform of a measure on
the distribution space D ′ (M). Because the Mittag-Leffler function is a natural an-
alytic generalization of the exponential function one conjectures that an infinite-
dimensional version of the fractional Poisson measure would have a characteristic
functional

Cα (ϕ) := Eα

(∫
(eiϕ(x) − 1) dμ (x)

)
, ϕ ∈ D (M) (8)

with μ a positive intensity measure fixed on the underlying manifold M . However,
a priori it is not obvious that this is the Fourier transform of a measure on D ′ (M)

nor that it corresponds to independent processes because the Mittag-Leffler function
does not satisfy the factorization properties of the exponential.

Similarly to the Poisson case, to carry out our construction and analysis in detail we
always assume that M is a geodesically complete connected oriented (non-compact)
Riemannian C∞-manifold, where we fix the corresponding Borel σ -algebra B (M),
and μ is a non-atomic Radon measure, which we assume to be non-degenerate (i.e.,
μ(O) > 0 for all non-empty open sets O ⊂ M). Having in mind the most interesting
applications, we also assume that μ(M) = ∞.

Theorem 1 For each 0 < α ≤ 1 fixed, the functional Cα in Eq. (8) is the charac-
teristic functional of a probability measure πα

μ on the distribution space D ′ (M).

Proof That Cα is continuous and Cα (0) = 1 follows easily from the properties of the
Mittag-Leffler function. To check the positivity one uses the complete monotonicity
of Eα , 0 < α < 1, which by Appendix 2 (Lemma 1) implies the integral representa-
tion

Eα (−z) =
∫ ∞

0
e−τ zdνα (τ ) (9)

for any z ∈ C such that Re (z) ≥ 0, να being the probability measure (19) (Appen-
dix 2). Hence by (9)

∑
a,b

Cα (ϕa − ϕb) z∗
azb =

∫ ∞

0
dνα (τ )

∑
a,b

e
−τ

∫
M dμ(x)

(
1−ei(ϕa−ϕb)

)
z∗

azb (10)

Each one of the terms in the integrand corresponds to the characteristic function
of a Poisson measure. Thus, for each τ the integrand is positive and therefore the
spectral integral (10) is also positive. From the Bochner-Minlos theorem it then
follows that Cα is the characteristic functional of a probability measure πα

μ on the

measurable space (D
′
(M),Cσ (D

′
(M))), Cσ (D

′
(M)) being the σ -algebra generated

by the cylinder sets.

For α = 1 see e.g. [11]. �
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Introducing the fractional Poisson measure by the above approach yields a proba-
bility measure on (D

′
(M),Cσ (D

′
(M))). The next step is to find an appropriate sup-

port for the fractional Poisson measure. Using the analyticity of the Mittag-Leffler
function one may informally rewrite (8) as

Cα (ϕ) =
∞∑

n=0

E(n)
α

(− ∫
dμ (x)

)
n!

(∫
eiϕ(x)dμ (x)

)n

=
∞∑

n=0

E(n)
α

(− ∫
dμ (x)

)
n!

∫
ei(ϕ(x1)+ϕ(x2)+···+ϕ(xn))dμ⊗n

For the Poisson case (α = 1) instead of E(n)
α

(− ∫
dμ (x)

)
one would have exp(− ∫

dμ (x)
)

for all n, the rest being the same, cf. Appendix 1. Therefore one con-
cludes that the main difference in the fractional case (α = 1) is that a different weight
is given to each n-particle space, but that a configuration space [12–14] is also the
natural support of the fractional Poisson measure. The explicit construction is made
below.

Notice however that the different weights, multiplying the n-particle space mea-
sures, are physically quite significant in that they have decays, for large volumes,
much smaller than the corresponding exponential factor in the Poisson measure.

