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1.  Introduction and motivation

The behavior and properties of so-called blobs, which are 
large-scale, coherent structures that are intermittently trans-
ported across the scrape-off layer (SOL) of fusion devices, are 

well documented both experimentally and numerically [1–19]. 
A good theoretical comprehension already exists regarding the 
mechanisms by which blobs are transported across the SOL 
[1–6, 8, 9, 12–21], and their life cycle (from their generation 
to their convective, ballistic transport and ejection from the 
plasma) has been reproduced in numerical simulations [3–5, 
9, 12, 15]. However, analytical insight on how blobs actually 
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Abstract
New exact, analytical solutions are presented for the conservative part of a standard two-fluid 
(density plus vorticity) model of the scrape-off layer (SOL) which are of the travelling-wave 
type and describe the transport of large, machine-scale structures across a plasma cross-section 
(radially and/or poloidally). It is conjectured that amongst these conservative solutions (some 
extended throughout space, others much more localised) might be the ancestors of propagating 
coherent structures, known as blobs, often seen in experiments and numerical simulations 
of SOL turbulence. Several types of solutions can be obtained, capable of mimicking not 
only high-density blobs propagating outwards, but also inwardly moving plasma holes 
(structures with densities lower than the backrgound’s). Besides their fundamental interest as 
conservative solutions of the equations describing SOL turbulence, these exact solutions have 
the added value of providing benchmarks for the verification of numerical algorithms, as is 
here illustrated. Having thus verified one’s numerical implementation, a more realistic SOL 
model (including diffusion, parallel losses and a source of core plasma) is solved (by gradually 
adding the extra terms to the conservative part) to check whether these conservative solutions 
survive the full dynamics or not. They actually do survive (albeit enduring some degree of 
distortion, ending up by being eventually lost) for parameters representative of SOL plasmas 
in present-day fusion devices, thus somewhat vindicating one’s original conjecture that they 
might be the ancestors of blobs. In addition, being actual solutions of the conservative part 
of the fluid SOL equations (and with the possibility of taking essentially Gaussian forms), 
there is no need to further justify their use as seeds with which to initialise (so-called seeded) 
simulations. A further characteristic that these Gaussian, blob-like conservative solutions 
possess is that they have intrinsic net vorticity (or spin), which is also believed to be the case 
for turbulence-created blobs.
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originate and form remains scarce [9, 13, 22], with many sim-
ulations still being conducted with recourse to seeded blobs 
(usually with a Gaussian shape) in a background plasma [2, 
6, 9, 13–19], which justifies the current interest devoted to 
the physics behind the formation and origin of plasma blobs 
[22, 23]. The purpose of this paper is to focus on a recent 
conjecture on the origin of blobs, according to which the 
ancestors of blobs might be the solutions of the conservative 
part of fluid models used to describe SOL turbulence [24]. 
The rationale for this conjecture stems from the extrapola-
tion to infinite dimensions of the mathematical findings that 
finite-dimensional vector fields are always decomposable into 
Hamiltonian (conservative) plus gradient (dissipative) comp
onents, and that what often occurs is that the full system ends 
up depicting, in some regions of phase space, deformed ver-
sions of the Hamiltonian dynamics (hence the notion of con-
stants of motion in dissipative systems) [25, 26].

To describe plasma dynamics in the SOL, more precisely, 
to evolve (in the cold-ion limit) its logarithmic density Ln 
and vorticity ∇2φ , a simple two-dimensional, two-field fluid 
model has been used, which reads

∂Ln
∂t

=− [φ, Ln]− g∂2 (Ln − φ)

+ D
(
∇2Ln + |∇Ln|2

)
− σ‖e(Λ−φ) + S

∂∇2φ

∂t
=−

[
φ,∇2φ

]
− g∂2Ln + ν∇4φ+ σ‖

[
1 − e(Λ−φ)

]

� (1)

and can be found in the literature in identical or very sim-
ilar forms [2, 4, 5, 27, 28]. In (1), Ln and φ are functions 
of time t and of the radial- and poloidal-like coordinates 
x1  =  r  −  a and x2 = aθ, respectively (with a the minor 
radius of the core plasma), g = ∂1(1/B) is the curvature 
of the magnetic field B (taken to be independent of x2 and 

such that b̂ = B/B = ∇x1 ×∇x2), D and ν  are coefficients 
describing particle and vorticity diffusion, respectively, σ‖ 
accounts for parallel (along the magnetic field) losses to the 
walls or limiters, Λ stands for the floating potential, whilst 
S represents a source of incoming plasma from the core, and 
properly normalised quantities are used throughout. In addi-

tion, [u, v] = ∂1u∂2v − ∂2u∂1v = b̂ · ∇u ×∇v denotes the  
canonical Poisson bracket, ∇ = (∂1, ∂2) is the standard del 
operator and ∂i = ∂/∂xi. The conservative part of model (1) 
is that which is constructed solely with Poisson brackets and 
governs convective transport in the perpendicular (to the mag-
netic field) direction [29], so

∂Ln
∂t

= − [φ, Ln]− g∂2 (Ln − φ)

∂∇2φ

∂t
= −

[
φ,∇2φ

]
− g∂2Ln,

�

(2)

section 2 of this paper being devoted to exploring solutions 
to (2) that mimic blob-like behaviour. More precisely, exact 

travelling-wave-type solutions are shown for the conservative 
system (2) which correspond to large-scale, coherent struc-
tures moving concentrations of particles and energy across 
the plasma, radially and/or poloidally, some of which are 
conjectured to be the conservative ancestors of plasma blobs. 
After detailing the relation between the propagation velocity 
of these solutions and the E × B drift velocity in section 3, 
their usefulness for code verification, as they function as 
analytical standards against which numerical solutions can 
be benchmarked, is demonstrated in section 4. In section 5, 
numerical solutions of the complete model (1) are explored, 
aiming to ascertain, in particular, if the blob-like conservative 
solutions survive through the full dynamics. Finally, findings 
are discussed and conclusions drawn in section 6, with some 
derivations and numerical details (given here for the sake of 
completeness and pedagogy) being left for the appendices.

A few words should be said about the values chosen for the 
parameters entering models (1) and (2): they are in accord-
ance with what has been reported in the literature addressing 
similar SOL models [1, 2, 4, 5, 27, 28], but have to be rescaled 
because of the different sizes of the simulation ‘boxes’ where 
these models are solved. In fact, suppose the set of parameters 
is imported from simulations carried out on a square ‘box’ 
of size ∆x1 ×∆x2 = L2 (simulations in this paper being set 
on a ∆x1 ×∆x2 = 12 square ‘box’), then all spatial dimen-
sions in the imported quantities have to be rescaled according 
to xi → xi/L, which implies that both the magnetic curvature 
and the parallel losses (which scale, respectively, as g ∼ R−1

0  

and σ|| ∼ L−1
|| ∼ R−1

0 , with R0 the tokamak major radius and 

L|| the parallel connection length [1, 2, 4, 5, 27, 28]), must be 
transformed as g → Lg and σ|| → Lσ||, whereas for the diffu-
sion coefficients, one must have D → D/L2 and ν → ν/L2. 
Therefore, importing the same set of parameters used in sim-
ulations where L ≈ 100 [4, 5], one ends up with g  =  0.08, 
D = ν = 1 × 10−6 and σ|| = 0.02 for the constants appearing 
in models (1) and (2) of this article. For completeness, one 
also has Λ = 3.9, S0 = 5 × 10−4 and λ = 0.1, the latter two 
defining the source profile S(x1) = e−LnS0e−x2

1/λ
2
, where the 

source e-folding length has also been rescaled according to 
λ → λ/L1.