Using now the spectral representation (9) of the Mittag-Leffler function one may
rewrite (8) as

Cα (ϕ) =
∫ ∞

0
exp

(
τ

∫
(eiϕ(x) − 1) dμ(x)

)
dνα(τ )

with the integrand being the characteristic function of the Poisson measure πτμ,
τ > 0. In other words, the characteristic functional (8) coincides with the charac-
teristic functional of the measure

∫ ∞
0 πτμ dνα(τ ). By uniqueness, this implies the

integral decomposition

πα
μ =

∫ ∞

0
πτμ dνα(τ )

meaning that πα
μ is an integral (or mixture) of Poisson measures πτμ, τ > 0. The

measure dνα (τ ) corresponds to the measure dμ (ρ) in Eq. (3), defining the particular
reducible functional that characterizes the fractional Boson gas.

2.3 The Fractional Poisson Measure on Γ

The fractional Poisson measure has support in the configuration space Γ as
constructed in Appendix 1.

rvmendes@fc.ul.pt
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Given a measure μ on the underlying measurable space (M,B(M)) described as
before, consider for each n ∈ N the product measure μ⊗n on (Mn,B(Mn)). Since
μ⊗n(Mn\M̃n) = 0, one may consider for each Λ ∈ Bc(M) the restriction of μ⊗n

to (Λ̃n,B(Λ̃n)), which is a finite measure, and then the image measure μ
(n)
Λ on

(Γ
(n)
Λ ,B(Γ

(n)
Λ )) under the mapping symn

Λ,

μ
(n)
Λ := μ⊗n ◦ (symn

Λ)−1

For n = 0 we set μ
(0)
Λ := 1.1 Now, for each 0 < α < 1 one may define a probability

measure πα
μ,Λ on (ΓΛ,B(ΓΛ)) by

πα
μ,Λ :=

∞∑
n=0

E(n)
α (−μ(Λ))

n! μ
(n)
Λ (11)

The family {πα
μ,Λ : Λ ∈ Bc(M)} of probability measures yields a probability

measure on (Γ,B(Γ )). In fact, this family is consistent, that is,

πα
μ,Λ1

= πα
μ,Λ2

◦ p−1
Λ2,Λ1

, ∀Λ1,Λ2 ∈ Bc(M),Λ1 ⊂ Λ2

and thus, by the version of Kolmogorov’s theorem for the projective limit space
(Γ,B(Γ )) [15, Chap. V Theorem 5.1], the family {πα

μ,Λ : Λ ∈ Bc(M)} determines
uniquely a measure πα

μ on (Γ,B(Γ )) such that

πα
μ,Λ = πα

μ ◦ p−1
Λ , ∀Λ ∈ Bc(M)

Let us now compute the characteristic functional of the measure πμα. Given a
ϕ ∈ D(M) we have supp ϕ ⊂ Λ for some Λ ∈ Bc(M), meaning that

〈γ, ϕ〉 = 〈pΛ(γ ), ϕ〉, ∀ γ ∈ Γ

Thus ∫
Γ

ei〈γ,ϕ〉dπα
μ(γ ) =

∫
ΓΛ

ei〈γ,ϕ〉dπα
μ,Λ(γ )

and the infinite divisibility (11) of the measure πα
μ,Λ yields for the right-hand side

of the equality

∞∑
n=0

E(n)
α (−μ(Λ))

n!
∫

Λn
ei(ϕ(x1)+...+ϕ(xn))dμ⊗n(x) =

∞∑
n=0

E(n)
α (−μ(Λ))

n!
(∫

Λ

eiϕ(x)dμ(x)

)n

which corresponds to the Taylor expansion of the function

1 Of course this construction holds for any Borel set Y ∈ B(M). In this case, μ
(n)
Y (Γ

(n)
Y ) < ∞

provided μ(Y) < ∞. For more details and proofs see e.g. [16, 17].
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Eα

(∫
Λ

(eiϕ(x) − 1) dμ(x)

)
= Eα

(∫
M

(eiϕ(x) − 1) dμ(x)

)
In other words, the characteristic functional of the measure πα

μ coincides with the
characteristic functional of the probability measure given by Theorem 1 through the
Bochner-Minlos theorem.

Similarly to the α = 1 case, this shows that the probability measure on
(D

′
(M),Cσ (D

′
(M))) given by Theorem 1 is actually supported on generalized

functions of the form
∑

x∈γ δx , γ ∈ Γ . Thus, each fractional Poisson measure
πα

μ can either be consider on (Γ,B(Γ )) or on (D ′,Cσ (D ′(M))) where, in con-
trast to Γ , D ′(M) ⊃ Γ is a linear space. Since πα

μ(Γ ) = 1, the measure space
(D ′(M),Cσ (D ′(M)), πα

μ) can, in this way, be regarded as a linear extension of the
fractional Poisson space (Γ,B(Γ ), πα

μ).

2.4 Fractional Poisson Analysis

2.4.1 Fractional Lebesgue-Poisson Measure and Unitary Isomorphisms

Let us now consider the space of finite configurations

Γ0 :=
∞⊔

n=0

Γ
(n)

M

endowed with the topology of disjoint union of topological spaces, with the cor-
responding Borel σ -algebra B(Γ0) and the so-called K-transform [16, 18–22], a
mapping which maps functions defined on Γ0 into functions defined on Γ . By defin-
ition, given a B(Γ0)-measurable function G with local support, that is, G�Γ0\ΓΛ ≡ 0
for some Λ ∈ Bc(M), the K-transform of G is a mapping KG : Γ → R defined at
each γ ∈ Γ by

(KG)(γ ) :=
∑
η⊂γ

|η|<∞

G(η) (12)

Note that for every such function G the sum in (12) has only a finite number of sum-
mands different from zero, and thus KG is a well-defined function on Γ . Moreover,
if G has support described as before, then the restriction (KG) �ΓΛ is a B(ΓΛ)-
measurable function and (KG)(γ ) = (KG)�ΓΛ(γΛ) for all γ ∈ Γ .

In terms of the dual operator K∗ of the K-transform, this means that the image of
a probability measure on Γ under K∗ yields a measure on Γ0. More precisely, given
a probability measure ν on (Γ,B(Γ )) with finite local moments of all orders, that
is, ∫

Γ

|γΛ|n dν(γ ) < ∞ for all n ∈ N and all Λ ∈ Bc(M)
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then K∗ν is a measure on (Γ0,B(Γ0)) defined on each bounded B(Γ0)-measurable
set A by

(K∗ν)(A) =
∫

Γ

(K11A)(γ ) dν(γ )

The measure K∗ν is called the correlation measure corresponding to ν. In particular,
for the Poisson measure πμ, the correlation measure corresponding to πμ is called
the Lebesgue-Poisson measure

λμ :=
∞∑

n=0

1

n!μ
(n), μ(n) := μ⊗n ◦ (symn

M)−1

For more details and proofs see e.g. [16].

Theorem 2 For each 0 < α < 1, the correlation measure corresponding to the
fractional Poisson measure πα

μ is the measure on (Γ0,B(Γ0)) given by

λα
μ :=

∞∑
n=0

1

Γ (αn + 1)
μ(n) (13)

In other words, dλα
μ = E(|·|)

α (0) dλμ.

In the sequel we call the measure λα
μ the fractional Lebesgue-Poisson measure.

Proof Let A be a bounded B(Γ0)-measurable set, that is,

A ⊂
N⊔

n=0

Γ
(n)
Λ

for some N ∈ N0 and some Λ ∈ Bc(M). By the previous considerations, this means
that for all γ ∈ Γ one has (K11A)(γ ) = (K11A)(γΛ), and thus∫

Γ

(K11A)(γ ) dπα
μ(γ ) =

∫
ΓΛ

(K11A)(γ ) dπα
μ,Λ(γ )

=
∞∑

n=0

E(n)
α (−μ(Λ))

n!
∫

Γ
(n)
Λ

(K11A)(η) dμ
(n)
Λ (η)

=
∫

ΓΛ

E(|η|)
α (−μ(Λ))(K11A)(η) dλμ(η)