2.  Analytical solutions for the conservative model

Hence, and for constant g, exact solutions to (2) have been derived 
which are of the travelling-wave type and take the form [24]

Ln (x1, x2, t) = f [F (x1 − v1t, x2 − v2t)]− gx1

φ (x1, x2, t) = F (x1 − v1t, x2 − v2t)

+ v2 (x1 − v1t)− v1 (x2 − v2t)− gx1,
�

(3)

1 Note that the e−Ln factor appearing in the expression for the source S(x1) is 
simply due to the fact that one is working here with the logarithmic density, 
and that the original source S0e−x2

1/λ
2
 is not taken proportional to plasma 

density [1, 2, 4, 5, 27, 28].

Nucl. Fusion 60 (2020) 016012
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with f  some arbitrary differentiable function and F obeying2

∂1F∂2∇2F − ∂1∇2F∂2F + g∂2
[

f (F)−∇2F
]
= 0.� (4)

Setting f (F) = αF  and subsequently solving (4) leads to

Ln (x1, x2, t) = α [φ (x1, x2, t)− v2 (x1 − v1t) + v1 (x2 − v2t)]

+ (α− 1) gx1

φ (x1, x2, t) =
(

v2 + g +
αg
k2

)
(x1 − v1t)− v1 (x2 − v2t)

− gx1 + A cos [k1 (x1 − v1t) + k2 (x2 − v2t)]

+ B sin [k1 (x1 − v1t) + k2 (x2 − v2t)]

+ C0 + C1 cos [k (x1 − v1t)]

+ C2 sin [k (x1 − v1t)] ,
�

(5)

or to

Ln (x1, x2, t) = α [φ (x1, x2, t)− v2 (x1 − v1t) + v1 (x2 − v2t)]

+ (α− 1) gx1

φ (x1, x2, t) =
(

v2 + g − αg
k2

)
(x1 − v1t)− v1 (x2 − v2t)− gx1

+ Aexp{[k1(x1 − v1t) + k2(x2 − v2t)]}
+ C0 + C1exp[k(x1 − v1t)] + C2exp[−k(x1 − v1t)] ,

� (6)
where α, A, B, C0, C1 and C2 are arbitrary constants, v1 and 
v2 are propagating velocities, and k1 and k2 are wave num-
bers, with k2 = k2

1 + k2
2. Particular instances of (5) and (6) are 

plotted in figures 1 and 2, which depict the outward propaga-
tion of large-scale density and potential structures that com-
plement those that have been previously reported [24], and 
illustrate the wide variety of exact solutions one may extract 
from the conservative part of SOL turbulence models, many 
of which are still waiting to be explored.

Figure 1.  Snapshots with contour plots of the analytical logarithmic 
density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic 
potential φ (x1, x2, t) for solution (5), with g  =  0.08, α = 1, 
B  =  C0  =  0, A = C1 = −C2 = 0.005, k1 = k2 = 10, v1 = 0.02 and 
v2 = 0.

Figure 2.  Snapshots with contour plots of the analytical logarithmic 
density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic 
potential φ (x1, x2, t) for solution (6), with g  =  0.08, α = 1, C0  =  0, 
A = C1 = C2 = 0.1, k1  =  −0.5, k2  =  −0.1, v1 = 0.025 and 
v2 = 0.03.

2 Note that the solutions here obtained are not pure travelling waves due to 
the isolated gx1 term in them, hence the denomination travelling-wave-type, 
or travelling-wave-like, solutions.

Nucl. Fusion 60 (2020) 016012
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In contrast to the previous extended solutions are the solu-
tions of the form [24]

Ln (x1, x2, t) = ∇2Fs (x1 − v1t, x2 − v2t)− gx1

φ (x1, x2, t) = Fs (x1 − v1t, x2 − v2t)

+ v2 (x1 − v1t)− v1 (x2 − v2t)− gx1,
�

(7)
which allow for highly localised, Gaussian-shaped structures 
and where Fs is any symmetric function of its two arguments, 
meaning

Fs (x2 − v2t, x1 − v1t) = Fs (x1 − v1t, x2 − v2t) .� (8)

It can be noted that (7) and (8) become a particular case of 
(3) and (4) if one makes f (F) = ∇2F  and F = Fs. As an 
example, take the multi-Gaussian solution

Fs (x1, x2, t) =
N∑

i=1

Aiexp
{
− (γi/2)

[
(x1 − v1t − ci0)

2
+ (x2 − v2t − ci0)

2
]}

,�

(9)

or the sinusoidally modulated Gaussian

Fs (x1, x2, t) =

A sin
[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]

× exp
{
−(γ/2)

[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]}

,
� (10)
which yield, respectively,

Ln (x1, x2, t) =

−
N∑

i=1

Aiγi

{
2 − γi

[
(x1 − v1t − ci0)

2
+ (x2 − v2t − ci0)

2
]}

× exp
{
− (γi/2)

[
(x1 − v1t − ci0)

2
+ (x2 − v2t − ci0)

2
]}

− gx1

φ (x1, x2, t) =
N∑

i=1

Aiexp
{
− (γi/2)

[
(x1 − v1t − ci0)

2
+ (x2 − v2t − ci0)

2
]}

+ v2 (x1 − v1t)− v1 (x2 − v2t) − gx1,
�

(11)

Figure 3.  Snapshots with contour plots of the analytical logarithmic 
density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic 
potential φ (x1, x2, t) for solution (11), with g  =  0.08, N  =  1, 
A1  =  −0.05, γ1 = 200, c10  =  0 and v1 = v2 = 0.03.

Figure 4.  Snapshots with contour plots of the analytical logarithmic 
density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic 
potential φ (x1, x2, t) for solution (12), with g  =  0.08, A  =  −1, 
γ = 180, c0  =  0.8 and v1 = v2 = −0.02.

Nucl. Fusion 60 (2020) 016012
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or

Ln (x1, x2, t) =

A
(

4
{

1 − γ
[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]}

× cos
[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]

−
{

2γ +
(
4 − γ2) [(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]}

× sin
[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
] )

× exp
{
−(γ/2)

[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]}

− gx1

φ (x1, x2, t) =

A sin
[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]

× exp
{
−(γ/2)

[
(x1 − v1t − c0)

2
+ (x2 − v2t − c0)

2
]}

+ v2 (x1 − v1t)− v1 (x2 − v2t)− gx1.
� (12)

Appropriate choices of γ  and γi , which set the widths of the 
Gaussians, and of c0 and ci0, which determine their initial 
locations, lead to the cases shown in figures 3 and 4. These 
are particularly striking as they demonstrate that the conser-
vative solutions studied here are not only able to reproduce 
outwardly moving plasma blobs, but can also mimic inwardly 
moving plasma holes (whose density is smaller than that of 
the background) [13, 16, 23]. It must be kept in mind that 
many of the conservative solutions given hereabove (say, for 
instance, the solutions depicted in figures 1 and 2) may not be 
representative of what one expects regarding blob physics in 
the SOL of fusion devices. Solutions such as (5), (6), (11) and 
(12) are indeed exact solutions of the conservative interchange 
model (2), but they live in unbounded space and exist for all 
time, not being restricted to emerging and existing in a limited 
box (where, given an initial condition, computations are made 
and boundary conditions imposed).

Figure 5.  Snapshot of vector-field maps for the density gradient ∇Ln(x1, x2, t) and velocity difference v(x1, x2, t)− vE×B(x1, x2, t) 
(respectively, white and magenta arrows on the left frame) and for the travelling and E × B velocities v(x1, x2, t) and vE×B(x1, x2, t) 
(respectively, white and magenta arrows on the right frame) for the analytical solution plotted in figure 1.

Figure 6.  Snapshot of vector-field maps for the density gradient ∇Ln(x1, x2, t) and velocity difference v(x1, x2, t)− vE×B(x1, x2, t) 
(respectively, white and magenta arrows on the left frame) and for the travelling and E × B velocities v(x1, x2, t) and vE×B(x1, x2, t) 
(respectively, white and magenta arrows on the right frame) for the analytical solution plotted in figure 3.

Nucl. Fusion 60 (2020) 016012
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3.  E × B  drift versus travelling velocity

The travelling-wave-like solutions depicted above propagate 
with constant, pre-defined and independently set velocities 
v = (v1, v2), yet one should expect density structures in a 
plasma to be transported by means of the E × B drift, that 
is, with a velocity vE×B = E × b̂ = −∇φ× b̂ = (−∂2φ, ∂1φ) 
(assuming a normalised magnetic field whose amplitude  
variation across the SOL has a negligible impact on 
vE×B), which gives an advective contribution vE×B · ∇u 
to the total time derivative of some plasma quantity u 
[1–19, 21–23, 28–30]. In fact, E × B advection is indeed 
included in the model equations  (1) and (2), namely, 
in the first term on their right-hand sides (rhs’s), since 
vE×B · ∇u = b̂ ×∇φ · ∇u = b̂ · ∇φ×∇u = [φ, u], and so 
density as well as, for that matter, vorticity are locally trans-
ported with a velocity vE×B. Needless to say, being exact solu-
tions of the model, density is indeed locally advected with 

E × B velocity vE×B in figures 1–4, even if global structures 
travel with velocity v. With the help of (3), the relation

v = vE×B + (∂2F, g − ∂1F)� (13)

follows between the two velocities, its projection in the direc-
tion of the density gradient reading

∇Ln · (v − vE×B) = [ f (F) , F] + g∂2 [ f (F)− F]� (14)

or, considering that both [ f (F) , F] = f ′ (F) [F, F] = 0 and [
∇2Fs, Fs

]
= 0,

∇Ln · (v − vE×B) = g∂2 [ f (F)− F]� (15)

or, still,

∇Ln · (v − vE×B) = g [∂2 (Ln − φ)− v1] .� (16)

The fact that v and vE×B are not identical thus causes no con-
tradiction at all, the actual restriction linking the two being 
conveyed by (13), (15) or (16), the two latter conditions being 
easier to understand when their rhs’s vanish. In the particular 

Figure 7.  Snapshots with contour plots of the numerical logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic potential 
φ (x1, x2, t), and of their respective local errors εLn (x1, x2, t), ε∇2φ (x1, x2, t) and εφ (x1, x2, t), for N1 = N2 = 101 and ∆t = 10−2 , and for the 
same set of parameters and initial condition as the analytical solution plotted in figure 1.

Nucl. Fusion 60 (2020) 016012
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case for which g  =  0, (2) simply states that Ln and ∇2φ  are 
conserved quantities as they are moved with velocity vE×B 
along the E × B flow, while simultaneously (3) and (7) 
become pure travelling-wave solutions transporting those two 
quantities with velocity v.

For instance, when f (F) = αF  and α = 1, which is the 
case for solutions plotted in figures 1 and 2, the rhs of (15) is 
zero and so v − vE×B must be perpendicular to ∇Ln, which 
means the two velocities v and vE×B need not be equal but 
only their projections in the direction of the density gradient. 
This is illustrated in figure  5, where it can be verified that 
v − vE×B and ∇Ln are indeed perpendicular to each other and, 
moreover, that vE×B (clearly distinct fom v) follows the lines 
of constant φ (the equipotentials), as it should, given that it 
is, by definition, perpendicular to ∇φ. Replacing f (F) with 
∇2Fs on the rhs of (15), the latter is no longer strictly zero, 
but may be negligible depending on the smallness of g, as can 
be observed in figure 6. In fact, note that for Fs given by (9), 
which leads to solution (11) and the plots in figure 3, follows 
(with N1  =  1 and c10  =  0)

∂2
(
∇2Fs − Fs

)
={

γ1 + 4γ2
1 − γ3

1

[
(x1 − v1t)2

+ (x2 − v2t)2
]}

(x2 − v2t)Fs,
� (17)
whose rhs is seen to approach zero both when moving nearer  

the blob center and when moving further away from it (since one 

has either γ1/2
1 |x2 − v2t| � 1 or γ1/2

1 |x2 − v2t| � 1, respec-  

tively). In the intermediate region (where γ1/2
1 |x1 − v1t| ≈  

γ
1/2
1 |x2 − v2t| ≈ 1) one has |∂2

(
∇2Fs − Fs

)
| ≈ 2γ3/2

1 |Fs| if 
γ1 � 1, hence |g∂2

(
∇2Fs − Fs

)
| � 2gγ3/2

1 |A1| ≈ 23, and 
one can see in figure 6 that v − vE×B and ∇Ln are indeed not 
perpendicular in this region and moreover that, with such 
a reasonably large g and accounting for (7), (9) and (13), 
vE×B ≈ (v1, v2 − g) and v − vE×B ≈ (0, g) in the far region3.

Figure 8.  Snapshots with contour plots of the numerical logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic potential 
φ (x1, x2, t), and of their respective local errors εLn (x1, x2, t), ε∇2φ (x1, x2, t) and εφ (x1, x2, t), for N1 = N2 = 101 and ∆t = 10−2 , and for the 
same set of parameters and initial condition as the analytical solution plotted in figure 2.

3 Note that different vector fields in figures 5 and 6 (such as v and vE×B on 
their right frames) are plotted using different scales, so length ratios do not, 
in general, translate into actual ratios for vectors that do not belong to the 
same mapped field.
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4.  Analytical solutions as benchmarks for code 
verification

Besides the importance and added value that solutions (5), (6), 
(11) and (12) have per se, as they are actual solutions of the 
conservative part of the interchange model, they also allow 
some measure of analytical control over numerical implemen-
tations of the model as they provide benchmarks, or standards, 
against which these latter can be verified and gauged, being 
worthy to emphasise they are true (as opposed to manufac-
tured [19, 31]) solutions. Therefore, to solve (1), a fourth order  
(in time) Runge–Kutta (RK4) scheme (with spatial deriva-
tives computed making use of fourth order central finite dif-
ferences) has been implemented [32], and has been verified 
by numerically solving (2) and comparing with the exact ana-
lytical solutions obtained. Leaving the numerical details for 
appendix B, it is nonetheless worth noting here that, in car-
rying out this verification procedure, the implementation of 
boundary conditions is not trivial and must be dealt with with 
extra care, as the latter are not static but evolve in time (being 

provided by the analytical solutions, which extend throughout 
the entire space and are not limited to the integration domain). 
More precisely, when going through the intermediate time 
steps of the implemented RK4 scheme [32], boundary condi-
tions must be sampled from the analytical solutions at pre-
cisely the same times at which the time derivatives appearing 
on the lhs’s of (2) are evaluated.