Observe that the latter integral is with respect to the Lebesgue-Poisson measure λμ,
which properties are well-known (see e.g. [16]). In particular, those yield

rvmendes@fc.ul.pt
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ΓΛ

E(|η|)
α (−μ(Λ))(K11A)(η) dλμ(η)

=
∫

Γ0

E(|η|)
α (−μ(Λ))

∑
ξ⊂η

11A(ξ)11ΓΛ(η \ ξ) dλμ(η)

=
∫

Γ0

11A(η)

(∫
Γ0

E(|η∪ξ |)
α (−μ(Λ))11ΓΛ(ξ) dλμ(ξ)

)
dλμ(η)

where for each η ∈ Γ0 fixed, i.e., η ∈ Γ
(m)

M for some m ∈ N0, the integral between
brackets is given by

∞∑
n=0

1

n!
∫

Γ
(n)

M

E(|η∪ξ |)
α (−μ(Λ))11ΓΛ(ξ) dμ(n)(ξ)

=
∞∑

n=0

E(m+n)
α (−μ(Λ))

n! (μ(Λ))n

= E(m)
α (−μ(Λ) + μ(Λ))

As a result, ∫
Γ

(K11A)(γ ) dπα
μ(γ ) =

∫
Γ0

11A(η)E(|η|)
α (0) dλμ(η)

showing that the correlation measure corresponding to πα
μ is absolutely continu-

ous with respect to the Lebesgue-Poisson measure λμ. Moreover, denoting such a

correlation measure by λα
μ, the density is given by

dλα
μ

dλμ
= E(|·|)

α (0).

To conclude, notice that for each n ∈ N0 one has

E(n)
α (0) = n!

Γ (αn + 1)

which combined with the definition of the measure λμ leads to (13). �
Throughout this work all Lp-spaces consist of complex-valued functions. For

simplicity, the Lp-spaces with respect to a measure ν will be shortly denoted by
Lp(ν) if the underlying measurable space is clear from the context.

Corollary 1 We have G ∈ L2(λα
μ) if and only if G

√
E(|·|)

α (0) ∈ L2(λμ). Then,

‖G‖L2(λα
μ) =

∥∥∥∥G

√
E(|·|)

α (0)

∥∥∥∥
L2(λμ)

This result states that there is a unitary isomorphism between the spaces L2(λα
μ)

and L2(λμ):

rvmendes@fc.ul.pt
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Iα : L2(λα
μ) → L2(λμ)

Iα(G) := G

√
E(|·|)

α (0)

Hence, through Iα one may extend the unitary isomorphisms defined between the
space L2(λμ) and the (Bose or symmetric) Fock space ExpL2(μ) and between the
space L2(λμ) and L2(πμ) [17] to L2(λα

μ), 0 < α ≤ 1:

L2(λα
μ)

Iα�→ L2(λμ)
Iλπ�→ L2(πμ)

Iπ�→ ExpL2(μ)

G �→ G
√

E(|·|)
α (0) �→ ∑∞

n=0〈Cμ
n , g(n)〉 �→ (

g(n)
)∞

n=0

for

g(n)(x1, . . . , xn) :=
√

E(n)
α (0)

n! G({x1, . . . , xn}), g(0) := Eα(0)G(∅) = G(∅)

and Cμ
n a Charlier kernel.

In particular, the image of a Fock coherent state e(f ) := (
f ⊗n

n! )∞n=0, f ∈ L2(μ),
under (Iπ ◦ Iλπ )−1 is the (Lebesgue-Poisson) coherent state eλ(f ) : Γ0 → C defined
for any B(M)-measurable function f : M → C by

eλ(f , η) :=
∏
x∈η

f (x) , η ∈ Γ0 \ {∅}, eλ(f ,∅) := 1

This definition implies that eλ(f ) ∈ Lp(λμ) whenever f ∈ Lp(μ) for some p ≥ 1.

Moreover, ‖eλ(f )‖p
Lp(λμ) = exp

(
‖f ‖p

Lp(μ)

)
. For α = 1, the following result holds.