So, numerical solutions to the conservative model (2) 
have been obtained having recourse to an RK4 solver, using 
an N1 × N2 grid equally spaced in x1 × x2 and a time step 
∆t , and quantifying the local error in the numerical estimate 
unum(x1, x2, t) of some model field quantity u(x1, x2, t) resulting 
from discretising (2) as

εu(x1, x2, t) = |unum(x1, x2, t)− u(x1, x2, t)| ,� (18)

with u(x1, x2, t) in (18) the value given by the ana-
lytical solution and starting with the initial condition 
unum(x1, x2, 0) = u(x1, x2, 0). The comparison between the 
analytical solutions and their numerical counterpart is shown 
in figures  7–10, where one can see that there is no visible 

Figure 9.  Snapshots with contour plots of the numerical logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic potential 
φ (x1, x2, t), and of their respective local errors εLn (x1, x2, t), ε∇2φ (x1, x2, t) and εφ (x1, x2, t), for N1 = N2 = 101 and ∆t = 10−2 , and for the 
same set of parameters and initial condition as the analytical solution plotted in figure 3.
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difference between the solutions in these plots and those in 
figures 1–4, and, further, that the local error-field values are 
comfortably within acceptable values. In general, albeit more 
apparent in the extended solutions of figures 7 and 8 than in 
the more localised, blob-like solutions of figures  9 and 10, the 
error patterns for εLn and ε∇2φ tend to remain more localised 
than for εφ, which can be explained by the fact that the loga-
rithmic density Ln and vorticity ∇2φ  are governed by the two 
very similar equations in (2) (which are numerically solved 
via an RK4 scheme involving only the closest neighbouring 
points in the grid), whereas the potential φ is calculated by 
inverting Poisson’s equation  (which is done via a matrix 
inversion or elimination operation that ends up involving 
all points in the grid). Global relative errors have also been 
defined according to [33, 34]

εu(t) =

∑N1
i=0

∑N2
j=0 εu(i/N1, j/N2, t)

∑N1
i=0

∑N2
j=0 |u(i/N1, j/N2, t)|

,� (19)

which remain safely below 8 × 10−3, as can be verified in 
figure  11, where one also sees that, for most of them and 

very much as expected, the errors in the numerical solutions 
grow linearly with time, but for the very first iterates, in which 
case the pronounced, almost instantaneous increase is a con-
sequence of the very small initial error (when the analytical 
and numerical solutions are basically coincident). A possible 
exception to the linear growth of the global errors are the red 
curves in figure 11 (corresponding to the solution in figure 7), 
which can be viewed more as an exponential growth, the faster 
increase in the latter being probably linked to the fact that the 
density and potential structures become smaller and smaller, 
approaching more and more the scale of the computational grid 
and eventually leading to a loss of accuracy caused by numer
ical dissipation. Note, however, that this behaviour stems from 
the particulars of the solution plotted in figures 1 and 7, whose 
analytical form is given in (5) and for which one has the large 
time asymptotic limit Ln ≈ αφ ≈ −αg(1 + α/k2)v1t (so that, 
within the domain shown, the initial trigonometrically struc-
tured layout ends up being replaced by a uniform background 
whose absolute value grows indefinitely), and is not the result 
of some direct cascade from lower to higher wave numbers (or 
from larger to smaller structures), a context that is different 

Figure 10.  Snapshots with contour plots of the numerical logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and electrostatic 
potential φ (x1, x2, t), and of their respective local errors εLn (x1, x2, t), ε∇2φ (x1, x2, t) and εφ (x1, x2, t), for N1 = N2 = 101 and ∆t = 10−2 , 
and for the same set of parameters and initial condition as the analytical solution plotted in figure 4.
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from that discussed below in connection with the complete 
model (1) depicted in figure 154. That the numerical procedure 
converges to the expected order of accuracy, assumed to be 
4 because both the time advancing and the finite differencing 
schemes are truncated at the fourth order, has been checked as 
well by conducting the test detailed in appendix C [31, 35].

5.  Numerical solutions of the complete model

Having used the analytical conservative solutions to verify the 
implemented numerical algorithm, it is now possible to move 
forward and numerically explore the physics of the more 
complete SOL model (1), which will be done by gradually 
scaling up the starting, conservative model (2). Since one is 
no longer, say, running the analytical solutions, which called 
for the use of appropriate, time-evolving boundary conditions, 
a more realistic set will be used for the latter which, unless 
otherwise stated, is as follows: in the radial-like variable x1 
vorticity and potential will be set to zero at the boundaries, 
∇2φnum(−i/N1, j/N2, t) = φnum(−i/N1, j/N2, t) = ∇2φnum(1+ 
i/N1, j/N2, t) = φnum(1 + i/N1, j/N2, t) = 0, and the loga-
rithmic density will obey vanishing-derivative condi-
tions, Lnnum(−i/N1, j/N2, t) = Lnnum(i/N1, j/N2, t) and 
Lnnum(1 + i/N1, j/N2, t) = Lnnum(1 − i/N1, j/N2, t), whereas in   
the poloidal-like variable x2 periodic boundary conditions 
will apply for any of the three fields, unum(i/N1,−j/N2, t) =  
unum(i/N1, 1 − j/N2, t) and unum(i/N1, 1 + j/N2, t) = unum(i/N1, j/N2, t).  
In addition, and because the main interest is in blob dynamics, 

localised solutions of types (11) or (12) will henceforth be 
considered as initial conditions, which have the further advan-
tage of possessing Gaussian-like shapes and thus providing 
appropriate natural seeds for seeded-blob simulations [2, 6, 9, 
13–19], even more so as such seeds, being actual solutions of 
the conservative model, are self-justified.

The first runs consisted of simulating the conservative 
model (2) fully numerically, starting with initial conditions 
given by (11) or (12), two cases being shown in figures  12 
and 13, where one should notice that the blob-like structures 
do move (essentially poloidally, without distortion and despite 
the fact that no travelling-wave velocity has been imposed) 
and are rendered periodic (under the effect of the periodic 
boundary conditions forced in the poloidal-like variable). The 
upward motion in x2 of the blob-like structures can actually 
be explained in terms of an opposite, downward motion of 
the background driven by the  −gx1 term appearing in φ given 
in (11) and (12), which gives rise to a negative ∇φ (clearly 

Figure 11.  Global relative errors εLn(t), ε∇2φ(t) and εφ(t) for the 
numerical logarithmic density, vorticity and electrostatic potential 
plotted in figures 7 (red), 8 (green), 9 (blue) and 10 (yellow).

Figure 12.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for N1 = N2 = 201 and 
∆t = 10−2 , and for model (2) with initial condition (11), and 
with g  =  0.08, N  =  1, A1  =  −0.05, γ1 = 200, c10  =  0.4 and 
v1 = v2 = 0.

4 For a direct (or inverse) cascade to be observed, the underlying mechanism 
of the splitting (or merging) of turbulent eddies has to be present, which is 
obviously not the case with the travelling-wave-like conservative solutions 
discussed so far.
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visible in the top, rightmost frames of figures 12, 14 and D1, 
albeit not in figures  13 and D2 because of the compressed 
scale) and a concomitant electric field E = −∇φ aligned 
along x1 and pointing rightwards, whose interplay with the 
magnetic field pointing in the ∇x1 ×∇x2 direction leads to 
the observed background E × B drift. As for the blob-like 
structure itself, take figure 12 for instance, the electric field 
points radially towards its centre, thus yielding an anticlock-
wise E × B-induced spinning motion of the structure, some-
thing that can be confirmed by inspection of the right frame of 
figure 6. Examples with boundary conditions different from 
those detailed above have been used in relation to appendix 
D, where the conservative model is fully solved numerically 
and is put to use in situations where energy conservation is 
expected [29], in order to verify whether numerical dissipa-
tion has been kept under control.

To impart more physics to the model and thus proceed from 
(2) to (1), diffusive terms have been included that account 
for dissipation and essentially work as mimickers for per-
pendicular collisional transport and as numerical stabilisers 

governing the decay of small structures [1–6, 15–19, 27, 28, 
30, 31], the results of a run with these terms added being 
plotted in figure 14, where some distortion of the Gaussian-
like initial condition takes place, along with the emergence of 
an outward radial motion. More precisely, dissipation com-
bines with the anticlockwise spinning motion of the blob-like 
coherent structure to leave a trail that breaks the symmetry 
in the x2 direction, thus creating along the latter a ∇φ which, 
as seen in figure 14, is such as to give rise to an upward, x2-
aligned component of the E field, whose cross product with 
the ∇x1 ×∇x2-aligned B field originates an E × B radially 
outward motion of the structure. Subsequently, the complete 
SOL model in (1) has been employed to obtain the outcome 
shown in figure  15, which very much resembles what can 
usually be found in the numerical and experimental litera-
tures reporting on SOL turbulence and blobs [3–19, 28, 30]: 
a characteristic turbulent pattern sets in, on top of which a 
coherent structure (in the present case originating from the 
initial conservative condition) is transported, both radially 

Figure 13.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for N1 = N2 = 201 and 
∆t = 10−2 , and for model (2) with initial condition (12), and with 
g  =  0.08, A  =  −0.005, γ = 200, c0  =  0.5 and v1 = v2 = 0.

Figure 14.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for N1 = N2 = 201 and 
∆t = 10−2 , and for model (1) with initial condition (11), and with 
g  =  0.08, D = ν = 10−6, N  =  1, A1  =  −0.05, γ1 = 200, c10  =  0.4 
and v1 = v2 = 0.
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and poloidally, surviving through most of the simulation and 
ending up by being eventually ejected or submerged in the 
turbulent background. Note, in addition, the development of 
narrow sheets in vorticity while the potential develops large-
scale convective roll patterns that expand to the size of the 
computational box, indicating the formation of a dual cas-
cade: direct (towards high wave numbers) in the case of vor-
ticity and inverse (towards low wave numbers) in the case of 
potential. This simulation, where a coherent structure whose 
ancestor is an actual conservative solution behaves like a blob 
in every respect, goes towards supporting the initial conjec-
ture according to which the solutions of the conservative part 
of the interchange model might be the ancestors of blobs.

6.  Discussion and conclusions

In this paper, and complementing a previous analysis [24], 
exact travelling-wave-type solutions (travelling waves having 

also been sought when addressing the origin of blobs following 
a different approach [23]) are shown for the conservative part 
(2) of a standard two-dimensional, two-fluid (density plus vor-
ticity) model of the SOL (1) [2, 4, 5, 27, 28]. The aim has been 
to provide a more thorough exploration of such solutions and 
show once more that they possess the basic properties associated 
with blobs, namely, that they can describe convective, ballistic 
transport across the magnetic field of large, coherent structures 
in both directions (radial and poloidal) of the plasma cross-sec-
tion. Based on known properties of dynamical systems [25, 26], 
a conjecture has been made that amongst these solutions might 
be the ancestors of blobs [24], the additional non-conservative 
terms (that account for diffusion, losses and sources) basically 
serving to distort the ballistic conservative dynamics. Moreover, 
it is interesting to note that some of these conservative solu-
tions can take a Gaussian form, very much similar to the initial 
blobs (or holes) used in seeded simulations [2, 6, 9, 13–19], 
indicating such seed blobs may arise naturally from the conser-
vative part of the equations, their use as initial conditions even-
tually helping to prevent (or reduce) large opening transients. 
The exact solutions here obtained have also been shown to play 
an important role as analytical benchmarks on which to verify 
and control the numerical implementation of the full model, a 
necessary step in testing the conjecture advanced above, and 
have been further checked regarding numerical dissipation and 
the order of accuracy of the numerical method.

Numerical solutions of the complete, non-conservative 
model have been explored with the aim of verifying, in par
ticular, if the blob-like conservative solutions survive through 
most of the full dynamics (accounting for diffusion, parallel 
losses and sources), which has been indeed the case for the set 
of parameters tested. Although a more thorough and system-
atic analysis must be carried out (for instance, by sweeping 
the regions in parameter space where the physical quantities 
entering the equations  take values that are relevant for pre-
sent-day and future experiments), the results here reported 
apparently do not contradict the original conjecture that trav-
elling-wave-like solutions of the conservative part of SOL tur-
bulence models may indeed be the ancestors at the origin of 
blobs. Nonetheless, this is still at the stage of conjecture and 
should be interpreted in the sense that, if one feeds these con-
servative solutions to a standard interchange model of SOL 
turbulence, what emerges, and is shown in figure 15, is the 
characteristic picture of blob dynamics one sees in experi-
ments and well-established simulations [3–19, 28, 30].

A further comment concerns the fact that the blob-like 
analytical conservative solutions derived here have a monop-
olar structure, as in figure 3, whereas it is well established 
as a model for blobs that a dipolar structure emerges as a 
consequence of charge separation brought about by cur-
vature or ∇B drifts, which, in turn, creates an E field that 
combines with the ambient B field to produce the character-
istic E × B outward radial motion [6, 9, 11–15, 20–22]. But 
this is precisely the sequence one observes as soon as the 
monopolar symmetry of the initial conservative solutions is 
broken, for instance by adding dissipation, as in figure 14. A 
possible reason why the dipolar structure does not emerge 
when numerically running the pure conservative model, as 