Proposition 1 Let 0 < α < 1 and p ≥ 1 be given. For all f ∈ Lp(μ) we have
eλ(f ) ∈ Lp(λα

μ) and

‖eλ(f )‖p
Lp(λα

μ) = Eα

(
‖f ‖p

Lp(μ)

)
Proof By Theorem 2, given a f ∈ Lp(μ) for some p ≥ 1,

‖eλ(f )‖p
Lp(λα

μ) =
∫

Γ0

|eλ(f , η)|pE(|η|)
α (0) dλμ(η)

=
∞∑

n=0

1

Γ (αn + 1)

(∫
M

|f (x)|p dμ(x)

)n

which by the Taylor expansion (7) is equal to Eα

(∫
M |f (x)|p dμ(x)

)
. �

According to the latter considerations, the realization of a coherent state e(f ),
f ∈ L2(μ), in a L2(λα

μ) space is λμ-a.e. given by
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I−1
α eλ(f ) = eλ(f )√

E(|·|)
α (0)

(14)

In addition, given a dense subspace L ⊆ L2(μ), the set {I−1
α eλ(f ) : f ∈ L} is total

in L2(λα
μ). As in the Lebesgue-Poisson case, we define the fractional (Lebesgue-

Poisson) coherent state eα(f ) : Γ0 → C corresponding to a B(M)-measurable
function f by

eα(f , η) := eλ(f , η)√
E(|η|)

α (0)

, ∀ η ∈ Γ0

2.4.2 Annihilation and Creation Operators

The unitary isomorphism between the Fock space and L2(λμ) provides natural op-
erators on the space L2(λμ) by carrying over the standard Fock space operators. In
particular, the annihilation and the creation operators, for which the images in L2(λμ)

are well-known, see e.g. [23],

(
a−
λ (ϕ)G

)
(η) :=

∫
M

G(η ∪ {x})ϕ(x) dμ(x), η ∈ Γ0

and (
a+
λ (ϕ)G

)
(η) :=

∑
x∈η

G(η\{x})ϕ(x), λμ − a.a. η ∈ Γ0

Here ϕ ∈ D(M) and G is a complex-valued bounded B(Γ0)-measurable function
with bounded support, i.e., G�

Γ0\
(⊔N

n=0 Γ
(n)
Λ

)≡ 0 for some Λ ∈ Bc(M) and some

N ∈ N0. In the sequel we denote the space of such functions G by Bbs(Γ0).
For more details and proofs see e.g. [17, 24] and the references therein.
Through the unitary isomorphism I−1

α , 0 < α < 1, the same Fock space operators
can naturally be carried over to the space L2(λα

μ).

Proposition 2 For each ϕ ∈ D(M), the following relations hold on Bbs(Γ0):

a−
α (ϕ) := I−1

α a−
λ (ϕ)Iα =

√√√√E(|·|+1)
α (0)

E(|·|)
α (0)

a−
λ (ϕ)

and

a+
α (ϕ) := I−1

α a+
λ (ϕ)Iα =

√√√√E(|·|−1)
α (0)

E(|·|)
α (0)

a+
λ (ϕ)

rvmendes@fc.ul.pt



306 M.J. Oliveira and R.V. Mendes

Proof One first observes that Iα maps the space Bbs(Γ0) into itself. In fact, given a
G ∈ Bbs(Γ0), i.e., G�

Γ0\
(⊔N

n=0 Γ
(n)
Λ

)≡ 0 for some Λ ∈ Bc(M) and some N ∈ N0,

one has

|(IαG)(η)| =
√

E(|η|)
α (0)|G(η)| ≤ max

0≤n≤N

√
n!

Γ (αn + 1)
sup
η∈Γ0

(|G(η)|), ∀ η ∈ Γ0

showing that IαG is bounded. Since the support of IαG clearly coincides with the
support of G, this means that IαG ∈ Bbs(Γ0).