Figure 15.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for N1 = N2 = 201 and 
∆t = 10−3, and for model (1) with initial condition (11), and with 
g  =  0.08, D = ν = 10−6, σ|| = 0.02, Λ = 3.9, S0 = 5 × 10−4, 
λ = 0.1, N  =  1, A1  =  −0.05, γ1 = 200, c10  =  0.4 and v1 = v2 = 0.
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in figures  12 and D1, is the rotational E × B motion cre-
ated by the azimuthally symmetric potential (that creates 
a radial electric field within the structure), it being known 
that blob spinning tends to neutralise charge separation, thus 
reducing and eventually suppressing its radial motion [5, 9, 
13–15]. Also, blobs with a net, strong monopolar structure 
are not physically irrelevant and play a role whenever there 
is a proportionality in the turbulent quantities between, on 
the one hand, the potential and, on the other, the density or 
the temperature (the former occurring when the blob elec-
tron density has a Maxwell–Boltzmann response and the 
potential becomes proportional to the logarithmic density, 
the latter when blobs are electrically connected to the sheaths 
and become subjected to a floating potential that scales lin-
early with temperature), since in both cases a radial profile 
(within the blob) develops for the potential, thus giving rise 
to a radial electric field and blob spinning [5, 9, 13–15]. 
Moreover, what becomes interesting in the present model as 
well (which has none of the physics just mentioned, that is, 
no Maxwell–Boltzmann electrons nor temperature-profile 
effects in connection with sheath phenomenology) is that its 
conservative solutions closely mimicking real blob behav-
iour have intrinsic net vorticity (or spin), which is not only 
important for understanding the formation of blobs with a 
strong monopolar structure, but (and this turns out to be even 
more interesting) it should also be confronted with the belief 
that, quite plausibly, blobs formed from turbulence are cre-
ated already with a monopolar potencial (hence with intrinsic 
spin) [13].
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Appendix A.  Conservative model derivation

For the sake of pedagogy, the conservative set of equa-
tions (2) governing plasma advection in a poloidal-like plane 
∇x1 ×∇x2 perpendicular to the ambient magnetic field (ori-
ented along b̂ = ∇x1 ×∇x2) is now derived, starting from the 
equations that govern particles and charge conservation in a 
quasi-neutral plasma, respectively,

∂n
∂t

+∇ · (nve) = 0

∇ · [n (vi − ve)] = 0,
�

(A.1)

where the electron velocity ve = vE×B + vdia is the sum 
of the E × B and diamagnetic drifts, whilst the ion 
velocity vi = vE×B + vpol  adds up the E × B and polarisa-
tion drifts (vpol being absent in ve because electron inertia 
is negligible and vdia not entering vi because cold ions 
are assumed) [1, 6, 9, 12–14, 19–23, 28–30]. Recalling 

vE×B = b̂ ×∇φ/B, vdia = −Teb̂ ×∇Ln/eB (for iso-
thermal electrons with temperature Te and charge  −e) and 
vpol = −mi(∂/∂t + vE×B · ∇)∇φ/eB2 (for cold ions with 
mass mi and charge e), and after normalising B to some refer-
ence magnetic field B0, n to the background density n0, the 
electrostatic potential φ to the thermal energy per charge Te/e, 
time t to the inverse of the ion cyclotron frequency Ωi = eB0/mi 
and distances x1 and x2 to the ion Larmor radius ρi = vs/Ωi  
calculated using the ion sound speed vs =

√
Te/mi , (A.1) 

becomes

∂n
∂t

+∇ ·

[
nb̂ ×∇ (φ− Ln)

B

]
= 0

∇ ·

{
n

[
1

B2

(
∂

∂t
+

b̂ ×∇φ · ∇
B

)
∇φ− b̂ ×∇Ln

B

]}
= 0.

� (A.2)
It is useful, in order to proceed, to identify those physical 

quantities that may be regarded as small and then formally intro-
duce a small parameter δ to systematically expand the above 
equations. Therefore, with φ a perturbation and n and B taken 
as perturbations with respect to a reference, or background 
value, so n = 1 + Ln + O(δ2) and 1/B = 1 + gx1 + O(δ2), 
and being interested in the system’s evolution at time scales 
much larger than 1/Ωi , one sets ∂/∂t ∼ φ ∼ Ln ∼ g ∼ δ � 1 
[29]. This allows (A.2) to become

∂Ln
∂t

+∇
(

Ln +
1
B

)
· b̂ ×∇ (φ− Ln)

+∇ ·
[
b̂ ×∇ (φ− Ln)

]
+ O(δ3) = 0

∂∇2φ

∂t
+∇ ·

[(
b̂ ×∇φ · ∇

)
∇φ

]
−∇

(
Ln +

1
B

)
· b̂ ×∇Ln

−∇ ·
(

b̂ ×∇Ln
)
+ O(δ3) = 0,

�
(A.3)

or

∂Ln
∂t

− b̂ · ∇
(

Ln +
1
B

)
×∇ (φ− Ln)

− b̂ · ∇ ×∇ (φ− Ln) + O(δ3) = 0

∂∇2φ

∂t
+∇ ·

[(
b̂ · ∇φ×∇

)
∇φ

]
+ b̂ · ∇

(
Ln +

1
B

)

×∇Ln + b̂ · ∇ ×∇Ln + O(δ3) = 0,
�

(A.4)

or still

∂Ln
∂t

−
[

Ln +
1
B

,φ− Ln
]
+ O(δ3) = 0

∂∇2φ

∂t
+∇ · [φ,∇φ] +

[
Ln +

1
B

, Ln
]
+ O(δ3) = 0.

�
(A.5)
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Finally5,

∂Ln
∂t

− [Ln,φ]−
[

1
B

,φ− Ln
]
+ O(δ3) = 0

∂∇2φ

∂t
−

[
∇2φ,φ

]
+

[
1
B

, Ln
]
+ O(δ3) = 0,

�
(A.6)

which, given the form assumed for 1/B, is equivalent to (2) 
if terms of order O(δ3) and higher are neglected. The deriva-
tion given hereabove has the advantage of combining the fun-
damental physics contained in conservation equations with a 
formal, systematic expansion in a small parameter that enables 
strict control of the contribution of the different terms involved.

Appendix B.  RK4 numerics

From a numerical point of view, (1) or (2) are discretised 
according to

dLni,j

dt
= P

[
t, Lni,j (t) ,∇2φi,j (t) ,φi,j (t)

]

d∇2φi,j

dt
= Q

[
t, Lni,j (t) ,∇2φi,j (t) ,φi,j (t)

]
,

�
(B.1)

which are to be solved in the domain [0, 1]× [0, 1] and on 
an N1 × N2 grid (of equally spaced points in x1 × x2), with 
ui,j (t) = unum (i/N1, j/N2, t) for some field u (x1, x2, t) in 
the model, and given initial conditions Lni,j (0) and φi,j(0).  
Equations  (B.1) are advanced in time following the RK4 
scheme [32]:

Lni,j (t +∆t) = Lni,j (t) +
1
6
( p1 i,j + 2p2 i,j + 2p3 i,j + p4 i,j)

∇2φi,j (t +∆t) = ∇2φi,j (t) +
1
6
(q1 i,j + 2q2 i,j + 2q3 i,j + q4 i,j)

φi,j (t +∆t) = ∇−2 [∇2φi,j (t +∆t)
]

,
�

(B.2)

with ∇−2 the inverse Laplacian operator and

p1 i,j = P
[
t, Lni,j (t) ,∇2φi,j (t) ,φi,j (t)

]
∆t

q1 i,j = Q
[
t, Lni,j (t) ,∇2φi,j (t) ,φi,j (t)

]
∆t

φ1 i,j = ∇−2
[
∇2φi,j (t) +

q1 i,j

2

]

p2 i,j = P
[

t +
∆t
2

, Lni,j (t) +
p1 i,j

2
,∇2φi,j (t) +

q1 i,j

2
,φ1 i,j

]
∆t

q2 i,j = Q
[

t +
∆t
2

, Lni,j (t) +
p1 i,j

2
,∇2φi,j (t) +

q1 i,j

2
,φ1 i,j

]
∆t

φ2 i,j = ∇−2
[
∇2φi,j (t) +

q2 i,j

2

]

p3 i,j = P
[

t +
∆t
2

, Lni,j (t) +
p2 i,j

2
,∇2φi,j (t) +

q2 i,j

2
,φ2 i,j

]
∆t

q3 i,j = Q
[

t +
∆t
2

, Lni,j (t) +
p2 i,j

2
,∇2φi,j (t) +

q2 i,j

2
,φ2 i,j

]
∆t

φ3 i,j = ∇−2
[
∇2φi,j (t) +

q3 i,j

2

]

p4 i,j = P
[
t +∆t, Lni,j (t) + p3 i,j,∇2φi,j (t) + q3 i,j,φ3 i,j

]
∆t

q4 i,j = Q
[
t +∆t, Lni,j (t) + p3 i,j,∇2φi,j (t) + q3 i,j,φ3 i,j

]
∆t.