Hence, given a G ∈ Bbs(Γ0), for all η ∈ Γ0 one has

(a−
λ (ϕ)(IαG))(η) =

∫
M

(IαG)(η ∪ {x})ϕ(x) dμ(x)

=
√

E(|η|+1)
α (0) (a−

λ (ϕ)G)(η)

which proves the first equality by calculating the image of both sides under I−1
α . A

similar procedure applied to a+
α (ϕ) completes the proof. �

2.4.3 Second Quantization Operators

Given a contraction operator B on L2(μ) one may define a contraction operator
ExpB on the Fock space ExpL2(μ) acting on coherent states e(f ), f ∈ L2(μ), by
ExpB (e(f )) = e(Bf ). In particular, given a positive self-adjoint operator A on L2(μ)

and the contraction semigroup e−tA, t ≥ 0, one can define a contraction semigroup
Exp

(
e−tA

)
on ExpL2(μ) in this way. The generator is the well-known second quan-

tization operator corresponding to A . We denote it by dExpA. Through the unitary
isomorphism between the Fock space and the space L2(λμ) one may then define the
corresponding operator in L2(λμ). We denote the (Lebesgue-Poisson) second quan-
tization operator corresponding to A by HLP

A . The action of HLP
A on coherent states

is given by (
HLP

A eλ(f )
)

(η) =
∑
x∈η

(Af ) (x)eλ(f , η\{x}), f ∈ D(A)

Through the unitary isomorphism I−1
α , 0 < α < 1, the second quantization

operator can also be carried over to the space L2(λα
μ):

Hα
A := I−1

α HLP
A Iα

Proposition 3 For any f ∈ D(A) we have
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(
Hα

A eα(f )
)
(η) =

√√√√E(|η|−1)
α (0)

E(|η|)
α (0)

∑
x∈η

(Af ) (x)eα(f , η\{x})

Proof According to (14), Iαeα(f ) = eλ(f ), and thus for λμ-a.a. η ∈ Γ0,

(
HLP

A (Iαeα(f ))
)

(η) =
(

HLP
A eλ(f )

)
(η) =

√
E(|η|−1)

α (0)
∑
x∈η

(Af ) (x)eα(f , η\{x})

leading to the required result by calculating the image of both sides under I−1
α . �

Appendix 1: The Infinite-Dimensional Poisson Measure
and Configuration Spaces

Here a short summary is given of the properties of the infinite-dimensional Poisson
measure and its support on configuration spaces [12, 13, 16–19, 24].

An infinite-dimensional generalization of the characteristic function of the Poisson
measure is obtained by generalizing (5) to

C (ϕ) = e
∫ (

eiϕ(x)−1
)

dμ(x) (15)

for test functions ϕ ∈ D (M) in the space of C∞-functions of compact support in a
manifold M. It is easy to prove, using the Bochner-Minlos theorem, that C is indeed
the Fourier transform of a measure on the distribution space D ′ (M).

A support for this measure is obtained in the configuration space Γ := ΓM

over the manifold M, defined as the set of all locally finite subsets of M (simple
configurations)

Γ := {γ ⊂ M : |γ ∩ K| < ∞ for any compact K ⊂ M} (16)

Here |A| denotes the cardinality of the set A. As usual one identifies each γ ∈ Γ

with a non-negative integer-valued Radon measure,

Γ � γ �→
∑
x∈γ

δx ∈ M (M)

where δx is the Dirac measure with unit mass at x and M (M) denotes the set of all
non-negative Radon measures on M. In this way the space Γ can be endowed with
the relative topology as a subset of the space M (M) with the vague topology, i.e.,
the weakest topology on Γ for which the mappings
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Γ � γ �→ 〈γ, f 〉 :=
∫

M
f (x)dγ (x) =

∑
x∈γ

f (x)

are continuous for all real-valued continuous functions f on M with compact support.
Denote the corresponding Borel σ -algebra on Γ by B (Γ ).