� (B.3)

The derivative ∂1u is numerically replaced by the fourth order 
central finite difference

δ1ui,j (t) =
ui−2,j (t)− 8ui−1,j (t) + 8ui+1,j (t)− ui+2,j (t)

12/ (N1 − 1)
,

� (B.4)
with a similar expression, mutatis mutandi, for δ2ui,j  in sub-
stitution of ∂2u , and with this central finite difference algo-
rithm implemented by simply shifting the ui,j (t) matrix and 
adding the resultant matrices multiplied by the respective 
coefficients, thus allowing simultaneous calculation of the 
field derivative in the entire domain, saving memory and 
computation time.

The third equation  in  (B.2) and three of the equa-
tions  in  (B.3) correspond to the inversion of Poisson’s 
equation, which is carried out by discretising the Laplacian 
according to

∇2φi,j (t) =
(
δ2

11 + δ2
22

)
φi,j (t)

= −
φi−2,j (t)− 16φi−1,j (t) + 30φi,j (t)− 16φi+1,j (t) + φi+2,j (t)

12/ (N1 − 1)2

−
φi,j−2 (t)− 16φi,j−1 (t) + 30φi,j (t)− 16φi,j+1 (t) + φi,j+2 (t)

12/ (N2 − 1)2

� (B.5)
and, using so-called natural ordering, writing the poten-
tial φi,j and the vorticity ∇2φi,j in the form of vectors with 
N1N2 entries each, respectively φ̃i and ∇̃2φi , so the numerical 
Laplacian operator ∇2

i,j;i′,j′ becomes an N1N2 × N1N2  matrix 

∇̃2
i,j, yielding

φ̃i−1+j = φi,j

∇̃2φi−1+j = ∇2φi,j

∇̃2
i−1+j,i′−1+j′ = ∇2

i,j;i′,j′

= −δj,j′
δi−2,i′ − 16δi−1,i′ − 30δi,i′ − 16δi+1,i′ + δi+2,i′ (t)

12/ (N1 − 1)2

− δi,i′
δj−2,j′ − 16δj−1,j′ + 30δj,j′ − 16δj+1,j′ + δj+2,j′

12/ (N2 − 1)2 ,

� (B.6)
with δi,j  the Kronecker delta. Equation (B.5) becomes

∇̃2φi = ∇̃2
i,jφ̃j,� (B.7)

where summation over repeated indices is assumed, (B.7) 
reading as a linear system of equations which, after adding 
appropriate boundary conditions (Dirichelet’s or Neumann’s) 
to its lhs, can be solved by standard methods.

With the use of fourth order central finite differences to 
emulate derivatives, one needs a frame around the integration 
domain of at least two ‘ghost’ grid points for the implementa-
tion of boundary conditions. The correct implementation of 
the latter is of particular importance when trying to numeri-
cally reproduce the analytical conservative solutions, which 
are time dependent and extend throughout the entire x1 × x2 
space, thus reaching beyond the [0, 1]× [0, 1] integra-
tion domain. Therefore, one has to deal with time evolving 
boundary conditions that must be sampled from the analytical 
solutions at the proper times. For instance, when computing 

5 Note that ∇ · [φ,∇φ] = ∂1 [φ, ∂1φ] + ∂2 [φ, ∂2φ] = [∂1φ, ∂1φ] + [∂2φ, ∂2φ] +[
φ, ∂2

1φ
]
+

[
φ, ∂2

2φ
]
=

[
φ,∇2φ

]
.
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p2 0,j  and q2 0,j  in one of the intermediate steps in (B.3), a derivative one needs to estimate is ∂1Ln at the boundary x1  =  0 and 

time t +∆t/2 which, according to (B.4), is replaced by

δ1Ln0,j (t +∆t/2) =
Ln−2,j (t +∆t/2)− 8Ln−1,j (t +∆t/2)

12/ (N1 − 1)
+

8Ln1,j (t +∆t/2)− Ln2,j (t +∆t/2)
12/ (N1 − 1)

=
Ln (−2/N1, j/N2, t +∆t/2)− 8Ln (−1/N1, j/N2, t +∆t/2)

12/ (N1 − 1)
+

8 [Ln1,j (t) + p1 1,j/2]− [Ln2,j (t) + p1 2,j/2]
12/ (N1 − 1)

.

� (B.8)

To provide a further example, the derivative ∂2∇2φ evaluated at x2 = N2 and t +∆t , as needed for p4 i,N2 and q4 i,N2, becomes

δ2∇2φi,N2 (t +∆t) =
∇2φi,N2−2 (t +∆t)− 8∇2φi,N2−1 (t +∆t)

12/ (N2 − 1)
+

8∇2φi,N2+1 (t +∆t)−∇2φi,N2+2 (t +∆t)
12/ (N2 − 1)

=

[
∇2φi,N2−2 (t) + q3 i,N2−2

]
− 8

[
∇2φi,N2−1 (t) + q3 i,N2−1

]
12/ (N2 − 1)

+
8∇2φ (i/N1, 1 + 1/N2, t +∆t)−∇2φ (i/N1, 1 + 2/N2, t +∆t)

12/ (N2 − 1)
.

� (B.9)

The same care with boundary conditions sampled from analytical solutions applies to the computation of the Laplacian in (B.5) 
as, for instance, when calculating ∇2φ  for x1  =  1 and x2  =  0 at time t +∆t/2 to retrieve φ1 i,j appearing in (B.3):

∇2φN1,0 (t) +
q1 N1,0

2
=− φN1−2,0 (t +∆t/2)− 16φN1−1,0 (t +∆t/2) + 30φN1,0 (t +∆t/2)

12/ (N1 − 1)2

+
16φN1+1,0 (t +∆t/2)− φN1+2,0 (t +∆t/2)

12/ (N1 − 1)2 − φN1,−2 (t +∆t/2)− 16φN1,−1 (t +∆t/2)

12/ (N2 − 1)2

− 30φN1,0 (t +∆t/2)− 16φN1,1 (t +∆t/2) + φN1,2 (t +∆t/2)

12/ (N2 − 1)2

=− φ1 N1−2,0 − 16φ1 N1−1,0 + 30φ1 N1,0

12/ (N1 − 1)2 +
16φ (1 + 1/N1, 0, t +∆t/2)− φ (1 + 2/N1, 0, t +∆t/2)

12/ (N1 − 1)2

− φ (1,−2/N2, t +∆t/2)− 16φ (1,−1/N2, t +∆t/2)

12/ (N2 − 1)2 − 30φ1 N1,0 − 16φ1 N1,1 + φ1 N1,2

12/ (N2 − 1)2 .