For each Y ∈ B(M) let us consider the space ΓY of all configurations contained in
Y , ΓY := {γ ∈ Γ : |γ ∩ (X\Y)| = 0}, and the space Γ

(n)
Y of n-point configurations,

Γ
(n)

Y := {γ ∈ ΓY : |γ | = n} , n ∈ N, Γ
(0)

Y := {∅}

A topological structure may be introduced on Γ
(n)

Y through the natural surjective

mapping of Ỹ n := {
(x1, ..., xn) : xi ∈ Y , xi = xj if i = j

}
onto Γ

(n)
Y ,

symn
Y : Ỹ n −→ Γ

(n)
Y

(x1, ..., xn) �−→ {x1, ..., xn}

which is at the origin of a bijection between Γ
(n)

Y and the symmetrization Ỹ n/Sn of
Ỹ n, Sn being the permutation group over {1, ..., n}. Thus, symn

Y induces a metric on

Γ
(n)

Y and the corresponding Borel σ -algebra B
(
Γ

(n)
Y

)
on Γ

(n)
Y .

For Λ ∈ B(M) with compact closure (Λ ∈ Bc(M)), it clearly follows from (16)
that

ΓΛ =
∞⊔

n=0

Γ
(n)
Λ

the σ -algebra B(ΓΛ) being defined by the disjoint union of the σ -algebras B
(
Γ

(n)
Y

)
,

n ∈ N0.
For each Λ ∈ Bc(M) there is a natural measurable mapping pΛ : Γ → ΓΛ.

Similarly, given any pair Λ1,Λ2 ∈ Bc(M) with Λ1 ⊂ Λ2 there is a natural mapping
pΛ2,Λ1 : ΓΛ2 → ΓΛ1 . They are defined, respectively, by

pΛ : Γ −→ ΓΛ

γ �−→ γΛ := γ ∩ Λ

pΛ2,Λ1 : ΓΛ2 −→ ΓΛ1

γ �−→ γΛ1

It can be shown that (Γ,B(Γ )) coincides (up to an isomorphism) with the projective
limit of the measurable spaces (ΓΛ,B(ΓΛ)), Λ ∈ Bc(M), with respect to the
projection pΛ, i.e., B(Γ ) is the smallest σ -algebra on Γ with respect to which all
projections pΛ, Λ ∈ Bc(M), are measurable.

Let now μ be a measure on the underlying measurable space (M,B(M))

and consider for each n ∈ N the product measure μ⊗n on (Mn,B(Mn)). Since
μ⊗n(Mn\M̃n) = 0, one may consider for each Λ ∈ Bc(M) the restriction of μ⊗n

to (Λ̃n,B(Λ̃n)), which is a finite measure, and then the image measure μ
(n)
Λ on

(Γ
(n)
Λ ,B(Γ

(n)
Λ )) under the mapping symn

Λ,
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μ
(n)
Λ := μ⊗n ◦ (symn

Λ)−1

For n = 0 we set μ
(0)
Λ := 1. Now, one may define a probability measure πμ,Λ on

(ΓΛ,B(ΓΛ)) by

πμ,Λ :=
∞∑

n=0

exp(−μ(Λ))

n! μ
(n)
Λ (17)

The family {πμ,Λ : Λ ∈ Bc(M)} of probability measures yields a probability mea-
sure on (Γ,B(Γ )) with the πμ,Λ as projections. This family is consistent, that is,

πμ,Λ1 = πμ,Λ2 ◦ p−1
Λ2,Λ1

, ∀Λ1,Λ2 ∈ Bc(M),Λ1 ⊂ Λ2

and thus, by the version of Kolmogorov’s theorem for the projective limit space
(Γ,B(Γ )), the family {πμ,Λ : Λ ∈ Bc(M)} determines uniquely a measure πμ on
(Γ,B(Γ )) such that

πμ,Λ = πμ ◦ p−1
Λ , ∀Λ ∈ Bc(M)

The next step is to compute the characteristic functional of the measure πμ. Given
a ϕ ∈ D(M) we have supp ϕ ⊂ Λ for some Λ ∈ Bc(M), meaning that