�

(B.10)

Moving the analytically retrieved boundary conditions to the lhs of (B.10), the latter can be rewritten in a form more appropriate 
for inverting Poisson’s equation as

∇2φN1,0 (t) +
q1 N1,0

2
− 16φ (1 + 1/N1, 0, t +∆t/2)− φ (1 + 2/N1, 0, t +∆t/2)

12/ (N1 − 1)2

+
φ (1,−2/N2, t +∆t/2)− 16φ (1,−1/N2, t +∆t/2)

12/ (N2 − 1)2

= −φ1 N1−2,0 − 16φ1 N1−1,0 + 30φ1 N1,0

12/ (N1 − 1)2 − 30φ1 N1,0 − 16φ1 N1,1 + φ1 N1,2

12/ (N2 − 1)2 .

� (B.11)

Appendix C.  Order of accuracy check

A further trial on the proper implementation of the numerical algorithm can be conducted, specifically addressed at testing the 
order of convergence p  of the truncation error resulting from the discretisation scheme applied to the model equations. In the 
present case, using an RK4 scheme for advancing equations in time together with fourth order central finite differences in space, 
one expects the truncation error in some numerical field estimate unum(x1, x2, t) to obey [31, 35]

ε(h)
u ≈ Eh4,� (C.1)
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where E is some coefficient independent of the generalised 
mesh size h = ∆x1 = ∆x2 = ∆t, with ∆x1 = 1/(N1 − 1), 
∆x2 = 1/(N2 − 1) and ∆t = tsim/Nt varying with the number 
Nt of time steps for a fixed simulation running time tsim 
(excluding the initial t  =  0 step, whose contribution to the 

error obviously vanishes). Suppose, now, one coarsens the 
mesh by some factor r, meaning h is replaced by rh, and sub-
sequently computes the quantity

p̂u =
ln
(
ε
(rh)
u /ε

(h)
u

)

ln r
;

� (C.2)
then, according to (C.1), one presumes p̂ to converge to 4 
when h is made smaller and smaller. If such is the case, one 
can safely say that model equations are correctly solved within 
the order of accuracy expected for the numerical scheme.  
To perform this order of accuracy test, the errors ε(h)

u  in the dif-
ferent fields have been estimated using the following two norms:

ε(h)
u = L(h)

1u =
1

N1N2Nt

N1∑
i=0

N2∑
j=0

Nt∑
l=1

εu (i/N1, j/N2, ltsim/Nt)

� (C.3)
and

Figure C1.  Observed orders of accuracy p̂Ln(h) (triangles), p̂∇2φ(h) 
(squares) and p̂φ(h) (circles), using norms (C.3) (blue, full symbols) 
and (C.4) (red, open symbols), for the numerical logarithmic 
density, vorticity and electrostatic potential plotted in figure 9.

Figure C2.  Observed orders of accuracy p̂Ln(h) (triangles), p̂∇2φ(h) 
(squares) and p̂φ(h) (circles), using norms (C.3) (blue, full symbols) 
and (C.4) (red, open symbols), for the numerical logarithmic 
density, vorticity and electrostatic potential plotted in figure 10.

Figure D1.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for the same conditions and 
parameters as in figure 12, but for zero boundary conditions in x1 
and periodic boundary conditions in x2.
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ε(h)
u = L(h)

2u =

√√√√ 1
N1N2Nt

N1∑
i=0

N2∑
j=0

Nt∑
l=1

ε2
u (i/N1, j/N2, ltsim/Nt),

� (C.4)

which correspond, respectively, to the simple and the root 
square means of the local error defined in (18).

So, taking as reference href = 0.005 for the finest mesh 
tested, coarsening has been implemented according to 
h = r phref, with r  =  2 and p = 0, 1, 2, 3, 4, 5, making 
tsim = 10, and simulations have been run for the two localised 
solutions shown in figures 9 and 10. The outcome for the dif-
ferent p̂u is plotted in figures C1 and C2, and convergence to 
the theoretically expected order of accuracy p̂u = 4 is clearly 
observed for all fields pertaining to the two solutions and for 

both norms (C.3) and (C.4), reinforcing one’s confidence in 
the numerical implementation of SOL models (1) and (2).

Appendix D.  Numerical dissipation test

It is possible to show that, for the conservative model (2),  
provided the boundary terms vanish,

H =
1
2

∫ ∫
dx1dx2

(
Ln2 + |∇φ|2

)
� (D.1)

is a conserved quantity; actually the Hamiltonian which, 
together with an appropriate Poisson bracket, defines a 
Hamiltonian structure of the Lie–Poisson type [29], and the 
same quantity H that also obeys an energy-like theorem in the 
Hasegawa–Wakatani model [8]. Indeed, combining (2) and 
(D.1), and dropping all boundary terms arising when inte-
grating, follows [24]

d
dt

1
2

∫ ∫
dx1dx2Ln2 +

∫ ∫
dx1dx2gφ∂2Ln

=

∫ ∫
dx1dx2Ln

∂Ln
∂t

+

∫ ∫
dx1dx2gφ∂2Ln

= −b̂ ·
∫ ∫

dx1dx2∇φ×∇Ln

= b̂ ·
∫ ∫

dx1dx2φ∇×∇Ln = 0
�

(D.2)

and

Figure D2.  Snapshots with contour plots of the numerical 
logarithmic density Ln (x1, x2, t), vorticity ∇2φ (x1, x2, t) and 
electrostatic potential φ (x1, x2, t), for the same conditions and 
parameters as in figure 13, but for zero boundary conditions in x1 
and periodic boundary conditions in x2.

Figure D3.  Relative error εH(t) in the conservation of H for the 
same conditions and parameters as in figures D1 (black, solid line) 
and D2 (red, dashed line).
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d
dt

1
2

∫ ∫
dx1dx2 |∇φ|2 −

∫ ∫
dx1dx2gφ∂2Ln

= −
∫ ∫

dx1dx2φ
∂∇2φ

∂t
−
∫ ∫

dx1dx2gφ∂2Ln

= b̂ ·
∫ ∫

dx1dx2φ∇φ×∇∇2φ

= b̂ ·
∫ ∫

dx1dx2∇2φ∇× (φ∇φ) = 0,
�

(D.3)

hence

dH
dt

= 0.� (D.4)

Boundary terms in the integrations above vanish either 
because they do become zero, or because they cancel each 
other, which corresponds to imposing vanishing or periodic 
boundary conditions, respectively. Therefore, the same initial 
conditions used to numerically run (2) and obtain figures 12 
and 13 have been used to test (D.4) with vanishing boundary 
conditions in x1 and periodic in x2, applied to all three func-
tions Ln, ∇2φ  and φ, the results of this exercise being shown 
in figures D1 and D2, with the corresponding error in numer
ical dissipation, defined as

εH =
H (t)− H (0)

H (0)
,� (D.5)

being plotted in figure D3. One sees that numerical dissipa-
tion, as measured by εH, is indeed kept under tight control, 
remaining perfectly negligible at all times, always below 
3.5 × 10−8, the periodic peaks being correlated with the 
crossing of the periodic boundary in x2 by the blob- and hole-
like structures (and its reappearance at x2  =  0), as can be veri-
fied by checking the times in figures D1–D36.
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