〈γ, ϕ〉 = 〈pΛ(γ ), ϕ〉, ∀ γ ∈ Γ

Thus ∫
Γ

ei〈γ,ϕ〉dπμ(γ ) =
∫

ΓΛ

ei〈γ,ϕ〉dπμ,Λ(γ )

and the definition (17) of the measure πμ,Λ yields for the right-hand side of the
equality

∞∑
n=0

exp(−μ(Λ))

n!
∫

Λn
ei(ϕ(x1)+···+ϕ(xn))dμ⊗n(x) =

∞∑
n=0

exp(−μ(Λ))

n!
(∫

Λ

eiϕ(x)dμ(x)

)n

which corresponds to the Taylor expansion of the characteristic function (15) of the
infinite-dimensional Poisson measure

exp

(∫
Λ

(eiϕ(x) − 1) dμ(x)

)

This shows that the probability measure on (D
′
(M),Cσ (D

′
(M))) given by (15) is

actually supported on generalized functions of the form
∑

x∈γ δx , γ ∈ Γ . Thus, the
infinite-dimensional Poisson measure πμ can either be considered as a measure on
(Γ,B(Γ )) or on (D ′,Cσ (D ′(M))). Notice that, in contrast to Γ , D ′(M) ⊃ Γ is a
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linear space. Since πμ(Γ ) = 1, the measure space (D ′(M),Cσ (D ′(M)), πμ) can, in
this way, be regarded as a linear extension of the Poisson space (Γ,B(Γ ), πμ).

Appendix 2. Complete Monotonicity of the Mittag-Leffler
Function for Complex Arguments

A positive C∞-function f is said to be completely monotone if for each k ∈ N0

(−1)kf (k)(t) ≥ 0, ∀t > 0

According to Bernstein’s theorem (see e.g. [25, Chap. XIII.4 Theorem 1]), for func-
tions f such that f (0+) = 1 the complete monotonicity property is equivalent to the
existence of a probability measure ν on R

+
0 such that

f (t) =
∫ ∞

0
e−tτ dν(τ) < ∞, ∀ t > 0

Pollard in [26] proved the complete monotonicity of Eα , 0 < α < 1, for non-positive
real arguments showing that

Eα(−t) =
∫ ∞

0
e−tτ dνα(τ ), ∀ t ≥ 0 (18)

for να being the probability measure on R
+
0

dνα (τ ) := α−1τ−1−1/αfα(τ−1/α) dτ (19)

where fα is the α-stable probability density given by∫ ∞

0
e−tτ fα (τ ) dτ = e−tα , 0 < α < 1

The complete monotonicity property and the integral representation (18) of Eα

may be extended to complex arguments.

Lemma 1 For any z ∈ C such that Re(z) ≥ 0, the following representation holds

Eα(−z) =
∫ ∞

0
e−zτ dνα(τ ), 0 < α ≤ 1

Proof According to [26], for each 0 < α < 1 fixed, for all t ≥ 0 one has
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Eα(−t) =
∫ ∞

0
e−tτ dνα(τ ),

=
∞∑

n=0

(−t)n

n!
∫ ∞

0
τ n dνα(τ ) (20)

Comparing (20) with the Taylor expansion (7) of Eα , one concludes that the moments
of the measure να are given by

mn(να) :=
∫ ∞

0
τ n dνα(τ ) = n!

Γ (αn + 1)
, n ∈ N0

For complex values z let

I(−z) :=
∫ ∞

0
e−zτ dνα(τ )

which is finite provided Re(z) ≥ 0. For each z ∈ C such that Re(z) ≥ 0 one then
obtains

I(−z) =
∞∑

n=0

(−z)n

n!
(∫ ∞

0
τ n dνα(τ )

)
=

∞∑
n=0

(−z)n

n! mn(να) =
∞∑

n=0

(−z)n

Γ (αn + 1)
= Eα(−z)

leading to the integral representation

Eα(−z) =
∫ ∞

0
e−zτ dνα(τ )

for all z ∈ C such that Re(z) ≥ 0. �
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